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MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 197 
JANUARY 1992, PAGES 213-232 

RANK-REVEALING QR FACTORIZATIONS 
AND THE SINGULAR VALUE DECOMPOSITION 

Y. P. HONG AND C.-T. PAN 

ABSTRACT. T. Chan has noted that, even when the singular value decomposi- 
tion of a matrix A is known, it is still not obvious how to find a rank-revealing 
QR factorization (RRQR) of A if A has numerical rank deficiency. This pa- 
per offers a constructive proof of the existence of the RRQR factorization of 
any matrix A of size m x n with numerical rank r. The bounds derived 
in this paper that guarantee the existence of RRQR are all of order V/ir, in 
comparison with Chan's 0(2n-r) . It has been known for some time that if A 
is only numerically rank-one deficient, then the column permutation II of A 
that guarantees a small rnn in the QR factorization of Afl can be obtained by 
inspecting the size of the elements of the right singular vector of A correspond- 
ing to the smallest singular value of A . To some extent, our paper generalizes 
this well-known result. 

0. INTRODUCTION 

We consider the interplay between two important matrix decompositions: 
the singular value decomposition and the QR factorization of a matrix A. In 
particular, we are interested in the case when A is singular or nearly singular. 
It is well known that for any A E Rmxn (a real matrix with m rows and 
n columns, where without loss of generality we assume m > n) there are 
orthogonal matrices U and V such that 

(0.1) UTAV= [4] 
where I is a diagonal matrix with nonnegative diagonal elements: 

I = diag(al, q2, . .. ., an) - 

We assume that a, > ?2 > ... > n > 0. The decomposition (0.1) is the singular 
value decomposition (SVD) of A, and the ai are the singular values of A. The 
columns of V are the right singular vectors of A, and the columns of U are 
the left singular vectors of A. Mathematically, in terms of the singular values, 
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214 Y. P. HONG AND C.-T. PAN 

A has rank r (or nullity (n - r)) if and only if ar > 0 and ar+I = 0. However, 
computationally, when ar+1 is not exactly equal to zero but ar+1 = 0(u), and 
if ar > Yr+1, where M is the machine precision and ">" means that there 
is an obvious magnitude gap between ar and ar+1, we may say that A has 
numerical rank r, or has numerical nullity (n - r) (see Definition 1.1). In many 
applications, for a given matrix A, it is desirable to find the numerical rank 
[8, 21]. Currently, the SVD is the most reliable, though expensive, numerical 
method for determining the numerical rank of a matrix. 

An alternative, more practical method is QR factorization with column piv- 
oting, a method proposed by Golub in the mid-sixties [9]. It is much cheaper 
than the SVD and useful in many applications such as solving rank-deficient 
least squares problems [3, 11]. The method consists in using a column pivoting 
strategy [9] to determine a permutation matrix II such that AU = QR is the 
QR factorization of AU, with Q E Rmxn satisfying QTQ = In and the upper 
triangular matrix R partitioned as 

(0.2) R [RI Ri2J 

where RI1 E krxr and R22 is small in norm (we hope). If, say, 1hR22112 = O(u), 
then from the fact that Oar+I < IIR22112 (see Lemma 1.2) we conclude that the 
original matrix A is guaranteed to have at most numerical rank r. 

The QR factorization of AUl, where II is a permutation matrix chosen to 
yield a "small" R22, is referred to as the rank-revealing QR (RRQR) factoriza- 
tion of A [6] (this is stated more precisely in Definition 1.3). While the RRQR 
factorization is another possible way to detect the numerical rank of a matrix, 
besides the SVD, the column pivoting strategy, unfortunately, does not always 
work. A well-known counterexample by Kahan [14, Example 3.1] shows that. 

There are other strategies for finding an RRQR factorization of a matrix [2, 
6, 8, 15, 16, 17, 20], but most of them either simply fail to overcome Kahan's 
example, or provide no rigorous a priori bound for 1R2211 . Chan [6] proposed 
an algorithm (similar ideas were independently proposed by Foster [8]) that 
does guarantee an RRQR factorization of A if A has low numerical nullity; in 
particular, Chan's algorithm works well for Kahan's example. It may work well 
in practice even when the numerical nullity is high, but not provenly so, since 
the bound derived in [6] is an exponential function of the numerical nullity. 

Unlike other matrix decompositions that have been studied for centuries, 
there are still two fundamental unsolved questions that arise in the RRQR fac- 
torization. First, does there always exist a permutation matrix UI such that 
AUl = QR is an RRQR factorization of A if the numerical rank of A is 
known? Second, if the permutation exists, how do we find it economically and 
reliably? Our paper gives an affirmative answer to the first question. 

Our approach begins with the pioneering work of Golub, Klema, and Stewart 
[10]. Assume that the SVD of A having numerical rank r is known with 
V = [V1, V2] in (0.1), where the columns of V2 E Rnx(n-r) are the right singular 
vectors corresponding to the smallest singular values ar+ 1, ar+2, ..., an. It 
has been observed in [10] that the permutation matrix UI which determines 
an RRQR factorization of A is closely related to the selection of an (n - r)- 
by-(n - r) submatrix of V2 having a maximum smallest singular value among 
all submatrices of V2 of the same size. However, the only proven result in 
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QR FACTORIZATIONS AND THE SINGULAR VALUE DECOMPOSITION 215 

this regard relates to the case when A has numerical rank-one deficiency. In 
this case, V2 is just a right singular vector v, corresponding to the smallest 
singular value an. It is then easy to show (see ?1) that the permutation II 
such that I(flTvn)nI = IIVn'I0I is the one that guarantees Ir,,I < Vnican,, where 
AI = QR is the QR factorization of AIl. When the numerical nullity of A is 
greater than one, similar bounds on 1hR22 112 (or 1hR22 IF), which guarantee an 
RRQR factorization of A, are not known. We shall establish such bounds in 
the general case. 

