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Abstract
The refractive index of helium at atmospheric pressure can be determined
from ab initio calculations in combination with careful pressure and
temperature measurements. Therefore, helium can serve as a theory-based
standard of refractive index; it might be used as a medium of known
refractive index for high-accuracy interferometric length measurements or it
can be used to characterize and correct errors in a gas refractometer. We
have used helium to correct for pressure-induced distortions of two
refractometers built by us, where both refractometers basically consist of a
laser locked to the transmission maximum of a simple Fabry–Perot cavity.
As a proof-of-principle of the helium-correction technique, we have used our
device to measure the molar refractivity of nitrogen and we find reasonable
agreement with previous measurements. When our two refractometers
simultaneously measure the refractive index of a common nitrogen sample,
we find that the two systems agree with each other within a few parts in 109.

1. Introduction

Uncertainty in the refractive index of air often limits
the attainable accuracy of interferometer-based length
measurements. One possible strategy for improving
such measurements is to use helium in place of air as
the working medium for interferometry. Helium gas at
atmospheric pressure is attractive because (1) its refractivity
is one-eighth that of air and (2) the refractive index at a known
temperature and pressure can be calculated from first principles
with high accuracy. From a strictly theoretical standpoint,
the uncertainty in the calculated refractive index of helium at
atmospheric pressure is probably of the order of 10−10, where
this uncertainty arises primarily from incomplete evaluation
of quantum electrodynamic effects. (Note: there is no need
to distinguish between relative and absolute uncertainty of
the refractive index since n ≈ 1 in this application.) As a
practical matter, the attainable uncertainty is usually set by
the accuracy of helium pressure and temperature measurement
or by residual impurities in the helium gas. Although
uncertainties in the measurement of helium pressure and

1 Permanent address: Institute of Scientific Instruments, Brno, Czech
Republic.

temperature limit the attainable accuracy, the low refractivity of
helium reduces these limitations by a factor of 8 relative to the
corresponding uncertainties when determining air refractive
index from environmental measurements.

Even when it is not practical to use helium directly
as the medium for interferometry, we can use helium as a
known standard of refractive index in order to characterize
and correct errors in a gas refractometer. We have developed
a simple gas refractometer based on a laser locked to
the transmission maximum of a Fabry–Perot interferometer
(hereafter designated FPI), and we use helium to correct
for pressure-induced distortions of the FPI cavity. Changes
in laser frequency track changes in refractive index as the
interior of the FPI cavity is filled with gas or pumped out to
vacuum. For an ideal cavity, the change in laser frequency
is proportional to the change in refractivity going from the
evacuated to the filled state. (Refractivity is n − 1, where
n is the refractive index.) Since the evacuated state has a
known refractive index n = 1, measuring the change in
refractive index also tells us the absolute refractive index of
the gas. A practical problem in implementing this scheme is
the difficulty in accounting for distortions of cavity dimensions
caused by the changing pressure. It is expected that our
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cavity length will be compressed by about 6 parts in 107 by
atmospheric pressure [1]. As a consequence, if the material’s
bulk modulus is uncertain by 7%, then the refractive index
can only be determined to an uncertainty of 4 parts in 108.
Furthermore, we have observed pressure-dependent changes in
cavity dimensions that cannot be attributed to simple uniform
compression [1]. Although we believe that these changes are
probably associated with dissimilar materials in the cavity, we
do not understand the changes in sufficient detail to model
the distortion mathematically.

One method to overcome this problem is to employ helium
gas at atmospheric pressure as a known reference because the
refractive index of helium can be calculated accurately from
first principles. Two similar procedures might be employed:

(1) It is possible to map the cavity distortion as a function of
pressure. Since the refractive index of helium is known,
any discrepancy between the measured and known helium
refractive indices can be interpreted as a cavity distortion.

(2) Rather than tracking variations in refractive index as the
cavity is evacuated, it would be possible to track the
variation when the gas to be measured is replaced by
helium at nearly the same pressure. That is, instead of
using vacuum with n = 1 as a known reference state,
we would use helium at atmospheric pressure and its
calculated index of refraction as the known state; thus
pressure distortions are avoided.

Conceptually the two methods are identical: the helium
serves as a theory-based reference standard against which the
unknown gas can be compared. If the FPI cavities were
perfectly stable over time, so that it was never necessary to
return to the reference state, then there would be no significant
practical differences in the two methods. However, it is
necessary to periodically re-check the reference because of
ageing of the spacer material or other effects that give rise to
changes in the effective length of the FPI (of the order of 1 part
in 107 per year).

Method (2) could be carried out, at least in principle,
without the need for a vacuum pump, if sufficient helium were
flushed through the apparatus to ensure purity. However, it
is necessary to have good pressure and temperature sensors
available to determine the helium refractive index. With
method (1), the good sensors need only be present once—when
the cavity distortions are calibrated initially—but in order to
monitor slow temporal changes in cavity length it is necessary
to pump out the cavity periodically to vacuum. The residual
pressure of atmospheric gases must be less than 1 Pa, or at
least measured with an uncertainty less than 1 Pa, in order to
achieve 3 × 10−9 uncertainty in subsequent refractive index
measurements.

