
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.,29(10), 833–847 (1999)

Productivity Analysis of Object-Oriented Software
Developed in a Commercial Environment

THOMAS E. POTOK1∗, MLADEN VOUK 2 AND ANDY RINDOS3

1Oak Ridge National Laboratory, Post Office Box 2008, Building 6010, Oak Ridge, TN 37830, USA
(email: potokte@ornl.gov)

2College of Engineering, Department of Computer Science, North Carolina State University, Box 8206, Raleigh,
NC 27695, USA

3International Business Machines Corporation, Dept. CE6A, Bldg. 664, P.O. Box 12195, 3039 Cornwallis Rd,
Research Triangle Park, NC 27709-2195, USA

SUMMARY

The introduction of object-oriented technology does not appear to hinder overall productivity on new large
commercial projects, but nor does it seem to improve it in the first two product generations. In practice, the
governing influence may be the business workflow, and not the methodology. Copyright 1999 John Wiley
& Sons, Ltd.

KEY WORDS: object-oriented; software development productivity

INTRODUCTION

As software development cycles shorten and software markets become more competitive,
improved software development productivity continues to be a major concern in the software
industry. Many believe that object-oriented technology provides a breakthrough solution to
this problem, but there is little quantitative evidence to support this belief. Furthermore,
most studies related to object-oriented productivity do not consider it in conjunction with
the business processes and culture under which the software is developed.

In this paper we present a comparison of empirical software productivity data for a number
of commercial software products developed in the same organization and business model,
using both ‘classical’ procedural methods and object-oriented methods. Our results indicate
that, although the introduction of object-oriented technology does not appear to hinder overall
productivity on new large commercial projects, it does not seem to improve it in a systematic
way, at least not in the first two product generations. Furthermore, examination of the data
indicates that the governing influence may not be the methodology, but the business model
imposed through schedule deadlines.

∗Correspondence to: Thomas E. Potok, Oak Ridge National Laboratory, Post Office Box 2008, Building 6010, Oak Ridge,
TN 37830, USA.

CCC 0038–0644/99/100833–15$17.50 Received 27 August 1998
Copyright 1999 John Wiley & Sons, Ltd. Revised 29 March 1999

Accepted 29 March 1999

834 T. E. POTOK, M. VOUK AND A . RINDOS

Evidence

There is surprisingly littlequantitativeevidence that the productivity of object-oriented
software development is indeed consistently better than that of ‘classical’ procedural software
development in a commercial environment. Published evidence appears to derive primarily
from productivity studies made in non-commercial environments under non-commercial
business models, and the scalability of the results to commercial environments is not
clear.

For example, Lewiset al. [1] performed an experiment with undergraduate software
engineering students to study the effect of reuse. Based on their productivity metrics, they
concluded that the object-oriented paradigm can improve productivity when reuse is present
by about 50 per cent (about 1.5 times). However, they did not find any statistically significant
evidence that the object-oriented paradigm has a higher productivity rate than procedural
methods when reuse is not a factor. Meloet al.[2] also conducted an experiment with graduate
students that yielded seven projects ranging in size from 5000–25,000 lines of code. The
projects were developed using the Waterfall process model, object-oriented design, C++, and
varying levels of reuse. Their results support the conclusion that reuse rates can increase
programmer productivity by as much as two to three times. When reuse levels become cost-
effective is still an open question. Optimistic economic models [3] of reuse indicate that
break-even reuse levels may be as low as 10–20 per cent, while pessimistic models [4] contend
that cost-effective levels of reuse may be much higher as well as difficult to achieve. Fichman
et al. [5] and Leeet al. [6] report that there are significant barriers to the adoption of reuse in
an organization.

There is also evidence that other factors may confound the picture. For example, different
development methodologies may impact on software development productivity in ways other
than through reuse. Boehm-Daviset al. [7] report on a comparison of Jackson’s program
design, object-oriented design, and functional decomposition. They found that Jackson’s
method and object-oriented methodologies produce more complete solutions; require less
time to design and code a problem; and produce less complex designs than functional
decomposition. However, a quantitative comparison of productivities associated with different
methodologies was not given. Similarly, Zwebenet al. [8], again in an experiment with
graduate and undergraduate students, show that language-based layering and encapsulation
(an object-oriented trait) may reduce software development effort. There are many other
studies concerned with the value of the object-oriented approach, but most are not quantitative
in nature.