It turns out that the selection of the submatrix with the maximum smallest 
singular value suggested in [10] can be replaced by the selection of a submatrix 
with maximum determinant. More precisely, if the SVD of A is known (in 
particular, if the matrix V2 is known), we show that the permutation matrix 
I =:[Ii, 112] such that Idet(LITV2)1 is maximum among the absolute val- 

ues of the determinants of all possible (n - r)-by-(n - r) submatrices in V2, 
guarantees an RRQR factorization of A. Nevertheless, our results are strictly 
theoretical; they offer no practical RRQR factorization algorithm since, if the 
SVD is known, there is no need to find an RRQR for revealing the numerical 
rank. 

The rest of this paper is organized as follows. Section 1 gives basic notation 
and definitions as well as some preliminary results. Section 2 presents the main 
theorems. Section 3 illustrates the main theorem with numerical examples. In 
the final section, we state several remarks. 

1. PRELIMINARIES 

1.1. Notation and basic concepts. In this section we define the notation used 
throughout this paper. We also define what we mean by the numerical rank and 
the RRQR factorization of a matrix A. We assume that all the matrices and 
vectors in this paper are real, but most results can be easily extended to complex 
numbers. 

Notation. 
- ai(A), the singular values of the matrix A in descending order, 
- Umin(A), the smallest singular value of A, 
- 2(W), the set of all n-by-n submatrices of W E Rmxn (m > n), 
- Pn, the set of n-by-n permutation matrices obtained by permuting the 

columns of the unit matrix In, 
- m, n , the set of m-by-n matrices with orthonormal columns, 
- RII, R12, R22, the blocks of R, an upper triangular matrix, when R 

is partitioned as R - [RI R12 1 
L0 R22j 

- G(i'), a principal submatrix of a square matrix G with the ith row 
and ith column of G deleted, 

- det(G), the determinant of a matrix G, 
- G >- 0, G > 0, the matrix G is positive definite, positive semidefinite, 

respectively, 
- (G)ij, (G)i: , (G)i :5,], the (i, j) element, the ith row, and the first 

five entries of the jth column of a matrix G, respectively. 
Bold lower-case letters denote vectors, 11 2 is the Euclidean norm of a vector 

or the spectral norm of a matrix, and 11 IF is the Frobenius norm of a matrix. 
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216 Y. P. HONG AND C.-T. PAN 

Now we define what we mean by the numerical rank of a matrix. 

Definition 1.1. A matrix A E Rrmxn (m > n) is said to have numerical rank r if 

(1.1) c-r > ?cr+I = (O) 

where al > 2 > Ala> an > 0 are the singular values of A, and ,i is the 
machine precision. 

Here we use the notation "a > b" to indicate that "a is much larger than b ." 
An alternative definition of numerical rank is given in [8, 10]. For simplicity, we 
do not impose two constants to specify the "gap" between a and b, as in [10]; 
but our definition is equivalent to the one called "numerical rank (3, e, r)2" 
in [10] with Ur > 3 > E > Ur+l, if the notation ">" is specified by a pair 
of constants, 3 and E. We thus have two concepts of rank: the ordinary 
rank (which we sometimes call the exact rank), and the numerical rank. For 
simplicity, we do not give the full name of the rank when it is clear from the 
context which one we are referring to. 

To define the RRQR factorization of a matrix A, we need the following 
lemma. 

Lemma 1.2. If A = QR is the QR factorization of A E Rrmxn (m > n), with 
R = [RI R12 and R11 E Rrxr, and if 

(1.2) Umin(R I 1) > IIR22112 = 0(g) 

then A has numerical rank r. 
Proof. Let a, > * > an be the singular values of A. From the singular value 
interlacing property [13, p. 417], it is easy to show that 

(1.3) Ur > Umin(RII) 

and 

(1.4) 11R22112 > Ur+la 

Thus, 
Ur > Cmin(RIi) > 11R22112 > U?r+ = O(Y) 

and the lemma is proved. 0 

Because of Lemma 1.2, the following definition of an RRQR factorization 
of a matrix A is justified (see also Remark 1 below). 

Definition 1.3. Assume that a matrix A E Rm~n (m > n) has numerical rank 
r (< n). If there exists a permutation II E Pn such that AIl has a QR 
factorization Al = QR with R - [RI, Ri2], R11 E Rrxr, and 

(1.5) Umin(RII) > 1IR22112 =0(g), 

then the factorizaton AIl = QR is called a Rank-Revealing QR factorization 
(RRQR) of A. 