Using either of these schemes, at some point in time it
is necessary to determine helium pressure and temperature
accurately, but the low refractive index of helium puts minimal
demands on the required accuracy of the sensors.

2. Theoretical calculation of helium refractive index

The key to our method is knowing an accurate value for the
refractive index of helium. At a known temperature and
pressure, the refractive index can be determined to very high
accuracy from ab initio calculations. There are several parts

to this calculation.

(1) The refractive index can be determined from the
Lorentz–Lorenz equation. This can be written in the form

n2 − 1

n2 + 2
= ARρ + BRρ2 + · · · (1)

(see, e.g., Pendrill [2]). Here, n is the refractive index
and ρ is the density in moles per unit volume. AR is the
molar polarizability, and the refractivity virial coefficient
BR accounts for the effect of two-body interactions on the
refractive index.

(2) AR is proportional to the atomic or molecular
polarizability α:

AR = 4π

3
NAα (2)

where NA is Avogadro’s constant (see, e.g., Born and
Wolf [3]).

(3) For a non-ideal gas the molar density ρ is not related to
pressure linearly but is given by

ρ = P

ZNAkT
(3)

where P is the pressure, k is the Boltzmann constant,
and T is the absolute temperature, and the compressibility
factor Z for a non-ideal gas can be written as an expansion
similar to (1):

Z = 1 + B(T )ρ + C(T )ρ2 + · · · (4)

B(T ) and C(T ) are virial coefficients for the
compressibility expansion.

The equations above implicitly allow the calculation of
the refractive index in terms of AR (or equivalently α),
BR, B(T ), C(T ), and helium pressure and temperature.
Ignoring small terms non-linear in density, equations (1)–(3)
imply that the refractivity (i.e. n − 1) is proportional to
α/k, and thus the polarizability α and the Boltzmann
constant k are the parameters of greatest importance when
calculating the refractivity at a known temperature and
pressure. (This reasoning led Pendrill [2] to suggest that
refractivity measurements could be used to improve knowledge
of the Boltzmann constant.) The 2002 CODATA [4]
recommended value for the relative standard uncertainty of the
Boltzmann constant is 1.8 × 10−6, and the relative uncertainty
in α is probably of somewhat smaller magnitude (as discussed
later). These uncertainties will dominate the uncertainty of
the calculated refractive index. The individual parameters that
go into the calculated refractive index are discussed in detail
below.

2.1. The atomic polarizability α and molar
polarizability AR

The atomic polarizability has been calculated, including
relativistic effects to second order in the fine-structure constant,
by Bhatia and Drachman [5]. This calculated value is probably
limited in accuracy primarily because it does not include the
effect of quantum electrodynamics. The Bhatia–Drachman
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formula might be improved somewhat by replacing the static
component of their polarizability with a term that includes
QED, as has been calculated by Pachucki and Sapirstein [6],
by Cencek et al [7], and most recently by Lach et al [8]. In
reduced Rydberg units, the polarizability as a function of the
frequency ω is then given by

α = 1.383 191 6 + 0.385 530 216ω2 + 0.127 538 95ω4

+0.045 731 14ω6 (5)

where the first term is based on Lach et al and the remaining
terms are from Bhatia and Drachman.

There is good reason to believe that the static polarizability
of helium (which determines the dielectric constant) can be
calculated with an uncertainty well below 1 part in 106. Over
the past five years, independent calculations of the static
polarizability have been in good agreement, and recently the
value has been improved somewhat by inclusion of QED
(which shifts the result by about 0.002%). The most recent
calculation of Lach et al [8] has a relative uncertainty of
2 × 10−7. The result of Lach et al differs from the value given
in [6, 7] (which do not fully evaluate the QED correction and
consequently have larger uncertainty) by only 5 parts in 107.

In addition to the uncertainty in the static polarizability,
it is necessary to consider the uncertainty in the frequency
dependence of the polarizability. Both the static and
frequency-dependent polarizability were calculated in [5],
but the calculation did not include QED. However, it would
seem somewhat unlikely that the neglect of QED in the
frequency dependence would contribute greatly to the overall
error in polarizability at visible wavelengths longer than
633 nm because the frequency-dependent terms are small; they
contribute only 0.6% to the total polarizability at 633 nm. If
QED produces the same fractional change in the frequency-
dependent terms as the fractional change due to QED in
the static term (2 parts in 105), then the resulting error
in polarizability would be only 1 part in 107. This naive
order-of-magnitude argument works modestly well for other
perturbations where results are known; in absolute terms,
corrections arising from mass polarization and relativity are
about 300 times larger in the static polarizability than in
the dynamic terms, as can be seen by comparing Bhatia
and Drachman’s results of [5] with their earlier results for a
non-relativistic, infinite mass system [9].

By coincidence, the QED correction to the static term
largely cancels the effect of the other perturbations, giving
nearly the same final result as the simple calculation for a non-
relativistic infinite mass system. If the same cancellation were
to occur in the dynamic terms, it would affect our final result
at the 10−7 level.