Recent work by Hansen [9] and Fichmanet al. [10] correctly asserts that software
development must first be viewed as a business. The referenced productivity studies focus
on the productivity effects of object-oriented technology isolated from the effects of a
typical business workflow. Noticeably absent are convincingquantitativestudies that focus on
productivity related to new object-oriented software developed by professional programmers
under commercial business models. It is not difficult to understand that, although many
industrial organizations claim to practice object-oriented software development, many
practicing software engineers and managers are quite cautious on the subject of object-
oriented productivity. In fact, it would appear that many organizations simply do not
systematically measure software reuse (and the associated productivity), and therefore
may not have more than anecdotal evidence for or against object-oriented productivity
gains [11].

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 835

Productivity

Productivity can be measured in many ways. A traditional approach is to use project size
or amount of functionality, e.g. in Lines Of Code (LOC) or function-points, and divide that
by the time or effort spent in developing the code. In an object-oriented environment, LOC
may not be an ideal metric for software size or functionality, but Tegardenet al. [12] report
that traditional metrics, such as LOC, may be still appropriate for measuring the complexity
of object-oriented systems.

In fact, in a commercial situation there are many other factors besides size that impact
on software costs and productivity. This is particularly true if issues such as marketing,
staff training, applied research, long-term maintenance, and customer support are taken into
account. None of these extra factors are reflected in traditional LOC metrics, but do require
expenditure of effort. Unfortunately, in practice, LOC is often the only available metric.
Therefore, we define productivity in terms of effective developed/changed LOC, but with
an understanding that the effort (or time) expended may include many non-coding activities
that are necessary in viable commercial products (see equations(1) and(2).

We define the average productivity of the software development team by the following
relationship:

Team Productivity= Project Size

Team Effort
(1)

where team productivity is the measure of the team output for a given unit of time or effort,
e.g. thousands-of-lines-of-code (KLOC) per month. The project size is the number of KLOCs
required to develop the project, and the team effort is the number of person-months required
to develop the project. To derive the average productivity of an individual programmer,
we divided the team productivity by the average number of programmers on the software
development team. Finally, to find the effort expended by individual programmers, we merely
rearranged the resulting equation, which gives:

Programmer Effort= Project Size

Programmer Productivity
(2)

These equations imply a linear relationship between the effort and size of a project, which
assumes that the profile of the work performed by each product team is approximately the
same, for example, each team spends about 5 per cent on training activities and about 3 per
cent on quality initiatives. There is no data available to support this assumption; however,
business guidelines tend to dictate the amount of time that team members should spend on
various activities. Clearly, this varies from organization to organization and person to person,
but the assumption that work profiles from team to team are consistent is an assumption
that we are comfortable with. Although this type of linear relationship may be suitable
for comparing team productivity on multiple products, practice shows that the size and
productivity of a software team often varies over the duration of a project; and that average
programmer productivity is a non-linear function of a number of factors. Boehm [15] defines
the effort required to develop a software project in terms of size

Effort = α(Size)β (3)

Other researchers used similar models [13–15] The parametersα andβ are constants that are
typically determined using regression on the loglinear version of this model, i.e.

ln(Effort) = ln(α) + β ln(Size) (4)

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

836 T. E. POTOK, M. VOUK AND A . RINDOS

The typical experience with this type of model is thatβ > 1, i.e. larger projects have lower
productivity than smaller projects, however, some researchers have reportedβ values less
than one [15].

Data†

The empirical data discussed in this paper was collected at the IBM Software Solutions
Laboratory in Research Triangle Park, North Carolina. This laboratory employs about 650
people, with approximately 90 per cent being directly involved in software development.
The laboratory was ISO 9000 Certified in 1994, and has consistently received high marks
in internal assessments against the Malcolm Baldrige Criteria. The lab was formed in 1984,
and produces a wide range of software products, ranging from mainframe end-user interface
design tools to workstation visual builders.