This definition poses conditions on both blocks RI1 and R22. This is con- 
sistent with Definition 1.1. Once the LI is found such that the corresponding 
R satisfies (1.5), the numerical rank of A is revealed. 
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QR FACTORIZATIONS AND THE SINGULAR VALUE DECOMPOSITION 217 

By definition, for given A and r, the question of whether a QR factorization 
of AU is an RRQR factorization is decided solely by the values of Umin(RI,) 
and IIR22112 corresponding to the II chosen. We know that the QR factorization 
of A (or AU) is unique (up to the signs of rows of R) when A (or AUl) has 
full rank. In this case there is only one pair of amin(Ri1) and 1hR22112 for 
each U chosen. When A is singular (exact rank-deficient), however, the QR 
factorization of AnI is no longer unique in general. In this case, does it still 
make sense to use the values of Umin(Rii) and 1hR22112 to define the RRQR 
factorization of A ? Will different UI generate different pairs of amin(RI I) and 
IIR22112 (and if so, how many different pairs of amin(RII) and IIR22112 are there 
for fixed A and r) ? The following two remarks answer these questions. 

Remark 1. For fixed A, r, and U, if uimin(RI ) 5# 0, the values of amin(Ri i) 
and 11R22112 are uniquely determined by the QR factorization of AU even 
though the QR factorization may not be unique. 

Proof. Assume A is a singular matrix. Suppose that 

A Q (R0 R,22 ig 
R 

R,22 

are two different QR factorizations of AUI. Then 

( RlIR, RT Rl2 

RT2RII RT2R12 + RT2R22 J 
(1.6) = -T R R-T2R = 

Clearly, Ymin(RII) = amin(RII). Since RHTR1 1 - RT - >- 0, the upper 
triangular matrices R11 and RII are equal up to the signs of rows. Now, 
comparing the (1, 1)- and (1, 2)-blocks of (1.6), and using the nonsingularity 
of R 1 and RII, we obtain R 12R12 = R T2Rl2. Comparing the (2, 2)-blocks 

T -T- in (1.6) then gives R22R22 = R22R22, hence 11R22112 = 11R22112. 0 

Remark 2. Let A = Q [RI R12] be a QR factorization of A with cmin(RIi) #0 . 
L0 R?22j 

Suppose that U- [nIi n] E Pn with UI E Pr and II2 E Pn-r. If 

Q[0 R22J 

is any QR factorization of AUl, then amin(RII) = (min(RII) and 11R22112 = 

1hR22 112 . 

Proof. For 

AU=Q[ R1O1 R22U2]' 

there exists an orthogonal matrix Q' = [ 1 such that 0 Q2 j 

AUl= QQ 1[R1 RJ 
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218 Y. P. HONG AND C.-T. PAN 

is a QR factorization of AIl, where (Q,)TR 11HI = Rl1 and (Q,)TR22I2 = 

R'22 . By Remark 1 the conclusion of this remark is now obvious. C 

Notice that the restriction Umin(RI,) #A 0 in Remark 1 does not conflict with 
Definition 1.3 since, when Umin(RI 1) = 0, the corresponding QR factorization 
cannot be an RRQR one. From Remark 2, for fixed A and r, if Umin(Ri 1 ) #A 0 
for all II E P,, then there exist at most C(n, r) = n!/(n - r)!r! distinct pairs 
of values of Umin(RII) and I1R22112. If for some II, Umin(RII) = 0, it does 
not matter which 1hR22112 we choose, since the corresponding QR is not an 
RRQR. Therefore, according to Remark 2, the maximum number of different 
QR factorizations needed to obtain an RRQR of A (if it exists) is C(n, r) 
(not n!) if we know the numerical rank of A is r. This is consistent with the 
fact that there are only C(n, r) different r-by-r submatrices in V2 when we 
inspect either their smallest singular values or absolute determinant values to 
obtain a permutation that guarantees an RRQR of A. This fact is also quite 
useful when we try (cf. ?3) to exhibit all possible QR factorizations of a given 
matrix for different permutation II. (Remark 2 also justifies the suggestion 
of using so-called cyclic permutations [6] when one wishes to keep the original 
sparsity structure in seeking an RRQR.) 

A final note on Definition 1.3 concerns the matrix norm used in the definition. 
Since all finite-dimensional matrix norms are equivalent, it is not necessary 
to use the 2-norm here. Often more useful is the Frobenius norm. Noting 
that 1IM112 < IIMIIF for any matrix M, one can easily see that the following 
definition is an alternative to Definition 1.3. 

Definition 1.4. Assume that a matrix A E Rm~n (m > n) has numerical rank 
r (< n) . If there exists a permutation matrix II E Pn such that AII has a QR 

factorization AII = QR with R - [RI, R12 ] RI, E rxr and 

(1.7) IIR-1IIF > IIR22II1F = O(u), 

then the factorization ArI = QR is called a Rank-Revealing QR factorization 
(RRQR) of A. 

Lemma 1.2 shows that a gap between Umin(RII) and 1hR22112 implies a gap 
between Ur and Ur+1 . In this paper, our main goal is to show the converse, i.e., 
a gap between Ur and Ur+1 implies a gap between Umin(RI I) and 1hR22 112. 

1.2. Preliminary results. It has been noticed [10] that the permutation II that 
may lead to an RRQR factorization of A is closely related to a certain selection 
of a subset of rows of a matrix whose columns are the right singular vectors 
corresponding to all near-zero singular values of A: one chooses a number 
of rows equal to the number of near-zero singular values in such a way that 
the resulting square matrix has maximal smallest singular value. The following 
theorem explains why and how the permutation and the smallest singular value 
of a selected subset of the rows are related. We note that the inequality (1.8) 
has appeared in [10] in a slightly different form. 

