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ABSTRACT: The regulatory subunit of cAMP-dependent protein kinase (PKA)
exists in the isoforms RI and RII, which distinguish PKA isozymes type I
(PKA-I) and type II (PKA-II). Evidence obtained from different experimental
approaches—such as site-selective cAMP analogs, antisense oligonucleotides,
transcription factor decoys, cDNA microarrays, and gene transfer—has shown
that PKA-I and -II are expressed in a balance of cell growth and differentia-
tion. Loss of this balance may underlie cancer genesis and progression. DNA
microarrays demonstrate that antisense suppression of the RI�, which upreg-
ulates RII�, downregulates a wide range of genes involved in cell proliferation
and transformation while upregulating cell differentiation and reverse trans-
formation genes in PC3M prostate tumors that undergo regression. Converse-
ly, the vector-mediated overexpression of RII�, as opposed to those of RI� and
C�, exhibits induction of differentiation genes along with suppression of cell
proliferation and transformation genes leading to reversion of tumor pheno-
type. Thus, switching of PKA isozyme can cause tumor cells to undergo pheno-
typic reversion of the malignancy.

KEYWORDS: protein kinase A; antisense; gene transfer; gene therapy; site-
selective cAMP analog; tumor reversion

INTRODUCTION

Permanent eradication of cancer in the cell can most surely be achieved by tumor
reversion. A burgeoning number of reports in the literature describe reverse transfor-
mation or redifferentiation of many malignancies by various agents. Promises of tu-
mor reversion were made in the mid-1960s when a cell line of normal mouse
fibroblasts, NIH3T3, was established and was found to exhibit a sensitivity to con-
tact inhibition, which is caused by a reversible arrest of growth in G1.1 Such sensi-
tivity to contact inhibition is lost when NIH3T3 cells are transformed by polyoma
virus/simian virus 40 (SV40). In 1968, Pollack, Green, and Todaro2 described for the
first time discovery of sublines of polyoma virus/SV40-transformed NIH3T3 that
had regained an increased sensitivity to contact inhibition, and importantly, de-
creased tumor-producing ability. These sublines were called “revertants.”
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cAMP has long been considered to play a critical role in the regulation of cell
growth and differentiation in a variety of cell types.3–5 The potential for clinical ap-
plications of cAMP was, however, appreciated only when 8-Cl-cAMP, a site-selective
cAMP analog, was selected by the U.S. National Cancer Institute as a preclinical
phase I antineoplastic drug (January 27, 1988); since then several phase I clinical
studies of 8-Cl-cAMP have been completed.

8-Cl-cAMP exhibits potent growth inhibition in vitro and in vivo in a broad spec-
trum of human carcinoma, fibrosarcoma, and leukemia cell lines without causing cy-
totoxicity.6–8 The molecular mechanism for such potency in the growth inhibitory
effect of 8-Cl-cAMP and other site-selective cAMP analogs takes advantage of the
ability of these analogs to selectively modulate two isoforms of cAMP-dependent
protein kinase (PKA-I and PKA-II), the positive and negative intracellular regula-
tors,9 respectively, of cell growth at physiologic µM concentrations as opposed to the
previously known analogs that require clinically irrelevant mM concentrations.6–8

However, the dual functions of cAMP, positive and negative regulation of cell
growth, and the assignment of the PKA-Iα and PKA-IIβ, respectively, for these op-
posite functions of cAMP on cell growth, have been the subjects of debate among
investigators in the field for more than 20 years.9–12 Only during the past decade has
experimental evidence revealed distinct functions for PKA-I and -II, providing mo-
lecular proof that intracellular balanced expression between the two isoforms of
PKA may play a critical role in controlling cell growth and differentiation.13–15 It is
shown that PKA-I is only transiently overexpressed in normal cells in response to
physiologic stimuli of cell proliferation. In contrast, it is constitutively overex-
pressed in cancer cells and is associated with poor prognosis in human cancers of
different cell types. Conversely, PKA-II is preferentially expressed in normal differ-
entiated tissues.

Here, we describe how modulation of the regulatory isoforms (RI versus RII) of
PKA influence the ability of PKA to regulate cancer cell growth and to induce tumor
reversion. Such approaches not only provide the molecular tools for critically assess-
ing cAMP/PKA signaling in cancer genesis and progression, but they also contribute
to the discovery of target-based cancer treatment drugs.