Recognizing that our 1/107 estimate of QED effects in
the dynamic terms is only an order-of-magnitude guess, we
somewhat arbitrarily assign an uncertainty to account for the
neglect of QED in the dynamic terms that is ten times larger
than this value (i.e. 1 × 10−6 relative uncertainty). The
uncertainty of the static term is negligible in comparison,
and thus the overall estimate for the uncertainty is �α/α =
1 × 10−6. It is difficult to justify a lower uncertainty without
a better understanding of the QED corrections in the dynamic
terms. A lower uncertainty is not really needed for our current
purposes; it may be noted that the 1 × 10−6 estimated relative

uncertainty inα will give rise to an uncertainty of only 3×10−11

in the calculated value for the refractive index of helium at
atmospheric pressure.

It is necessary to determine the molar refractivity
(equation (2)) from the polarizability α as given in reduced
atomic units by equation (5). For 4He, AR in units of cm3 mol−1

is related to α by

AR = α × 4π

3
NAa3

0

(
1 +

me

mα

)3

= 0.373 956 92α (6)

where NA is the Avogadro constant, a0 is the Bohr radius,
and me/mα is the electron to alpha-particle mass ratio. We
have used 2002 CODATA values for the parameters. The most
important uncertainty in the values of the physical parameters
of (6) is a 1.7 × 10−7 relative standard uncertainty of the
Avogadro constant.

As in [5], we replace ω in reduced Rydberg units by λ

expressed in nanometres using the relationship

ω = 4πa0

αf [1 − me/(mα + me)]λ
= 91.139 197 92

λ
(7)

where αf is the fine-structure constant.
With this substitution and the conversion factor of (6), the

molar polarizability becomes

AR = 0.517 254 07 +
1197.5410

λ2
+

3.290 677 × 106

λ4

+
9.800 874 × 109

λ6
(8)

where AR is expressed in units of cm3 mol−1, with an estimated
relative uncertainty of 1 × 10−6 at optical frequencies.

At λ = 633 nm, equation (8) yields AR =
0.520 263 4(5) cm3 mol−1. This value is seriously incon-
sistent with the two most recent experimental measure-
ments. Achtermann et al [10] have determined AR =
0.5213(1) cm3 mol−1, and Birch [11] obtained a value of
0.5220(3) cm3 mol−1. In terms of the refractive index at
atmospheric pressure, Achtermann’s result is high by 7×10−8

and the result of Birch is high by 1.1 × 10−7. If we are to
believe the theoretical result, then we must assume that some
surprisingly large errors (perhaps contamination of the helium)
corrupted the experimental measurements.

Although the experimental results tend to erode our
confidence in the theoretical value, there is indirect
experimental evidence that supports the theoretical result
and is inconsistent with the two direct measurements quoted
above: (a) the static part of the polarizibility as calculated
by (8) is consistent with experimental measurements of the
dielectric constant [12] within the scatter of experimental
results (a standard deviation of 2×10−7 for measurements up to
7 MPa pressure) and (b) the frequency dependence predicted by
(8) is consistent with experimental dispersion measurements
of Mansfield and Peck [13] and with the more recent results of
Velsko and Eimerl [14]. The agreement is particularly good
with the results of Velsko and Eimerl, where their measured
variation �n in refractive index between 1064 nm and 532 nm
differs by only 1.2×10−9 from the calculated value. Based on
this indirect experimental evidence, it seems unlikely that the
error in refractive index as calculated from the polarizability of
equation (8) could exceed 4×10−9 at 633 nm. This is more than
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an order of magnitude smaller than the observed discrepancy
with Achtermann’s results. Thus the indirect evidence largely
negates the concerns raised by the direct measurements of
molar polarizability.

2.2. The virial coefficients

In addition to the molar polarizability, the refractive index at a
given temperature and pressure also depends somewhat on the
virial coefficients B(T ), C(T ), and BR.

The coefficient B(T ) has been calculated by Hurly and
Moldover [15]. Their results, near room temperature, can be
approximated as

B(T ) = 13.028 − 0.0041T (9)

where B(T ) is expressed in cm3 mol−1, and the linear fit
deviates from the numbers given by Hurly and Moldover by no
more than 0.001 cm3 mol−1 over the range 275 K to 325 K. This
deviation is much smaller than the 0.03 cm3 mol−1 estimated
uncertainty of the theoretical calculation. The uncertainty in
B gives rise to an uncertainty of 4 × 10−11 in the refractive
index.

The compressibility virial C(T ) is of negligible
importance; the value near room temperature as given by
Dymond and Smith [16] (≈100 cm6 mol−2) contributes to the
calculated refractive index at atmospheric pressure by only
6 × 10−12.

For the refractivity virial coefficient at 633 nm, we use

BR = −0.032 − 0.0001T (10)

where BR is expressed in units of cm6 mol−2 and the
temperature T is between 273 K and 323 K. We estimate
the uncertainty as 0.007 cm6 mol−2, which corresponds to a
2 × 10−11 uncertainty in the refractive index. The estimates
for BR and its uncertainty are based on calculations of Koch
et al [17] plus the experimental and theoretical results cited
in this reference. BR has only a small effect on the refractive
index (modifying the result by less than 2×10−10), and higher
refractive virial coefficients are expected to have a negligible
effect at atmospheric pressure.