Theorem 1.5. For any matrix A E Rmxn (m > n), suppose that AII = QR 
is the QR factorization of AII with some II E Pn. For any positive integer r 
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QR FACTORIZATIONS AND THE SINGULAR VALUE DECOMPOSITION 219 

(< n), let R = [Ru R121 be a partition of R, where R11 E Rrxr Then the 
L0 R22j 

following inequalities hold: 

(1.8) Umin(R I I) > Umin(F )r(A) 

(1.9) 11R22112 < (FI V2) ( 

It is assumed here that fl = [r11, r2] and V = [V1, V2] with HlI, V1 E Rnxr, 
where UTA V = Z is the SVD of A. Moreover, there holds 

(1. 10) Umin (17TV1) I Umin (2IT V2). 

Proof. Let [U1, U2] = U = UX, where U1 E Rmxr. Thus AV = U or A = 

U1 VJ + U2 V2T . It is easy to check that 

umin(ArII) = Umin(Ui VjFIl + U2 V2TI1) 

> ?umin(ul ViTHOl > ?Umin(U'l) * U-min(Iv) 

On the other hand, umin(AFII) = cmin(Q[R 1]) = Umin(R11), and umin(Ul) = 

cYr(A). Thus, inequality (1.8) is proved. 
Observe that 

QRfATV2 AflTV2 = AV2 = U2. 

It is easy to check that 

qr+i(A) = 11U2jj2 = IIRHTV2II2 > IIR22fl 2V2II2 > 11R22112 -min(l2iV2). 

Thus, inequality (1.9) is also true. Now notice that the orthogonal matrix IT V 
can be partitioned as 

-IT V = IHV IF 
LI-IT VI I-IT V2 

According to the C-S decomposition theorem [11, p. 77], equation (1.10) is 

immediate. 0 

Inequalities (1.8) and (1.9) may now be written as 

(1.11) Cmin(RII) > por(A) 

and 

(1.12) 1jR22112 < OUr+I(A) 

where p = Umin(I-VT V) = 1Umin(IIT V2). 

Remark 3. In Theorem 1.5, if V is replaced by V [' 0 ] , where Z1 E Rrxr 

and Z2 E R(n-r)x(n-r) are orthogonal matrices, one can easily verify that the 

corresponding inequalities still hold. In particular, if V2 is replaced by any 

orthonormal basis of the column space of V2, the numerical null space of A, 
Theorem 1.5 is still valid. 0 

Theorem 1.5 is important since it provides us with a mechanism for identify- 

ing the possible candidates of El which may guarantee an RRQR factorization 

of A. To explain this, we introduce some additional notation. Let W E cn,r 
with n > r, and let ?(W) be the set of all r-by-r submatrices of W. If we 
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220 Y. P. HONG AND C.-T. PAN 

order these submatrices in some way (for example, using lexicographical order 
according to the row indices in the original matrix W) as WI, W2, ... , 

where p = C(n, r), we can define a vector in RP by 

(1.13) a(W) = (min(Wi), min(W2), .. ., Umin(Wp))T. 

For all W E 9n,r, if one could show that infWEmr(Ilo1(W)I0o') is a number 
not too small, say O( VTHI) , then according to Theorem 1.5 the existence of an 
RRQR factorization is guaranteed by choosing a rI E Pq such that Umin('Tl V1) 
is maximum among all possible r-by-r submatrices of VI (at the same time 
Umin(fIlV2) is maximum among all possible (n - r)-by-(n - r) submatrices of 
V2), since then 

(1.14) p = Kmin (l Vi) = Umin(I'V2) > inf (I|a(W)I|oo). P = Umin I = Umin (I 
WE6n,,r 

Note that we need to consider only C(n, r) elements in P, as candidates of 
II, since permuting the rows of a matrix will not change the singular values 
of the matrix. This fact is consistent with Remark 2. We define the following 
function of n and r: 

(1.15) X(n , r) = i~nf (jja(W)jjoo). 
WE&,, r 

From the C-S decomposition theorem one easily sees that 

(1.16) X(n, r) = X(n, n - r). 

Thus, the existence of a permutation, which guarantees an RRQR factoriza- 
tion for an arbitrary matrix A with numerical rank r, depends entirely on the 
value of x(n, r). Therefore, the rest of this paper is devoted to obtaining the 
value of x(n, r), or a sufficiently sharp lower bound for it. When r = 1 or 
r = n - 1, this is trivial. 

Lemma 1.6. Let v E Rn and JlVii2 = 1. Then 

x(n, n - 1) = X(n, 1) = inf ( lvjl) = . 

Proof. It is clear that llvilko > 1/# for each v E Rn with 11v112 = 1, since 
otherwise vi < 1/v0/n for each i, giving 11v112 < 1. On the other hand, the 
vector (1/1/E, ... , 1/v/ij)T achieves the lower bound 1 /T V. 0 

From this lemma and Theorem 1.5 we immediately have the following corol- 
lary for the rank-one deficient case (r = n - 1) . 

Corollary 1.7. For any matrix A E Rmxn (m > n), there exists a permutation 
II E Pq such that AHl has a QR factorization ArI = QR with 

Umin(Rii) > 
1 

(A) and Irnnl <? v/-in(A), 

where R11 E R(n-1)x(n-1). If vn is the right singular vector associated with 
an(A), the permutation rI is given by I(LITvn)nl = llvnllIK. Moreover, if A is 
numerically rank-one deficient, the QR factorization of AHl is guaranteed to be 
an RRQR of A. 