PKA ISOZYME DISTRIBUTION IN CANCER

The changing ratios of PKA-I and -II have been correlated with ontogenic develop-
ment and differentiation processes.9,16 Evidence suggests an interesting correlation re-
garding the differential expression of PKA-I and -II subunits and their mRNAs in
clinical human tumors and transformed cell lines. Increased expression of RI/PKA-I
over that of RII/PKA-II has been shown in several human cancer tissues and cell lines,
including retinoblastoma, Wilm’s tumor, renal, breast, and colon carcinomas, trans-
formed BT5C glioma cell line, malignant osteoblasts, in serous ovarian tumors vs. mu-
cinous, and endometrioid or clear cell lesions.9,17 Increased RI/PKA-I expression was
also shown to be associated with chemical and viral carcinogenesis and oncogene-in-
duced cell transformation.9 Furthermore, overexpression of RIα, but not the catalytic
(C) subunit, in immortalized MCF-10A cells, conferred the ability to grow in serum
and growth factor-free conditions,18 and RIα but not Cα overexpression in CHO cells,
provided the growth advantages in monolayer and soft agar conditions.19
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These reports suggest that expression of RI isoform of PKA is involved in neo-
plastic transformation and progression, and therefore suppression of RIα/PKA-Iα
and/or induction of RIIβ/PKA-IIβ may restore growth control in these malignancies.

THE FIRST CLINICAL DRUG FOR cAMP

8-Cl-cAMP

Site-selective cAMP analogs,20,21 but not parental cAMP,22 demonstrate selec-
tive binding toward either one of two cAMP binding sites, Site A (Site 2) and Site B
(Site 1)20,21 in the R subunit, resulting in preferential binding and activation of either
PKA isozyme. The use of site-selective cAMP analogs that demonstrate high affinity
and selectivity toward the protein kinase isozyme make it possible to correlate the
specific effect of PKA isozymes with cAMP-mediated responses in intact cells.23

With respect to growth control, site-selective cAMP analogs have been shown to in-
duce growth inhibition and differentiation in a broad spectrum of human cancer cell
lines, including carcinomas, sarcomas, and leukemias, without causing cytotoxici-
ty.6–8 Of these, 8-Cl-cAMP, the most potent site-selective cAMP analog, has com-
pleted several phase I clinical studies.24,25

8-Cl-cAMP: A PKA-I Downregulator

8-Cl-cAMP, which belongs to the isozyme site discriminator class,9,26 activates
and downregulates PKA-I owing to its equally high-affinity binding to the A and B
sites of RI. On the other hand, this analog binds with high affinity only to the B site
of RII, exhibiting a weaker activation for PKA-II than for PKA-I.9,27 In HL-60 pro-
myelocytic leukemia cells, 8-Cl-cAMP downregulates PKA-I by promoting trunca-
tion of the 48 kDa RIα subunit to a 34 kDa form.28 The 34 kDa RIα exists in the
PKA-I holoenzyme, suggesting that this molecule is truncated at the C terminus.
This mode of RIα truncation may facilitate rebinding of 8-Cl-cAMP to the reconsti-
tuted holoenzyme, enhancing PKA-I downregulation without allowing the free RIα
subunit to accumulate. Truncation of the 48 kDa RIα to the 34 kDa form is a mech-
anism of action unique to 8-Cl-cAMP; the 34 kDa protein is not induced in PKA-I
downregulation by other means, such as treatment with RIα antisense or RIIβ over-
expression. Most likely, 8-Cl-cAMP treatment activates a protease that breaks down
a 48 kDa RIα into a 34 kDa molecule.

8-Cl-cAMP–Induced Tumor Reversion

In preclinical studies, 8-Cl-cAMP suppresses the expression of c-myc and
c-ras,7,8 reverses the transformed phenotype,29-31 and induces apoptotic cell death
in human cancer cells.30,32 Results of a phase I clinical trial suggest that effective
plasma levels (determined in preclinical studies) of 8-Cl-cAMP can be maintained
below the maximum tolerated dose.24 The mechanism of anti-tumor activity of 8-Cl-
cAMP was studied using cells that either overexpressing the Bcl-2 gene or cells
treated with ZVAD (a broad-range caspase inhibitor) that specifically blocks apo-
ptotic cell death without affecting cell proliferation.32 Up to 5 days of 8-Cl-cAMP
treatment, Bcl-2 was transiently downregulated and Bad expression continuously in-
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creased. Overexpression of Bcl-2 blocked 8-Cl-cAMP-induced apoptosis but had no
effect on the accompanying 8-Cl-cAMP-induced inhibition of cell proliferation.32 In
addition, suppression of apoptosis by ZVAD did not abrogate 8-Cl-cAMP-induced
inhibition of cell proliferation.32