2.3. Summary of the calculation

To summarize, we can calculate the refractive index for
helium at a given temperature and pressure using the following
procedure, easily implemented as a spreadsheet calculation:

(1) Find B(T ) from equation (9) or from [15].
(2) Find Z from (4) using C(T ) = 0 and with ρ, expressed in

mol cm−3, given in first approximation as ρ = P/(NAkT ).
(3) Compute a refined value for ρ from (3).
(4) Compute the molar polarizability, AR, from (8).
(5) Find (n2 − 1)/(n2 + 2) from (1), with BR given by (10) at

wavelengths near 633 nm.
(6) Find the refractive index. If we define

z ≡ n2 − 1

n2 + 2
(11)

then it follows [5] that

n ≈ 1 +
3z

2
+

3z2

8
. (12)

Figure 1. Schematic picture of the FPI cavity.

According to this calculation, the refractive index of
helium for 633 nm radiation, at 101 325 Pa pressure and
20 ˚C, is 1.000 032 426 00(8), where the standard uncertainty
(8 × 10−11) arises from a root-sum-squares combination of (a)
uncertainty from the theoretical calculation of α, contributing
3 × 10−11, (b) uncertainty in k, contributing 6 × 10−11, (c)
uncertainty inB(T ), contributing 4×10−11, and (d) uncertainty
in BR, contributing 2 × 10−11.

3. A refractometer based on a Fabry–Perot cavity

We can track changes in the refractive index of a gas
using a laser servolocked to the transmission maximum of a
dimensionally stable FPI cavity. As the refractive index of
the air inside the cavity changes, the servo system changes
the frequency of the laser so as to maintain a constant
air wavelength in resonance with the cavity. Changes in
laser frequency, measured as changes in the heterodyne beat
between the servolocked laser and a fixed-frequency laser, can
be used to measure the change in refractive index. This basic
scheme has been used by several authors to measure refractive
index [18–24].

We have constructed two Fabry–Perot cavities using
mirrors on fused-silica substrates that are optically contacted
to the ends of Zerodur2 spacers. The Zerodur spacers were
manufactured from a solid rod by sawing a rectangular channel
that extends along the entire length of the rod and goes more
than halfway through the centre (see figure 1). The channel
forms the interior space of the Fabry–Perot resonator in a
manner that is very open to the surrounding gas. Details of the
cavity construction are described in a previous publication [1].
One cavity is approximately 452 mm long, while the second is
much shorter (94 mm), so that we can study possible length-
dependent errors. The chosen length ratio provides an efficient
vernier to facilitate unambiguous identification of mode order,
as discussed in [1].

For each FPI, a laser is locked to the cavity using a
simple dither of the laser frequency, phase sensitive detection

2 Commercial equipment and materials are identified in order to adequately
specify certain procedures. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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of the transmission maximum with a lock-in amplifier, and
an integrating feedback loop to control the laser frequency.
A helium–neon laser with piezoelectric control of the cavity
length is locked to the long cavity, and a tunable diode laser
operating at 633 nm is locked to the short cavity.

The two cavities are mounted next to each other in
a chamber in which the temperature and pressure can
be controlled. Thus, we can compare results from
these two independent systems measuring essentially the same
environment, although there are small temperature gradients
between the two cavities. These gradients are measured
by three pairs of thermocouple junctions wired in series,
where each pair has one member in each cavity. From a
strictly electrical standpoint, this arrangement should measure
gradients with sub-millikelvin uncertainty, but large gradients
are probably not measured so well (as discussed in section 6).
The cavities are both mounted with one end suspended by a
wire sling so that changes in the chamber dimensions do not
produce stresses on the cavities.

The basic operation of the cavities is governed by the
requirement that the air wavelength of the laser must be
resonant with the cavity. If the mirrors are separated by
distance l containing a medium with refractive index n, the
frequency f of the laser must be

f = mc

2nl
(13)

where m is an integer and c is the speed of light in vacuum. For
our purposes here, in the equation above we have ignored the
Guoy phase shift (associated with the non-plane-wave cavity
mode) and phase shifts associated with reflection from the
mirrors. The Guoy phase shifts only affect our refractive
index measurements at the 10−11 level, too small to be of
significance here. The primary influence of mirror reflective
phase shifts occurs through an effect on the determination of
the free spectral range; we will return to this point later. There
is also a small change in the reflective phase due to changing
refractive index within the cavity, but this is expected to cause
<10−10 uncertainty in our results if the centre of the mirror
reflective band lies within a few per cent of 633 nm.