We examined 19 commercially available software products developed at this laboratory.
The measurements collected are defined by a corporate metrics council. This data is
recorded by members of each product development team, and used by lab management in
managing and controlling projects. Of the 19 products, 11 were developed using object-
oriented methods and eight using traditional procedural methods. All object-oriented projects
are either first or second generation, while all procedural projects are second or higher
generations. Four of the object-oriented products were inter-platform software ports, where
the original software was developed using object-oriented methods, then ported to work
with another operating system. Five projects were developed for mainframe use, and 14 for
workstation use. The product development activity ranges in size from about 1 thousand
(KLOC) to about 1 million lines of new or modified code. There is a very wide range of
team productivity for the products, with the highest productivity rate being nearly 50 times
more productive than the lowest productivity rate. Project development duration is recorded
in calendar months from the time when the project was officially funded to the first customer
ship date. The effort is reported in person-years, and includes the effort of the programmers,
testers, writers, planners, managers, and vendors. In this number is also included a person-
year equivalent for purchased software. For example, if software was purchased for $300,000,
and the average programmer cost is $150,000 per year, then this purchase would be equated
to two person years of effort. Software reuse data is listed as a collected metric, however,
none of the investigated products explicitly reported reusing any code. This is most likely due
to a mixture of process omissions and widely differing application areas and platforms of the
examined products.

BUSINESS MODEL

The general business model that drives software development at this laboratory recognizes
two major software product sub-categories: versions and releases. A new version is typically
quite large, and contains a significant product enhancement, or change in functionality. A
version is ordinarily followed by one or more maintenance releases that are usually much
smaller than a version, and contain fixes to defects, and minor enhancements. The calendar-
time duration for development of both versions and releases is strongly driven by market
forces. Versions tend to take longer than releases, but are within an 18–24 month window

†Data used by permission. The scales appearing on the axes of all graphs, and any product and date-related information, has
been altered to provide discretion.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 837

common in the industry today. Release development will normally not be shorter than 9–
12 months. There are a number of reasons for this, some of which are distribution costs, arrival
rate of release-type fixes and changes, and possibly the issue of user-perceived quality (e.g.
scheduling of a release very soon after a version can give the impression of quality problems).
While all new development must be completed with a limited number of personnel, existing
projects will have an established team. Typically, an effort is made to maintain or even
increase the size of the team because it may not be cost-effective to dismantle the team
between versions. Therefore, it is not unusual to have a large version developed with tight
resource and time constraints, yet have a smaller follow-up maintenance release developed
over a more relaxed schedule using the same team.

The development of both versions and releases is subject to frequent high-level reviews
of their schedule status against key development dates (or milestones) established at the
beginning of the product cycle. The progress towards these dates is reviewed regularly and in
detail, and schedule slips in any major milestones are strongly discouraged. Detailed project
schedules are required at the beginning of the product development cycle, and they trigger
business processes including funding, planning, marketing, supporting, and certification of
the quality of a product.

The software development teams are formed according to the skill and experience
requirements of the project. The overall experience level from team to team is typically about
the same. The teams that develop software using object-oriented technology are well skilled in
the discipline with numerous internal and external courses available. Further, the lab employs
several highly respected object-oriented experts.

At the time this data was collected there was a program in place to encourage software
reuse by moderately rewarding contributions to software reuse libraries, and highly rewarding
authors of reused components. This program has since been halted due to lack of participation.
Why this program did not succeed is an open question with several possible explanations,
including: (1) the well documented difficulties of reusing software; (2) the heterogeneous
nature of the products developed at the lab; or (3) possibly the lack of focus during staff
reductions.

EMPIRICAL PRODUCTIVITY

In Figure1 we plot for each of the 19 products the logarithm of the product size versus the
logarithm of the product effort. We further categorize the products into three groups: those
developed using object-oriented methods, dark circles; those developed using procedural
methods, light circles; and those object-oriented projects that were ported from one platform
to another, dark squares. Based on the model described in equation(4), we see an apparently
linear relationship between the logarithm of product size and effort, i.e. as a product gets
larger, more effort is required. If there were a distinct productivity difference between two
groups, this would appear on the graph in Figure1 as two distinct groups of points, with
the higher productivity products being closer to the x-axis. From this plot, it appears that
the ported products, as expected, have significantly higher productivity than the non-ported
projects, and that there are no obvious differences between the procedural and object-oriented
products.