These results indicate that 8-Cl-cAMP inhibits cancer cell growth through anti-
proliferation and pro-apoptotic mechanisms. Most likely, 8-Cl-cAMP, via a selective
activation of PKA-I,7,9,27,28 promotes the phosphorylation of Bcl-2 but not Bad (Bad
phosphorylation in mitochondria was found to be via PKA-II activation),33 leading
to Bcl-2 inactivation and apoptosis. Use of cDNA microarrays will further refine the
mechanism of action of 8-Cl-cAMP in tumor growth inhibition. 

ANTISENSE OLIGONUCLEOTIDES

Antisense Protein Kinase A RI�

The possibility that the RI cAMP receptor is a positive regulator of cancer cell
growth has been explored using the antisense strategy. A synthetic RIα antisense
oligodeoxynucleotide (ODN) corresponding to the N-terminal seven codons of hu-
man RIα inhibits growth in breast (MCF-7), colon (LS-174T), and gastric (TMK-1)
carcinoma cells, neuroblastoma (SK-N-SH) cells, and HL-60 leukemia cells with no
sign of cytotoxicity.34,35 The antisense RIα induced changes in cell morphology to
one typical of the flat reverted phenotype in SK-N-SH neuroblastoma and HL-60
leukemia cells.33,35 Furthermore, treatment with an RIα antisense phosphorothioate
ODN (PS-ODN) brings about a marked reduction in RIα levels with a concomitant
increase in RIIβ levels.34 Strikingly, a single injection of RIα antisense PS-ODN
targeted against codons 8–13 of human RIα reduces RIα expression and produces
sustained growth inhibition in LS-174T colon carcinoma in nude mice at up to 14
days of examination.36 Tumor cells behave like untransformed cells by making less
PKA-I.36

The Second Generation RNA-DNA Mixed Backbone Antisense RI�

To address the issue of nonspecific toxicity and side effects associated with anti-
sense PS-ODNs, the polyanionic nature of the antisense RIα PS-ODN has been min-
imized, and the immunostimulatory GCGT motif has been blocked in a second-
generation RNA-DNA mixed-backbone (MBO) RIα antisense ODN.37 This ODN
improved antisense activity over the PS-ODN,38,39 was more resistant to nucleases,
formed more stable duplexes with RNA than the parental PS-ODN,38 and retained
the capability to induce RNAse H.38 Thus, in addition to reducing nonspecific ef-
fects, the RNA-DNA RIα antisense ODN facilitated the exploration of sequence-
specific antisense effects.37 This modulation ultimately inhibits growth and induces
apoptosis in various cancer cell lines and in tumors in nude mice.13,15,37,40,41

Antisense RI�: Target Specificity and Clinical Utility

The target specificity of RNA-DNA MBO RIα antisense has been thoroughly ad-
dressed. Pulse-chase experiments have revealed that RIα has a relatively short half-
life: 17 hours in control cells and 13 hours in antisense-treated cells (i.e., LS-174 co-
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lon carcinoma).42 The short half-life of RIα, along with its message downregulation,
is consistent with the rapid RIα downregulation observed in antisense-treated tu-
mors.36 In addition, levels of RIIβ protein increased because of an increase in half-
life of 2 h to 11 h (5.5 fold),42 leading to a decrease in the PKA-I-to-PKA-II ratio in
tumor cells. The half-lives of RIIα and Cα were unchanged in antisense-treated
cells.42 The RIα antisense-induced stabilization of the RIIβ protein was consistent
with results in RIβ and RIIβ knockout mice, in which compensatory stabilization-
induced elevation of the RIα protein appeared in tissues that normally expressed β
isoforms of the R subunit.43 These results showed a clear correlation between RIα
antisense-induced growth inhibition and the target-specific antisense effect—name-
ly, RIα downregulation.

The RNA-DNA MBO second-generation antisense RIα has demonstrated in-
creased biologic activity, minimal polyanionic or immunostimulatory side effects,
improved in vivo stability and oral efficacy.40,41 The MBO antisense RIα (GEM-
231, Hybridon, Inc.) has completed phase I clinical studies40,45 and currently is un-
der phase II study.