For an ideal FPI, (13) implies that the gas refractivity
(n − 1) is related to the initial cavity frequency under vacuum
(fi) and to the final frequency under pressure (ff) according to

n − 1 = fi − ff + �m(fsr)

ff
(14)

where �m is the change in order and fsr is the free spectral
range under vacuum (fsr = c/2l). We currently determine
�m by comparing results from our two cavities, as described
in [1]. It would also be possible to determine �m by employing
low-accuracy pressure and temperature sensors to give a first
estimate of the refractive index and then use the FPI results to
refine this first guess. For a 100 mm long cavity, a change of
one order corresponds to a change in air pressure of 1200 Pa
or a change in air temperature of 3 ˚C, and the sensors must be
sufficiently accurate to resolve this difference. A low-accuracy
temperature sensor on the apparatus would also be useful
to correct for changes in the Zerodur length with changing
temperature.

For a non-ideal compressible cavity that changes length
from li under vacuum to lf under pressure, equation (14) is
replaced by

n − 1 = fi − ff + �m(fsr)

ff
+ n

(
li − lf

li

)
(15)

where the correction factor, n(li − lf)/ li, can for our current
purposes be evaluated sufficiently well using n = 1.
This correction factor can be measured using helium, and
subsequently the correction factor can be applied to the
measurement of other gases. The correction is critical to
the success of the measurement; as mentioned previously,
we cannot calculate reliably the change in length of our
cavities from known material properties if uncertainties below
≈4 × 10−8 are required. We must rely on the validity of
calculated values for the helium refractive index in order to
quantify the cavity distortions. To be very explicit about the
correction procedure, we can rewrite (15) as

n − 1 = F

ff
+ c(p) (16)

where c(p) is a pressure-dependent correction factor and,
speaking somewhat loosely, F is the total frequency change
including the effect of mode hops:

F = fi − ff + �m(fsr) (17)

c(p) = n

(
li − lf

li

)
. (18)

The correction c(p) is evaluated from the theoretical
refractivity of helium, (n − 1)He, and from frequency
measurements with helium in the cavity:

c(p) = (n − 1)He −
{

F

ff

}
He

. (19)

The refractivity of any other gas Xis then found by filling
the cavity with X, measuring F/ff , and evaluating

(n − 1)X =
{

F

ff

}
X

+ c(p) (20)

where the parameters in (19) and (20) must all be evaluated at
the same gas pressure. We have thus far described c(p) as a
correction to account for length variations in the cavity, but this
interpretation of c(p) is not strictly required for the validity of
the method. The critical assumption is simply that, whatever
the detailed origin of c(p), it must be a function of pressure
only (not of gas species). We find that c(p) is a linear function
of pressure.

Equations (14) and (15) require good knowledge of the
free spectral range under vacuum, which is fundamentally
important because it provides a measure of the cavity length, l.
The free spectral range can be measured by locking one laser
to one longitudinal cavity mode and the second laser to a
nearby mode of the same cavity. (The lasers are modulated
at different frequencies so that the two signals do not interfere
in the lock-in amplifiers.) The frequency difference between
the two lasers determines the free spectral range. Since the
free spectral range is multiplied by �m (where �m is 80 or
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more), the measurement of this frequency difference is much
more critical than is the measurement of fi − ff . Spurious
reflections of the laser from surfaces external to the cavity,
quasi-degeneracy of resonator modes coupled with poor mode
matching, electronic offsets, or several other effects can cause
the lock-points of the two lasers to shift away from the centres
of the cavity resonances, disturbing the measurement of the
free spectral range. To check for such effects, we can lock
the diode laser first at a higher frequency than that of the gas
laser and then at a lower frequency, or we can lock first to an
adjacent mode and then to a mode separated by two or three
orders from the gas laser. This will uncover most sources of
error in the measurement, but changes in the mirror reflective
phase shift as a function of frequency will give rise to an
error that cannot be detected because it is very nearly a linear
function of frequency for a typical dielectric mirror close to
the centre of its reflection band. The frequency dependence of
the phase shifts will perturb the apparent free spectral range
away from the ideal value of c/2l. The frequency dependence
of the phase shift can be calculated if the mirror parameters
are sufficiently well known, or it can be determined from
transmission measurements [25]. We know that our mirrors
have a special SiO2 overcoat on top of a TiO2/SiO2 quarter
wave stack. The detailed parameters are not known well
enough to calculate the phase shift with confidence, but we
suspect that the resulting error in the free spectral range will
contribute an error of the order of a few parts in 109 when using
the short cavity to measure the refractive index of nitrogen at
atmospheric pressure. This error scales inversely with cavity
length, and so it is expected to be negligibly small for our long
cavity.

4. Expected sources of uncertainty in measuring
refractive index

The uncertainty of our device is ultimately limited by the
theoretical calculations and uncertainty in the Boltzmann
constant, but practical experimental considerations are
currently much more important. When we use our
refractometer to measure the refractive index of a gas such
as air or nitrogen, we believe that the primary sources of error
are as described below:

(1) The largest source of uncertainty is measurement of the
environment during the helium calibration. A 7 Pa standard
uncertainty for pressure and a 0.015 ˚C standard uncertainty
for temperature measurement give rise to a combined standard
uncertainty for the refractive index of helium at atmospheric
pressure of 2.8 × 10−9. This will be the uncertainty in the
correction term of (16).