Corollary 1.7 was first pointed out in [10]. It is also the backbone of Chan's 
algorithm [6]. However, even for the rank-two deficient case, not to mention 
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the general case, much more effort is required to obtain the value of x(n, r) 
or a sufficiently sharp lower bound for it. The following result addresses the 
rank-two deficient case, but its lengthy proof is deferred to the Appendix. 

Lemma 1.8. Let V E6n, 2. Then 

x(n, n - 2) x(n, 2) = ViEnf,2 (jIjo(V)I0) 

> A/(2- A/(n- 2)/(n - 1))/n. 
Correspondingly, we have the following corollary. 

Corollary 1.9. For any matrix A E Rmxn (m > n), there exists a II E Pn such 
that AH has a QR factorization AI = QR with 

Umin(Rii) > -\/( (n-2)/(n - 1))/n * Un-2(A) 

and 
11R22112 < un-, (A), 

A/2 - \/n-2n-1)I/n 
where R11 E R(n-2)x(n-2). If V2 = [vn-1, Vdj where vn-1 and Vn are the right 
singular vectors associated with an -(A) and an (A), respectively, the permu- 
tation matrix H is given by amin(HT V2)n- :n,n-: n = IIo(V2)I0,o. Moreover, 
when A is numerically rank-two deficient, the QR factorization of AH is an 
RRQR of A. 

The proof of Lemma 1.8 exhibits the difficulty of obtaining sharp lower 
bounds for the function X(n, r) directly, even when r = 2. In the next section, 
we will use a different approach to prove the existence of an RRQR factorization 
of a matrix having any numerical rank. 

2. EXISTENCE THEOREMS FOR RRQR FACTORIZATION 

By Theorem 1.5, the existence of an RRQR seems to be closely related to the 
smallest singular values of the submatrices of a matrix whose columns form an 
orthonormal basis for the numerical null space of A. In this section, we show 
that the determinants of these submatrices are alternative parameters which 
allow us to identify the permutation matrix that guarantees an RRQR. In fact, 
we show that the submatrix having the largest determinant in absolute value 
also has a large enough smallest singular value, provided the submatrix is chosen 
from a matrix with orthonormal columns. The following lemma will lead to our 
main theorem. 

Lemma 2.1. Let V E &n,, (n > r) . If 

n=[F~i~epn (17I~erxn) * = [* ]E Pn (*12 E OR 

is a permutation matrix such that Idet(fl2V)l = maxv/E5(V) Idet(V')I, then the 
following inequality holds: 

(2.1) max det G(i) <n-r + 
Ih<e<r detG 

where G = (fl2 V)(fl2VT 
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Proof. Let 5f(V) = {Vl, V2, ..., Vp}, where p = C(n, r) = n!/(n - r)!r!, be 
the set of all different r-by-r submatrices of V. Since rank(V) = r, there exists 
a nonsingular matrix V. E Y(V) such that Idet(V*)l = maxl<i<p Idet(VJ)I #A 0. 

Consequently, there must exist a permutation H - [ri] such that fI2V = V*. 

Let IV =: V, and Q E Rrxr be an orthogonal matrix such that 

VQ = [l] = V 

and J/2] is an upper triangular matrix. 
From II - QTVTIITIVQ = Ir, which is the r-by-r unit matrix, we know 

that V E n r. In particular, the 2-norm of the vector 

SI 

(V) :1 = Sn-r+ = S 
0 

0 

is one. By Lemma 1.6, 

v'n-r+ 1 

We now wish to show that Isn-r+l I = IlsiKo . Since 4T - VQQTVT VV 
the determinant of each r-by-r submatrix of V is equal to the determinant 
of the corresponding r-by-r submatrix of V. Consequently, Idet(V2])l = 

maxl<i<p ldet(Vi)j, where Y(V) = {V1,..., Vp is the set of all r-by-r subma- 
trices of V. Notice that IdetVj2] = Isn-r+lI IdetVJ2](1')I. If Isn-r+lI # 11S1100, 
there must exist si (1 < i < n - r + 1) such that IsiJ I det J/2]1(1')I > Idet f'j21 
this is a contradiction. 

Now we proceed to prove the inequality (2.1). Let G = (2 V)(I2V)T - 

H2VVT'f1 be the r-by-r principal submatrix of V - VfT V ivVTfT at 
the lower-right corner. It is easy to see that det(G) = (det(fl2 n)r+l 
(detf/j2](1'))2, and det(G(1')) = (detJV2]1(1'))2 . Thus we have 

(2.2) det(G(1')) _ 1 
det(G) S2 ?n-r+1. 

Since we can always permute any row of I*2 V to its first row without changing 
its determinant, we can replace G(1') by G(i') in (2.2), and the lemma is 
proved. 5 

Theorem 2.2. For any matrix A E Rmxn (m > n) and any integer r (O < r < 
n), there exists a permutation matrix II E Pn such that the diagonal blocks of 
R= (RI R12 the upper triangular factor of the QR factorization of All with O R22' 
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R11 E jjtrxr, satisfy the following inequalities: 

(2.3) 11R22112 < /r(n - r) +min(r, n - A) 
and 

(2.4) amin(RIi) > ar(A). 