MOLECULAR PORTRAIT OF A TUMOR REVERSION

Antisense Approach

Using cDNA microarrays, the sequence-specific antisense effects were examined
on global gene expression in PC3M prostate and LS-174T colon carcinoma cells ex-
ogenously treated with RIα antisense ODNs or these cells endogenously overex-
pressed with the antisense RIα gene.46 Expression is altered for approximately 10%
of the total cDNA elements (2304) on the array, and these changes in gene expres-
sion are comparable in prostate and colon cancer cells, which have vastly different
gene expression profiles. Strikingly, the gene-expression profile, altered by the anti-
sense ODNs, exactly mirrored the profiles elicited by endogenous antisense gene ex-
pression.46 Affected genes include genes for transcription factors, protein kinases
and phosphatases, cell-cycle regulators, proteins involved in DNA synthesis and reg-
ulation, G-proteins, and cytoskeleton regulatory proteins.

Clustering analysis demonstrated that the antisense RIα downregulates one clus-
ter of coordinately expressed genes, or signature, involved in cell proliferation while
upregulating the other involved in cell differentiation, i.e., reverse transformation.46

Similar proliferation and differentiation signatures are found in antisense-treated
PC3M tumors, but an expression profile distinct from that seen in antisense-treated
cells is also apparent.46 Genes in the transformation signature, such as oncogenes
and genes for tyrosine and serine/threonine kinases that are usually overexpressed in
tumors, were specifically downregulated following antisense treatment.46 These ex-
pression signatures modulated by the antisense RIα—namely, downregulation of
proliferation signature and upregulation of the differentiation signature—reflect the
profile of the nonmalignant or reverted phenotype.47

Importantly, these signatures are quiescent and unaltered in the host livers of
antisense-treated animals. This observation clearly indicates that separate and dis-
tinct cAMP signaling pathways regulate growth for normal cells versus cancer cells.
Thus, RIα antisense induces the molecular redifferentiation signatures in cancer cells
in a sequence-specific manner, leading to induction of a new reverted phenotype.46
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This microarray study was the first demonstration in the field of antisense re-
search that an antisense, in a sequence-specific manner, can modulate a wide set of
genes beyond its targeted gene.46 Antisense-directed depletion of RIα thus modu-
lates the signal transduction signatures of multiple pathways beyond that of cAMP
signaling—leading to induction of tumor reversion.

Gene-Overexpression Approach

Experimental evidence shows that the RIIβ cAMP receptor is essential for
cAMP-induced growth inhibition and differentiation in various cancer cell lines.
An RIIβ antisense ODN blocks cAMP-induced, but not phorbolester-induced,
growth inhibition and differentiation; cells become refractory to the cAMP stimulus
and continue to grow without differentiation in the presence or absence of cAMP
analog.48

The relationship between RIIβ expression and malignancy has been tested using
vector-mediated RIIβ overexpression. The RIIβ overexpressing cells, including SK-
N-SH neuroblastoma, MCF-7 breast and LS-174T colon carcinoma, and Ki-ras–
transformed NIH/3T3 clone DT and PC12 mutant-A-126-1B2 cells, exhibit growth
inhibition with no sign of cytotoxicity.49–52 The growth inhibition correlated with
the expression of RIIβ and accompanied changes in cell morphology. SK-N-SH neu-
roblastoma, DT and A-126 cells, after infection with MT-RIIβ retroviral vector,
demonstrated striking changes in morphology: cells became flat, exhibiting enlarged
cytoplasm and an increased cytoplasm-to-nucleus ratio.50,52 Importantly, this
changed morphology was similar to that induced by exposure of these cells to RIα
antisense, which induces RIIβ upon blocking RIα expression.52

PC3M prostate carcinoma cells were used as a model to overexpress wild-type
and mutant R and C subunit genes of PKA, and the effects of differential expression
of these genes on PKA isozyme formation, cell morphology, cell proliferation, ge-
nome-wide expression profile, and tumor phenotype were examined.53 The mutant
genes used in this study included: the RIα mutant, RIα-P, which gains an autophos-
phorylation site (Ala→Ser) by point mutation of G→T at R and C interaction
site54,55 to functionally mimic RII; the RIIβ mutant, RIIβ-P, which loses an auto-
phosphorylation site (Ser→Ala) by point mutation of T→G;49,51 and the N-terminal
myristate-lacking mutant, Cα-m, which has been shown to be as fully active in the
cell as wild-type Cα, but lacks the ability to secrete into extracellular space.56