(2) A comparably large uncertainty arises in the
determination of the free spectral range. We estimate the
standard uncertainty as 3 kHz for the long cavity, based on
the consistency of measurements made with the diode laser
locked to one side or the other of the gas laser. This uncertainty
is also consistent with observed differences in measured
refractive index when using the long and short cavities. The
resulting uncertainty for measuring the refractive index of
nitrogen at atmospheric pressure is 2.5 × 10−9. For the short
cavity, this uncertainty increases to about 3.5 × 10−9 because
of the mirror phase shifts.

(3) In our current system there are uncertainties of about
2 × 10−9 as a consequence of transients and outgassing, as
discussed in the next section.

(4) Contamination of the helium might be a problem.
In addition to the contamination from outgassing mentioned
above, there is a possibility that our helium bottle is not pure as
delivered from the factory. The manufacturer3 claims a purity
of 99.9999% for their helium. The remaining contaminants
might increase the apparent refractive index at atmospheric
pressure by about 3 × 10−10, which is not important at our
current level of measurement. If a lower uncertainty were
required in the future, a chemical analysis of the residual
contaminants should make it possible to correct for at least
part of this 3 × 10−10 residual error.

(5) As already discussed, the uncertainty in theoretical
calculations and in the Boltzmann constant contributes an
uncertainty of 8 × 10−11.

(6) Uncertainties in the frequency measurements (the
absolute value of ff and the difference fi − ff ) contribute
negligibly (order of 10−11) to the uncertainty in refractive
index.

(7) One might imagine additional sources of error, such
as changes in the mirror coatings due to adsorption of gas
when the cavity is filled. We have seen possible evidence
of such effects when the gas is water vapour or moist air [1]
but no measurable effect for helium or nitrogen. This type of
end-effect is physically independent of the cavity length and
becomes less important relative to the refractive index as the
cavity length increases; consequently, end-effects give rise to
errors in the measured refractive index that scale inversely as
cavity length. These errors can be studied by comparing results
from our two cavities, as discussed in section 6. Assuming this
inverse scaling with length, the results of section 6 suggest that
these errors might be as large as a few parts in 109 for the short
cavity but should be well under 1 part in 109 for the long cavity.

(8) Helium penetration of the bulk spacer material might
also be possible. This would not show up as an end-effect.
Unlike quartz, Zerodur is not very permeable to helium,
and consequently there is no particular reason to anticipate
problems in this regard, but it is difficult to rule out such effects
with certainty. If helium were penetrating the Zerodur and
modifying its length, one might imagine that we would see
unusual behaviour as we go from a helium environment at
atmospheric pressure to vacuum. We have not seen any such
effects that could be attributed to slow helium outgassing from
the Zerodur.

For the long cavity, all these sources of uncertainty yield a
combined standard uncertainty of 4.3 × 10−9, or an expanded
uncertainty of 9 × 10−9 (with coverage factor k = 2). For the
short cavity, the expanded uncertainty is only slightly larger,
about 1 × 10−8. The uncertainty would be somewhat larger
when measuring moist air with the short cavity, as discussed
in [1].

3 The helium and nitrogen were purchased from Scott Specialty Gases (see
footnote 2). Primary contaminants of the analytical grade (99.9999%) helium
are N2 and O2. The primary contaminants of the 99.9993% pure N2 gas were
claimed to be O2 and water vapour.
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5. Nitrogen measurements

As a proof-of-principle, we have used our apparatus to measure
the refractive index of nitrogen. We first measure the frequency
change of the FPI cavity when it is filled with helium to
determine the correction factor and then fill it with nitrogen
or some other gas of interest.

Outgassing and transients are a potential source of error,
as has been discussed in detail in [1]. After filling the cavity,
it can take several hours for the gas temperature to reach
its equilibrium value. During this period of time there are
large gradients in the gas temperature within the chamber,
and the average temperature measurements are probably not
reliable. Furthermore, the chamber and associated vacuum
lines are continuously outgassing (particularly if water vapour
was recently in the chamber). To analyse the data properly, it
may be necessary to (a) wait several hours for the system to
reach thermal equilibrium and (b) measure changes in pressure
and refractive index for several additional hours in order
to characterize the effects of outgassing. An extrapolation
procedure is then used to correct for outgassing. The correction
is a bit uncertain, and we believe that this is the primary
limitation on the short-term repeatability of our results, which
is about 2 parts in 109.

We carried out two sets of measurements of the refractive
index of nitrogen. The first set was at pressures ranging
from 105 kPa to 109 kPa and a temperature of 19.97 ˚C. The
second set was at lower pressure—97 kPa to 101 kPa—and a
temperature of 23.4 ˚C. With appropriate corrections for non-
ideal gas behaviour, we can compare our two sets of results for
the refractive index of N2 with each other and with previous
measurements by other investigators. We find that our two sets
of data are offset relative to each other. If both sets of data are
analysed using the same helium correction, they differ from
each other by about 3 parts in 109. A change in the measured
correction between the first and second set increases the offset
to 5 parts in 109. This provides a measure of the long-term
repeatability of the system, including possible consequences of
several improvements in the apparatus that were made during
the interval between the first and second data sets.