Porting software can be viewed as software development where most of the design and
significant parts of the code are reused, and although it should not be confused with reuse,
it offers a hint of the reduction in effort that can be obtained through reuse. While ports are
generally less costly than new software development, and in itself the observed difference

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

838 T. E. POTOK, M. VOUK AND A . RINDOS

Figure 1. A plot of effort vs. size for procedural, object-oriented and object-oriented port projects

between the ported and other categories is not unusual, it is important to remember that the
object-oriented approachinherentlyprovides a mechanism for reuse not only when software
is ported, but also for enhancements and in development of future releases [16]. Hence, the
productivity gains observed during the porting of object-oriented software may be a good
reflection of the possible gains the technology offers if reuse is the key productivity driver.

The second observation, that there appears to be no productivity distinction between
products developed using object-oriented and procedural methodologies, runs counter to the
limited study on object-oriented productivity that has been performed to date, and to the
commonly held view that object-oriented methods improve productivity. There are many
possible explanations as to why this result has been observed, for example: (1) the observation
is not supported by statistical analysis: (2) LOC is an inadequate metric for object-oriented
products; (3) the object-oriented methodology was not properly used; (4) more generations
of object-oriented projects are needed to see a productivity gain; or (5) there is an underlying
factor that is skewing the result for object-oriented products.

ANALYSIS

To examine these issues further, we extend the loglinear model described in equation(4), so
that procedural and object-oriented product data can be compared statistically. This extension
adds a methodology factor to the model so that a significant difference between projects of
different methodologies can be tested. Equation(4) is extended to include a methodology
factor, and applied to only the non-ported data, as shown in equation(5):

ln(PM) = α1 + (β1) ln(KLOC) + (β2)Method+ (β3) ln(KLOC)Method+ ε (5)

whereα1, β1, β2, β3 are constants, ln(PM) is the logarithm of effort recorded in Person-
Months, ln(KLOC) is the logarithm of the effective project size in KLOC,Methodis a class
variable that indicates the development methodology, either object-oriented or procedural,
andε is the regression error term. This relationship provides a single regression model for the
full data, and a means of testing whether the methodology is a significant factor in this data.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 839

This analysis was performed using the proposed regression model, with the results provided
in the Appendix. This analysis confirms the observation made in Figure1, that for this data
there is no statistically significant evidence that the productivity of object-oriented software
development is different than that of procedural software development. As expected, a similar
evaluation of the data on ported software versus other software shows a significant difference
between the two. It is encouraging that the introduction of object-oriented technology does
not appear to carry excessive productivity penalties, a fear that some managers may have. It
is less welcome, but probably not so surprising, that there is no obvious productivity gain in
the first and second generations of object-oriented projects.

This analysis reveals two interesting points: first, there exists a very strong economy of
scale that can be seen in the parameters reported in TableII of the appendix, which yield the
model‡, Effort = 70.1(KLOC).43. An economy of scale for software development is unusual,
however, cases have been reported [15,17,18]. The second interesting point is the high R2

value recorded for the regression model. A low R2 value would indicate that LOC is a poor
representative of project size, i.e. two projects may have similar LOC values, but require
vastly different amounts of effort. Another way to state this is to argue that the LOC metric
is skewed for object-oriented projects, namely that more functionality can be created with an
object-oriented methodology and language than a comparable amount of code in a procedural
environment. A high R2 provides some support for the use of the LOC metric as a reasonable
predictor of project size/complexity for procedural development as well as object-oriented
development.

DISCUSSION

As stated above, there are several possible explanations as to why no productivity gain was
seen in this data. It appears that two can be ruled out: (1) the observations reported about
Figure1 are statistically valid; and (2) the LOC metric seems to be reasonable for this data.
Another possible explanation is that a procedural methodology (perhaps mistakenly called
object-oriented) was used in all of these projects, but with some using an object-oriented
language. After reviewing the processes used by several of the object-oriented projects, and
assessing the skill level of several of the key object-oriented developers, we believe there is
little doubt that an object-oriented methodology was being followed.