The permutation matrix H is obtained by selecting an (n - r)-by-(n - r) 
submatrix of V2 having the largest determinant in absolute value among all such 
submatrices of V2, and permuting it to the bottom of the matrix I-T V2. Here, 
UTA V is the SVD of A, and V2 is formed by the last (n - r) columns of the 
orthogonal matrix V. 

Furthermore, if A has numerical rank r, then the QR factorization of AH is 
guaranteed to be an RRQR factorization of A. 
Proof. First, assume that H E Pe is an arbitrary permutation such that AH = 

QR is the QR factorization of AlI. 
Let 

(2.5) I [v V2]==[f ]w [ ji W2] 

where W22 E R(n-r)x(n-r) 
According to the C-S decomposition theorem [11, p. 77], 

(2.6) amin(WI1) = Umin((W22) =: P. 

We now wish to determine a lower bound of p when we choose 11 such that 

(2.7) Idet(H12TV2)1= max Idet(V2)I. 
V21EY'(V2) 

Notice that p :# 0 in (2.6) for the choice of II in (2.7). Now, by well-known 
adjoint matrix formulas [13, p. 20], 

i=l i=l 

where G = W22W2T2. From Lemma 2.1, with H as chosen in (2.7), we have 

(2.9) det Gi' < (n - r) m 
lsdnrdet G i) < (n - r)(r + 1) . 

Having thus proved 

(2. 10) P? (n - r)(r + 1)' 

we easily conclude that 

(2.11) P r(n -r+ 1) 

is also true for the same HI chosen in (2.7), since by the C-S decomposition 
theorem we have 

IdetW22I = IdetWiiI = mVax) Idet(V11)I. 
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Thus, inequalities (2.3) and (2.4) are proved by applying Theorem 1.5. The 
final conclusion is immediate from Definitions 1.1 and 1.3. 5 

The proof of Theorem 2.2 makes it clear that the permutation HI which 
guarantees an RRQR factorization of A can also be obtained by selecting an 
r-by-r submatrix of VI having the largest determinant in absolute value among 
all such submatrices of V1 , and by permuting it to the top of the matrix lT 1, 
where the columns of VI are the right singular vectors of A corresponding 
to singular values a, ... , ar . Moreover, according to the C-S decomposition 
theorem, the permutations, obtained by inspecting the values of determinants 
of submatrices of VI or V2 in this way are the same. 

In Theorem 2.2, we have established the following lower bound for the func- 
tion X(n, r) in general: 

X(n , r) = X(n , n - r) > 1 X~n~)=X~~n-r? yr(n-r)+min(r, n-r) 

This bound is sharp in the sense that when r = n - 1 or r = 1 the bound is the 
exact value of x(n, 1) = 1/V4; that is, Corollary 1.7 is a special case of this 
theorem. While there is still room for improvement in other cases, the bound 
is sharp enough for our purpose. 

It is interesting to note the relation between the smallest singular value and 
the absolute value of the determinant of an r-by-r submatrix of a matrix with 
r orthonormal columns. In Theorem 2.2 we actually proved that, when a sub- 
matrix of an orthogonal matrix has maximum determinant in absolute value, 
its smallest singular value must be relatively large. In ?3 we present some com- 
putational results illustrating this fact. 

Finally, we point out that the columns of the matrix V2 may be replaced by 
any orthonormal basis of the numerical null space of A without invalidating 
Theorem 2.2 (see Remark 3). 

As we mentioned in ?2, an RRQR factorization of A can be defined using 
other matrix norms. The following existence theorem for RRQR involves the 
Frobenius norm. 

Theorem 2.3. For any matrix A E Imxn (m > n) and any integer r (O < 
r < n) for which ar(A) :# 0, there exists a permutation matrix H such that 
the diagonal blocks of R = (R , R12 ) the upper triangular factor of the QR 0 R22, 

factorization of AH with R11 E Rrxr, satisfy the following inequalities: 

(2.12) 11R22 IF <? (n - r) (r + 1)ar + (A) , 

(2.13) 11RT1 lI IF < \/(r(n - r + 1 ))/ar(A) . 

Proof. First, assume that H E P1 is an arbitrary permutation such that An = 

QR. Let V be the orthogonal matrix such that 

V 
VT TA V . =2 

L U~~~Cn 

This content downloaded from 129.82.28.144 on Tue, 08 Dec 2015 05:55:04 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


QR FACTORIZATIONS AND THE SINGULAR VALUE DECOMPOSITION 225 

where the ai are the singular values of A with a1 > a2 >. > q,. From 

11 = VTFRTRFITTV 

(2.14) =VTH (RT1 O) (R R 0)i\TV 

RT2 )( R22 ) 

we see that 

T (O RT2 )(O R22) 

Thus, 

(2.15) [ . - W2T2R22R22W22 F ?, 

a2 

where 

(2.16) HTV- HTni 2 2lT ] 

[W21 W22] 

with WI I E lixr 
Now (2.15) can be written as 

r2+a1 W22T W22 1 
- 

RLTR22 ?. 