The RIIα-, RIIβ-, and RIIβ-P–overexpressing cells increased PKA-II and almost
completely abolished PKA-I, whereas RIα-, Cα-, and Cα-m–overexpressing cells
increased PKA-I but could not suppress PKA-II. Most strikingly, cells overexpress-
ing RIα-P, the functional mimic of RII, increased PKA-I and markedly down-
regulated PKA-II. It has been shown that PKA-II is the favored form of PKA
holoenzyme rather than PKA-I.57 Thus, a single point mutation of RIα at the R and
C interaction site, i.e., the pseudophosphorylation site, brought about mutant PKA-
I (RIα-P–containing PKA-I) functionally mimicking PKA-II, and consequently, its
overexpression suppresses the endogenous PKA-II.53

Importantly, RIIβ and RIα-P transfectants exhibited changes in cell morphology—
although the changed morphologies between these cells were distinctive—growth
inhibition in vitro, and in vivo tumor growth inhibition.53 Indeed, cDNA microassays
revealed the molecular portrait of a reverted phenotype in RIIβ- and RIα-P–
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overexpressing cells.53 The differentiation signature, a cluster of genes associated
with cell differentiation, was upregulated, while transformation and proliferation
signatures were downregulated. In contrast, Cα- and RIα-overexpressing cells up-
regulated transformation and proliferation signatures and were incapable of upregu-
lating the differentiation signature.53 This positive regulatory action of Cα toward
cell proliferation and transformation is in accordance with the findings that the CRE-
transcription factor-decoy, which blocks the CRE- and AP-1–directed transcription,
inhibits tumor cell growth in vitro and in vivo,58 and dominant-negative CREB,
KCREB, inhibits tumor growth and metastasis of human melanoma cells.59 The op-
posed effects between RIIβ and Cα cells on a genome-wide expression profile was
further supported by confocal microscopy.53 It was shown that in RIIβ-overexpress-
ing cells, Cα and RIIβ, appear entirely colocalized in the cytoplasm and nucleous.
Thus, RIIβ overexpression sequesters Cα in the holoenzyme with RIIβ, blocking Cα
activation and resulting in altered cAMP signaling in these cells. These results sug-
gest that PKA isozyme switching via eliciting differential cAMP signaling gives rise
to tumor reversion.

CONCLUSIONS AND PERSPECTIVES

In these different experimental approaches, namely the use of 8-Cl-cAMP, a site-
selective analog of cAMP, antisense oligonucleotides, and gene overexpression, the
reversion of tumor phenotype was successfully achieved in a wide variety of tumor
cell lines including breast, prostate, colon, lung, gastric, and ovarian carcinomas,
neuroblastoma, gliomas and leukemias, sarcomas, k-ras–transformed NIH 3T3
clone DT cells, and mutant PC12, A-126 cells. The underlying mechanism was the
switching of the PKA-I holoenzyme to a PKA-II isozyme.

Because of the persistent increase found in PKA-I over PKA-II in the clinical pri-
mary tumors and tumor cell lines of various cell types as described in this review,
and the secreted PKA-free catalytic subunit (ECPKA) found in a cancer patient’s se-
rum, which has been correlated with the increase in the intracellular PKA-I in cancer
cells,56 PKA-I has been recognized as the molecular target for the restoration of nor-
mal physiology in cancer cells.

The data reported to date suggest that PKA-I acts as a positive growth regulator,
whereas PKA-II acts to inhibit cell proliferation and to induce cell differentiation.
Some exceptions have been described, however, especially with Carney complex,
the spotty skin pigmentation that can accompany multiple endocrine neoplasia and
which is attributed to the mutational loss of the RIα regulatory subunit of PKA-I60—
though no direct causal relationship of the loss of RIα with the production of these
endocrine neoplasia has been established.

Thus, modulation of PKA isozymes can lead to regulation of tumor growth, re-
storing the balance between cell proliferation and apoptosis/differentiation. Because
the PKA-I- to -PKA-II ratio is reversed in many cancer cells as compared to their
normal counterparts, PKA isozyme switching in cancer cells could provide tumor-
targeted therapy for cancer treatment, eventually restoring a normal phenotype,
namely, tumor reversion.

PKA isozyme switching could be achieved in many ways, including via 8-Cl-
cAMP and other site-selective cAMP analogs, viral and non-viral vector-mediated
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gene transfer/gene therapy, antisense DNAs, interfering RNAs, and targeted gene re-
pair/replacement chimeraplasty methodology.
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