Another possible explanation is that only two generations of object-oriented projects are
analyzed, and that the productivity enhancing effects of reuse may not be seen until later
generations. Although this may be the case, there appears to be no trend towards an increase in
the productivity from the first to the second-generation object-oriented projects (see Figure2).
If reuse was evident, one would hope to see some indications that the second-generation
products (the hollow circles) are taking advantage of reuse, but unfortunately there is no
evidence of this in this data sample. Additionally, two of the object-oriented productivity
studies above seem to show that the object-oriented methodology improves productivity by
producing a simpler design, not merely through reuse [7,8]. Improvements due to improved
designs would seem to be independent of product generation, yet do not appear to be present
in this data either.

Moreover, it may be possible that weak teams were somehow assigned to the object-
oriented projects, while the stronger teams worked on the procedural projects. Based
on interviews and observations, it appears that the development teams had roughly the

‡Note that e4.25 = 70.1, where 4.25 is the regression coefficient ln(α) from equation(4).

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

840 T. E. POTOK, M. VOUK AND A . RINDOS

Figure 2. A plot of the development effort versus the size of the projects for first and second generation object-
oriented projects

same experience and skill level throughout the organization. Furthermore, there was some
speculation among the lab’s senior technical people that perhaps the object-oriented teams
are stronger than the procedural teams, since new technologies often attract higher performing
people. In any case, it appears unlikely that the make up of the teams caused a reduction of
the productivity rates for the object-oriented projects.

UNDERLYING FACTORS

There appears to be no obvious explanation for the lack of a productivity gain from the
object-oriented methodology in this data. However, exploring the unusual economy of scale
observed in the statistical analysis may provide some further clues. We explore the economy
of scale issue by analyzing the project staffing and productivity characteristics. This analysis
shows some puzzling relationships. For example, Figure3 shows the logarithm of average
programmerproductivity (LOC/Person-Month) versus the logarithm of project size (changed
or modified KLOC).

This plot shows clearly what was seen in the regression model developed above, that
counter-intuitively programmer productivity increases as the project size increases. We see
an equally puzzling plot (Figure4), that shows the logarithm ofteamproductivity versus the
logarithm of project size. It can be seen that team productivity (expressed as LOC/month)
appears to significantly increase with project size. Typically, one would expect to see a wide
variance in this value, since changes in programming team size should strongly influence the
amount of code the team produces. For example, one would expect a 20-person team will
have a much higher team productivity rate for a given project than will a 5-person team on
the same project. However, this plot shows a remarkably strong relationship between team
productivity and size.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 841

Figure 3. A plot of the average programmer productivity (LOC/Person-Month) as the project size (KLOC)
increases

Figure 4. Team productivity vs. project size

Based on the reported productivity factors, again there is a variety of possible explanations
for the economy of scale seen in this data. One explanation may be that there is a
large but constant overhead associated with all projects, or that smaller projects are, for
some reason, more complex. Unfortunately, there is no evidence to support either of these

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

842 T. E. POTOK, M. VOUK AND A . RINDOS

Figure 5. Second generation object-oriented project. The actual (light bars) and planned (dark bars) project
duration vs. milestone number

assertions. However, based on interviews with the process owners and a review of the project
documentation, it appears that the business model may have dictated the establishment of
larger teams for certain types of smaller projects. For example, small intermediate product
releases were required to preserve continuity of skills and expertise between large versions
of the product, that in turn require large amounts of effort. While this may provide a partial
explanation for the first six small projects, it does not really explain the productivity growth
observed for larger projects.

The question is whether this growth is the result of schedule over-estimation for smaller
projects, or something else. Given the fact that some of the larger projects exhibited
productivity larger than the ‘nominal’ values that might be expected for the product based
on, for example, the classical COCOMO model, it appears that some schedule compression
may have taken place. This suggests that the gains in the productivity of larger products may
be a result of schedule pressure.

This prompted an examination of project schedule histories of several projects in detail.
Figure 5 illustrates the typical effects and trends that were observed. The plot shows a
comparison of the planned and actual milestone completion durations for a second-generation
object-oriented project. The dark bars represent the planned task duration, while the light
bars represent the actual task durations. The vertical axis is the calendar time unit for task
completion, and the horizontal axis represents the project milestones. For emphasis, the
graph shows all tasks starting times superimposed, i.e. as if they were starting at the same
time, which is obviously not the case in reality. It appears that the actual completion of
tasks follows quite closely the planned completion for those same tasks. Similarly, compliant
tracking patterns were observed for both procedural and object-oriented projects.