Here the invertibility of flT V2 = W22 is guaranteed by our choice of n later in 
(2.17). Since the diagonal of a positive semidefinite matrix is nonnegative, we 
have 

(R2T2R22)ii < ((W22 W2T2) _' )ii * ar2+1 (A) 
det(G(i')) 2 (A) n - r, 

det(G)ar(A, i1..n , 

where G = W22W2T2 . The equality above is obtained by invoking well-known 
adjoint matrix formulas [13, p. 20]. 

It follows immediately that 

IIR22II2 < (n - r) max (R T R22) 

maxI<i<n-r(det(G(i'))) 2 
? (n-) - de() ar2+1(A) . 

Applying Lemma 2.1, we know that we can always choose LI E Pn such that 

(2.17) det(1V2) 2 det(JW22) = max(12T1V2) 
'-IEPn 

to make 
maxI<i<n-r(det(G(i'))) < (r + 1). 

det(G) 
Hence, (2.12) is proved. 
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On the other hand, from (2.14) we have 

HTVX2VTf (RrTRii *) 

If we partition flT V as in (2.16), it follows that 
2 C a2 

)WUr2r 2.)w~R~~i 

Consequently, 

RIIRII - WI, (I ., ) lFO 

Ur2 

and, in particular, 
RTl~ U-r2 (WII1 WlT ) ?. 

Therefore, RI, is nonsingular, since ur :A 0. It follows [13, p. 471] that 

2 WlT WTl - R-llR T _ 
0 . 

U2 
I 

11 11 - 

Here again, our final choice of H in (2.19) guarantees IIT VI to be invertible. 
Using Lemma 2.1 and arguments similar to those used to prove (2.12), one can 
also prove that 

(2.18) 11R7112 <r maxI<i<r(det(H(i'))) 1 11 F - ~ det(H) u2A 

where H = W1 l WiT, . 
Applying the C-S decomposition theorem to (2.18), we can easily show that 

det(JW11) = det(FIT VI) = det(FIT V2) = det(W22) for any rI E Pn . Thus, when 
we choose a particular HI E Pn such that Idet(HIV2)I = maxn1p2 Idet(12 V2)1 , 
as was done in proving the inequality (2.12), the same permutation matrix I- 
will also guarantee that 

(2.19) det(FII VI) = max Idet(fII VI) 1. 

By Lemma 2.1, 

(2.20) max ~~~det H(i')<n-r 1 
(2.20) 1<i<r det H - 

Substitution of (2.20) into (2.18) then proves the inequality (2.13). 5 

3. NUMERICAL EXAMPLES 

In this section, we provide some examples to illustrate our existence theorem 
by exhibiting the relations between the various key values we have discussed 
so far. All numerical computations were done on a Sun-3/80, using MATLAB. 
We present two examples: Kahan's example, and a rather general random ma- 
trix. For each example, we construct a matrix with known numerical rank r 
and known right singular vectors corresponding to singular values 1r+I, . .. , un 
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which are near zero. According to Remark 1.2, there is a total of C(n, r) dif- 
ferent permutations we must consider. On the horizontal coordinate axis of 
Figures 1 and 2, each positive integer represents a permutation. For each per- 
mutation H, we exhibit four different values: JJR22 112, amin(RI I) S Idet(2TlV2)j1 
and amin (IITV2) (see (2.3), (2.4), and (2.5)). These four values will be consid- 
ered as functions of the permutations (represented by integers), and they are 
represented by four different curves in the figures. To visualize the relation- 
ship between these four values, we order the permutations so that the value 
of Idet(JII2V2)1 is a monotonically nondecreasing function of the permutations. 
For illustration, the "machine" precision is yu = 0.0001. 

Example 3.1. Let Kn(C) E IRnn be an upper triangular matrix defined by 

1 c -c 

Kn(c) = diag(1, s, sn- 1-c 

where c2 + S2 . 

This is a counterexample given by Kahan [14], which shows that the QR 
factorization algorithm with column pivoting strategy does not always produce 
an RRQR. In Figure 1, we choose A = K50(0.2) to illustrate our theorem. From 
computation we have a50(A) = 0.000091 and a49(A) = 0.41124. It is clear 
that the numerical rank of A should be 49 if u = 0.000 1. Now we consider 
the QR factorization of All, where H E P50. As indicated in Remark 1.2, we 
need only to consider 50 different permutations in order to get the possible 50 
different pairs of values of amin(Rli) (curve (A)) and 1hR22112 (curve (B)). We 
order these permutations such that the value of Idet(flTvj ) = lmin(HTv ) - 

I (1lTV,)0 (curve (C)), where vn is the right singular vector corresponding to 
the smallest singular value of A, is a monotonically increasing function of the 
permutations, when the permutations are numbered by the positive integers on 
the horizontal axis. With the permutations so arranged, it turns out that the 
integer i on the horizontal axis in Figure 1 represents the permutation that 
permutes the (n - i + 1)st column of A to the last column and keeps all other 
columns in their original order. For example, from Figure 1 we see that the 
"most" rank-revealing QR of A is obtained by permuting the first column of 
A to the last column and moving the remaining columns one column to the 
left. In this case, 11R22112 = Ir5O,501 = 0.00017, and amin(R1i) = 0.41124 (the 
corresponding theoretical bounds in Theorem 2.2 are 0.00064 and 0.05816), 
and according to our definition we have an RRQR of A. For this permutation, 
the value of /det(j7TIv) I reaches its maximum, 0.5 5277. It is interesting to note 
that the triangular matrix A itself, represented by 1 on the horizontal axis in 
Figure 1, is the "most" "non-rank-revealing" case among all the 50 cases, where 
11R22112 = Ir50,501 = 5n-1 = 0.36783 and amin(RII) = 0.00011 . 