From our measurements, plus known values of the virial
coeffieients B(T ) [15] and BR [10], we can determine the
molar refractivity of nitrogen and compare this result with
previous measurements. The uncertainty in molar refractivity
is much greater than the actual uncertainty in our measured
refractivity because determining the molar refractivity requires
measurement of the temperature and pressure of nitrogen
gas. Based on all our measurements, our best estimate
of the molar refractivity at 633 nm is 4.4454(7) cm3 mol−1,
where the expanded (k = 2) uncertainty (0.0007 cm3 mol−1)
arises primarily from the measurement of the pressure and
temperature of the nitrogen gas. We are aware of four
previous measurements of the molar refractivity that claim
a low uncertainty. Our result is consistent with Birch’s
[11] value of 4.4457(8) cm3 mol−1 and is in slightly better
agreement with Hou and Thalmann’s [26] value of 4.4456(6)
or Montixi’s [27] result of 4.4454(5) cm3 mol−1. However,
it is at best only marginally consistent with Achtermann’s
value [10] of 4.4464(5) cm3 mol−1. If we average all four
previous results for the molar refractivity, our value is lower by

0.000 37 cm3 mol−1, which is equivalent to an error of 2×10−8

in terms of the refractive index of nitrogen at atmospheric
pressure. This is within our expected uncertainty.

6. Additional tests of the system

We can learn a great deal about the ultimate capability of
our method by comparing results from our two systems (long
cavity + gas laser compared with short cavity + diode laser).
If we use the two systems to measure the refractive index of
a common gas sample simultaneously, we can characterize
accurately many sources of error that would otherwise be
masked by uncertainties in our pressure and temperature
measurement. For example, this test will uncover errors in
the free spectral range measurement or possible end-effects
(see #7 in section 4) that may be difficult to quantify using
other techniques. The test thus provides an indication of the
ultimate accuracy that we might hope to achieve if we had very
good environmental measurement.

The comparison between the two systems is particularly
useful because one cavity is nearly five times as long as the
other. Effects associated with the cavity ends, such as certain
pressure-induced distortions, gas adsorption in the coatings, or
mirror phase shifts, will have five times greater effects in the
short cavity than in the long cavity and hence should be easily
observable.

As discussed below, a change in refractive index should
ideally change the frequencies of our long and short cavities
by essentially identical amounts (after correction for mode
hops). It is easy to measure the difference frequency
between the two cavities; it is equal to the frequency of the
heterodyne beat when the two laser beams are combined on a
photodetector. The frequency difference should be constant.
Any observed variation thus provides a sensitive indicator of
many sources of error. Below we derive the expected behaviour
of the measured beat frequency as would be predicted from
equations (16)–(20).

Looking back to (16) (i.e. n − 1 = F/ff + c(p)), it may
be noted that, at a given temperature and pressure, F/ff will
be the same for both our cavities if the correction factor c is
the same for both. The correction factors for the two cavities
would be identical if c arises from simple homogeneous
compressibility of the cavities. (The two Zerodur spacers
were cut from the same Zerodur rod and should have identical
material properties.) Hence we might expect that F/ff should
be identical for the two cavities. If we make the approximation
that ff in the denominator of equation (16) is constant, then the
frequency change F should be the same for the two cavities.
(Variations in ff are not entirely negligible for the short cavity
filled with nitrogen; the approximation may lead to errors in
the following analysis that are on the edge of what might
be observed experimentally.) With this approximation, the
constancy of F/ff is equivalent to saying that we expect
g(p) = 0, where g(p) is a measure of how the frequency
changes in the two cavities fail to track each other correctly as
a function of pressure, p:

g(p) ≡ FLong − FShort = {fi − ff + �m(fsr)}Long

−{fi − ff + �m(fsr)}Short
?= 0. (21)
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Figure 2. g(p) for He (•) and N2 (♦). The solid line is a linear fit
to the helium data, and the dashed line is a fit to N2.

In reality, g(p) is a non-zero linear function of pressure,
as can be seen in figure 2; it varies by about 14 MHz, which
corresponds to a potential error in the refractive index of
3 × 10−8 if it were not corrected. We suspect that the non-
zero result for g(p) is probably a consequence of pressure-
related distortions at the ends of the cavities [1]. Although this
behaviour was unexpected, it should still be corrected through
the helium calibration and should not affect our final answer
for the refractive index of nitrogen. However, the non-ideal
behaviour must be the same for helium and for nitrogen if the
calibration procedure is to work properly.