One possible explanation for Figure5 is that the product planning process is very accurate.
However, given a very wide variation in the average productivity over the examined projects,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 843

it is unlikely that the productivity rate of the associated programming teams was so well
known in advance. Another explanation could be that schedules were met because software
functionality was changed or testing time was reduced to meet them. Examination of the
project records show that no major functions were added or deleted in these projects, and that
time was not saved by shortening testing cycles. For example, the project in Figure5 shows
delays in Iteration 3 that occurred in coding milestones, and that the schedules were brought
back in line during this phase, not during testing. The project also has delays in the testing
phase; however, the testing phases were entered and exited on schedule, indicating that the
testing effort may have been shifted, but not shortened.

Yet another possible explanation is that the actual schedule data has been modified to match
the planned expectations. In other words, regardless of when a task actually completed, a date
close to the planned milestone was recorded. Unfortunately, this issue of potentially altered
data must be seriously addressed. We are confident that the data used in this graph is accurate
and reliable. First, the initial schedule used to drive the software development process is
generated early in the software development lifecycle and used by the project management
as a means of tracking progress on the project and triggering various business activities. The
software development team typically reports progress to management on a weekly basis, with
detailed project reviews held by the laboratory director each month. There are a multitude
of groups that rely on the output of the team in order to do their jobs, i.e. technical writers,
testers, support personnel, marketing groups, distribution groups, language translation groups,
business partners to name a few. For a team to supply incorrect task completion dates, they
must provide false information to their management chain running the very real risk that the
dates will be questioned if the output of the task has not been received by a dependent group.
Presenting false information in this manner can result in dismissal from the company.

Secondly, project histories from four projects were examined in total. These histories, of
which, only one was shown, do report large delays (up to 20 weeks) in meeting some non-
critical milestones, however, the final project completion milestone were consistently met in
all four projects. The reporting process makes it very difficult to present false information,
and there is evidence of large task completion delays. For these reasons, we believe that this
graph provides initial evidence that dynamic schedule enforcement and compression took
place, and may have been a factor in achieving the milestone compliance.

The detailed project data along with an understanding of the controlling business model
seem to indicate that the business deadlines may strongly influence the overall productivity
of a software development project. The characteristics we observed are: (1) a common
programming team is formed regardless of project size; (2) there is an established maximum
and minimum duration for the development cycle; (3) strong pressure exists to meet key
project deadlines; and (4) there are two classes of development, large versions and small
releases. In this environment, it appears that large versions are developed with a relatively
small programming team on a relatively short cycle, with strong pressure to finish on
schedule. This most likely results in an increase in apparent productivity. Smaller releases
have relatively large programming teams, with a relatively lax schedule, and no incentive to
finish early. For a software release, therefore, it seems that the conditions allow for lowering
of the apparent productivity. This leads to the conjecture that the business model may drive
smaller releases to have low productivity, and larger versions to have higher productivity [18].
Furthermore, it may be possible that the business model exerts influence over the productivity
of object-oriented software development, and this influence may offset potential gains in the
methodology. A simulation study of this phenomenon confirms that this may indeed be the
governing influence [19].

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

844 T. E. POTOK, M. VOUK AND A . RINDOS

SUMMARY

Our results indicate that in a commercial environment, there may not be a consistent
statistically significant difference in the productivity of object-oriented and procedural
software development, at least not for the first couple of generations of an object-oriented
product. The reason may be low reuse level, but it could also be the underlying business
model. Investigation of 19 commercial products has shown an unusual economy of scale
for both object-oriented and procedural software that is difficult to explain with traditional
productivity drivers. However, a review of the underlying business workflows has suggested
that business deadlines may strongly influence the overall productivity. In an environment
where a typical delivery cycle for product versions or release is on the order of 12–24 months
it may be more economical to preserve development team skills and expertise by keeping
them together whether they operate under the new release or maintenance schedules. This may
produce aggressive schedules for new releases, and lax schedules for maintenance releases.
Our data appears to indicate that business workflows can play a key role in realizing the
potential productivity benefits from a new technology such as object-orientation. For example,
funding, staffing, and scheduling an object-oriented project in the same way that is done
for a procedural project appears to dictate the productivity of the team, regardless of the
potential benefit of a given methodology. The adoption of an object-oriented methodology
may necessitate changes beyond merely the new technology. The estimation of project effort,
the scheduling of project tasks, and the tracking of task completions should all be examined
based on the characteristics of a new technology. Otherwise, investment in technology that
has the potential to increase productivity may be lost unless the underlying business work
flows are adjusted to take advantage of the improved software development capabilities.

APPENDIX: REGRESSION MODEL STATISTICS

The regression statistics for equation(5) are summarized in TableI. Originally there were 19
data points of which data from the four ported projects was set aside, leaving 15 data points.
The model fits the data with an R2 value of 0.88.

Note that the T-statistics in TableI only test for each individual parameter, not a
combination of parameters. By reducing the model of both the methodology factor, and the
interaction between methodology and size, i.e. yielding the equation ln(PM) = ln(α1) +
β1 ln(KLOC) + ε, (equation(4)), a model irrespective of methodology is produced. By
comparing the full and reduced models, the joint hypotheses that methodology is not a
significant factor, H0: β2 = β3 = 0, can be tested. An F-test is used to evaluate the differences
between the two models. The reduced model has an R2 value of 0.85, and the regression
statistics summarized in TableII .

Table I. The regression statistics for the model with a factor for methodology

Coefficients Standard error T Stat P-value

α1 4.37 0.23 18.64 1.14E-09
β1 0.49 0.07 6.90 2.6E-05
β2 0.56 0.36 1.57 0.14
β3 −0.13 0.10 −1.34 0.21

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 845

Table II. The regression statistics for the model without a factor for methodology

Coefficients Standard error T Stat P-value

ln(α1) 4.25 0.18 23.64 4.56E-12
β1 0.43 0.05 8.56 1.06E-06

Figure 6. Normal probability plot of the residuals for the full model

Comparing the two models yields an F statistic of 1.23 for F(2, 11)§. The tabulated value
of F(2, 11) at α = 0.05 is 3.98; therefore, the null hypothesis is not rejected at that level,
indicating that there is no statistical support for a methodology factor in modeling this data.
To ensure that the underlying assumptions of the regression model are valid, the residuals of
the full model are analyzed. Figure6 shows the normal probability plot of the residuals, in
order to detect nonnormality. The residual values in the plot appear to be linear, however, the
trend-line through the data does not cross the origin. Given the relatively small sample size of
the data, the variance of the data can easily cause this result [20].

Satisfied that the errors in the full regression model appear to be normal and independently
distributed, further analysis of the residuals and standardized residuals is done to identify
potentially influential points (see TableIII). For the most part, the standardized residuals are
relatively close to zero, with the exception of observation 12, which is roughly twice as large
as the next largest residual value.

§The F statistic is calculated from the equation F(γH, γfull) = [(SSEreduced− SSEfull)/γH]/MSEfull , where SSE is the sum
of squares of error, and MSE is the mean squared error.γH d.f. for H0, andγfull for error under the full model. For this data,
SSEreduced= 1.852, SSEfull = 1.513, and MSEfull = 0.138 atγH = 2 andγfull = 11 degrees of freedom. This produces an
F-statistic of 1.228 at F(2, 11).

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

846 T. E. POTOK, M. VOUK AND A . RINDOS

Table III. A list of the residuals, and standard residuals for the full model

Observation Predicted Y Residuals Standard residuals

1 4.425392 −0.03838 −0.10349
2 4.643842 −0.21303 −0.57444
3 4.703311 0.215209 0.580328
4 5.175575 −0.32981 −0.88937
5 5.50018 0.242823 0.654792
6 5.564769 0.13484 0.363607
7 5.946235 −0.33896 −0.91404
8 6.218671 0.387742 1.045577
9 6.329106 −0.35073 −0.94576
10 6.289296 −0.15114 −0.40755
11 6.307668 0.077189 0.208147
12 6.353243 0.820256 2.211883
13 6.654392 −0.07734 −0.20854
14 6.965289 −0.37115 −1.00083
15 7.408761 −0.00753 −0.0203

The project represented in observation 12 was a procedural project that appeared to take
an unusually large amount of effort to complete. After further review of the data, the values
reported are accurate, and there is no reason to remove this point from the analysis.