From (19) and (20), it follows that if both cavities are to
give the same answer for the refractive index, then it must be
true that {

FX − FHe

ff

}
Short

=
{

FX − FHe

ff

}
Long

(22)

which, again approximating ff as constant, may be rearranged
to give

g(p)He = g(p)X. (23)

In short, the statement that the two cavities give the
same answer for the refractive index of nitrogen is equivalent
to requiring the equality of g(p) for helium and nitrogen.
It can be seen from figure 2 that the nitrogen results are
about 0.6 MHz below helium at atmospheric pressure; this
corresponds to a disagreement in the measured refractive index
of only 1.3 × 10−9. It is likely that this excellent agreement is
somewhat fortuitous. If we could reliably compensate for the
effect of mirror phase shifts on the measurement of the free
spectral range, it would most likely shift the results so as to
increase the disagreement to a few megahertz. The resulting
discrepancy would still be consistent with our uncertainty
budget as discussed in section 4.

We should also note that the data of figure 2 have
been corrected to account for measured temperature gradients
between the two cavities, ranging from 4 mK up to 9 mK.
(The comparison is insensitive to absolute temperature but
does depend on gradients.) The nitrogen data lie well above

the helium results before correction but slightly below helium
after correction. At the very most we might expect an error of
2 mK in the measurement of gradients less than 10 mK, and this
could shift the nitrogen results by ±0.8 MHz at atmospheric
pressure. When larger temperature gradients are present, we
find that we cannot reliably correct our results. Most likely the
temperature is not sampled at enough points within the long
cavity to characterize the average temperature accurately over
the full length when the gradients are large.

7. Conclusions

When using our FPI to measure refractive index, we find
that the pressure response of the cavity must be calibrated
in order to achieve good results. This calibration is possible
because ab initio calculations for helium can provide a known
refractivity as a function of pressure, and the procedure is
practical because the low refractivity of helium puts minimal
requirements on the barometer uncertainty.

We claim currently an expanded (k = 2) uncertainty for
refractive index measurement that is slightly less than 1×10−8.
We have seen that our two systems agree with each other
within a few parts in 109, where the residual disagreement
is plausibly understood in terms of known error sources, and
therefore it may be hoped that modest improvements in our
instrumentation and our vacuum system would reduce the
uncertainties in refractive index measurement to a few parts
in 109. With more substantial additional effort one might hope
to achieve uncertainties of the order of 10−10, where most
of the required improvements would be straightforward albeit
difficult: (a) The pressure can be known with 0.5 Pa expanded
uncertainty using a calibrated gauge with good stability, such
as a deadweight piston gauge. (b) Better thermal management
can reduce thermal gradients to the millikelvin level and
allow temperature measurement with millikelvin or even sub-
millikelvin uncertainty using a calibrated standard platinum
resistance thermometer. (c) Residual helium impurities can
be quantified and their refractive index corrected to better
than 10−10. (d) Outgassing in our apparatus could be easily
reduced with better vacuum practice. (e) With a higher
finesse cavity it should be possible to improve our free
spectral range measurement by at least an order of magnitude,
assuming that mirror phase shifts can be quantified and
corrected. (Alternatively, a careful mechanical measurement
of the cavity length might be used in place of the free spectral
range measurement.) If these improvements were made,
the primary source of uncertainty would be in the pressure
measurement; the quoted uncertainty (0.5 Pa) is based on the
best calibration capability of the National Institute of Standards
and Technology, which is currently the lowest calibration
uncertainty available from any national measurement institute
in the world. The 0.5 Pa uncertainty for helium near
atmospheric pressure would give an expanded uncertainty of
1.6 × 10−10 in our final result, about the same as the current
overall theoretical uncertainty as given at the end of section 2.

The limiting role played by the pressure measurement
suggests that refractive index measurements can be used
to infer pressure with very high resolution. (To be more
precise, refractive index measurements can be used to infer
density [28], from which either pressure or temperature can be
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determined if the other variable is known.) We can easily track
pressure variations of 0.1 Pa or less in nitrogen at atmospheric
pressure, comparable with the resolution of deadweight piston
gauges, and this resolution would be increased if we used a
higher-finesse cavity. High precision is useful, for example,
to check linearity and hysteresis of a pressure transducer.
The long-term stability of the Fabry–Perot, of the order
of 1/107 per year, is better than the long-term stability of
most deadweight piston gauges, and the stability might be
improved further by using a different material for the FPI
spacer. Therefore, an FPI can be used as a very good transfer
standard for pressure, as has been done by Achtermann and
Rogener [29]. With a refractometer of different design (a truly
absolute refractometer), one might also use helium refractive
index measurements as an absolute standard of pressure, just
as Moldover [30] infers pressure from measurements of the
helium dielectric constant.

One other important source of error in practical application
of the refractometer has not yet been discussed: large
errors in an interferometric measurement can occur if the
air in the interferometer’s measurement path is at a different
temperature, pressure, or humidity from the air in the
refractometer. At a minimum it may be necessary to
measure and correct for temperature gradients in order to avoid
these errors. It is also possible to carry out interferometric
measurements directly in a helium atmosphere, and the
theoretical refractive index as calculated here provides a much
lower uncertainty than is available when working in air and
calculating the refractive index from the measured pressure,
temperature, and humidity. The effects of pressure and
temperature measurement errors are reduced by a factor of
8 when using helium, and temperature gradients between the
measurement path and the sensors are of much less concern
than when working in air.
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