ACKNOWLEDGEMENTS

This research was funded by IBM. The document preparation was supported by Lockheed
Martin Energy Research.

REFERENCES

1. A. Lewis, S. M. Henry and D. G. Kafura, ‘An empirical study of the object-oriented paradigm and
software reuse’,Proceedings of the Conference on Object-oriented Programming Systems, Languages and
Applications, 1991, pp. 184–196.

2. W. L. Melo, L. C. Briand and V. R. Basili, ‘Measuring the impact of reuse on quality and productivity
in object-oriented systems’,Technical Report, University of Maryland, Department of Computer Science,
CS-TR-3395, 1995.

3. B. Henderson-Sellers, ‘The economics of reusing library classes’,Journal of Object Oriented Programming,
6, 43–50 (1993).

4. D. Schimsky, ‘Software reuse: some realities’,Vitro Technical Journal, 10, 47–57 (1992).
5. R. G. Fichman and C. F. Kemerer, ‘Object technology and software rese: lessons from longitudinal case

studies of early adopters’,IEEE Computer, 30, 47–59 (1997).
6. N. Y. Lee and C. R. Litecky, ‘An empirical study of software reuse with special attention to Ada’,IEEE

Trans. Software Engineering, 23, 537–549 (1997).
7. D. A. Boehm-Davis and L. S. Ross, ‘Program design methodologies and the software development process’,

International Journal of Man Machine Studies, 36, 1–19 (1992).
8. S. H. Zweben, S. H. Edwards, B. W. Weide and J. E. Hollingsworth, ‘The effects of layering and

encapsulation on software development cost and quality’,IEEE Trans. Software Engineering, 21, 200–208
(1995).

9. G. A. Hansen, ‘Simulating software development processes’,IEEE Computer, 29, 73–77 (1996).

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

PRODUCTIVITY ANALYSIS OF OBJECT-ORIENTED SOFTWARE 847

10. R. G. Fichman and S. A. Moses, ‘An incremental process for software implementation’,Sloan Management
Review, 40, (1999).

11. W. B. Frakes and C. J. Fox, ‘Sixteen questions about software reuse’,Commun. ACM, 38, 75–87 (1995).
12. D. P. Tegarden, S. D. Sheetz and D. E. Monarchi, ‘Effectiveness of traditional software metrics for object-

oriented systems’,Proceeding of the 25 International Conference on System Sciences, 1992, pp. 359–368.
13. C. E. Walston and C. P. Felix, ‘A method of programming management and estimation’,IBM Systems

Journal, 16, 54–73 (1977).
14. J. W. Bailey and V. R. Basili, ‘A meta-model for software development resource expenditures’,Proceedings

of the Fifth Internations Conference on Software Engineering, 1981, pp. 107–116.
15. B. W. Boehm,Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.
16. M. A. Vouk, ‘On the cost of mixed language programming’,ACM SIGPLAN Notices, 19, 54–60 (1984).
17. S. E. Elmaghraby, E. I. Baxter and M. A. Vouk, ‘An approach to the modeling and analysis of software

production process’,International Trans. Operational Research, 2, 117–135 (1995).
18. T. E. Potok and M. A. Vouk, ‘Development productivity for commercial software using object-oriented

methods’,Proceedings of CASCON’95, 1995.
19. T. E. Potok and M. A. Vouk, ‘The effects of the business model on object-oriented software development

productivity’, IBM Systems Journal, 36, 140–161 (1997).
20. G. E. Box, W. G. Hunter and J. S. Hunter,Statistics for Experimenters, Wiley, New York, NY, 1978.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(10), 833–847 (1999)

	INTRODUCTION
	Evidence
	Productivity
	Data

	BUSINESS MODEL
	EMPIRICAL PRODUCTIVITY
	ANALYSIS
	DISCUSSION
	UNDERLYING FACTORS
	SUMMARY
	APPENDIX: REGRESSION MODEL STATISTICS