It is also worth noting that all the curves in Figure 1 are monotonic. Thus, 
when the value of Idet(fl1Tvn)I = Cmin(f2Vn) (curve (C)) increases, the value 
of amin(R1i) (curve (A)) also increases, and the value of 1/R22112 (curve (B)) 
decreases. Therefore, the corresponding QR factorization of AH gradually 
becomes a rank-revealing one. 
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FIGURE 1. Kahan 's example 
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FIGURE 2. Example 3.2 

Example 3.2. Let A E R50X O be given by 

(3.1) A =Q50[] Qi 

where I = diag(2, 2, 2,1, 1, 1 ,y ,uj , t, u) with 4u = 0.0001, and Qn E 
Rnxn (n = 10, 50) are randomly generated orthogonal matrices. For this ex- 
ample, there is a total of 252 permutations represented by the integers on the 
horizontal axis in Figure 2. Again, all the permutations El are so ordered 
that the corresponding value of Idet(lI V2)1 (curve (D)), where the columns 
of matrix V2 are the right singular vectors associated with singular values 
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U6 = = U10 = It, is a monotonically nondecreasing function of the permuta- 
tions represented by integers. Curve (A) in Figure 2 is the value of amin (fl V2), 
curve (C) the value of Umin(RII), and curve (B) the value of 51HR2212. In 
this example, none of the curves is monotonic except curve (D). However, if 
one ignores the local oscillation, these three curves are "globally" monotonic. 
Globally, when curve (D) (I det(fl1 V2) 1) increases, curve (A) (qmin(flT V2)) also 
increases, and the corresponding QR factorization of AHl becomes more rank- 
revealing as a result of the increasing gap between 0min (RI1) and IIR22112. It is 
interesting to note that when the permutation is chosen so that Idet(fII V2) = 

0.24714 reaches a maximum, Omin(1HTV2) = 0.47453 also reaches a maximum. 
(While this result is not always true, we found it to occur very frequently 
indeed.) For this permutation (represented by 252), 1JR22112 = 0.00021 and 
Umin(RII) = 0.56699, while the theoretical bounds in Theorem 2.2 are 0.00054 
and 0.18257, respectively. 

4. CONCLUDING REMARKS 

(1) In this paper, we have proved the following theorem: 

Theorem 4.1. A matrix A E Rmxn (m > n) has numerical rank r if and only 
if there is a permutation HI E Pn such that AHI = QR is an RRQR factorization 
of A. 

Moreover, the permutation HI can be obtained by inspecting the determi- 
nants of certain submatrices in V, whose columns are the right singular vectors 
of A. That is, if any orthonormal basis of the numerical null space of a matrix 
A is known, Theorem 2.2 suggests a completely reliable algorithm to find an 
RRQR factorization of A. Because it is costly, however, this algorithm has 
more theoretical than practical value. 

(2) It is clear that Theorem 2.2 also provides a completely reliable algorithm 
for solving the so-called "subset selection" or "column selection" problem [11, 
p. 571; 10, 20]. In comparison with the algorithm recommended in [11], our 
algorithm is not too expensive, since the first phase of both algorithms is to find 
the SVD (or at least the partial SVD [21]). 

(3) Theorem 2.2 essentially provides the estimation of the largest possible 
gap between the corresponding values of 0min(R11) and 1JR22112 in terms of a 
given gap between any two adjacent singular values of a matrix A, regardless 
of whether the latter gap actually means a "numerical rank" or not. 

APPENDIX. PROOF OF LEMMA 1.8 

Let 3ij and 4uij with (3ij > ,yi) be the squares of the two singular values 
of Vij, the submatrix formed by the ith and jth rows of V E n, 2. Let 
V VT = C. We know that 

(A.1) trace(C) = 2 

and that 

(A.2) E det(C(ij)) = 1, 
1 i<jun 
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where C(ij) = ( " .) are the principal submatrices of C. Clearly, 

(A.3) C(ij) = Vj ViT. 

Thus, we have, for each pair (i, j), 1 < i < j < n, 

(A.4) 3ij + ,Uij = Cii + Cjj, 

(A.5) &ij * ,ij = det(C(ij)). 
From (A.4), (A.5), and (A.2) we have 

(A.6) , ij (Cii + cjj -ij) = 1 
1<i<j~n 

and 

(A.7) 9 sij(cii + cjj - u)= 1. 
1<i<j~n 

If we let xij denote either jUij or 3ij in (A.6) and (A.7), we can rewrite 
these relations as 

(A.8) E (x 1c - 2c) - z (c2 u)2+ 1 = O. 
1<i<j~n 1?i<j~n 

By using (A.1), (A.2), C = CT, and C2 = C it is easy to show that 
Z (C,, + Cjj)2 = E (cl + cj2j) + 2 ciiCjj 

1<i<j~n 1<i<j-n 1<i<j~n 

n 

=(n-1)Zc? +2 1+ Z cj) 
(A.9) i=1 \<1i<ijn/ n n 

=(n- c)Zci.+2-Zc?. +2 
i=1 i=1 
n 

= (n - 2)Z c? + 4. 
i=1 

Applying (A.9), we can rewrite equation (A.8) as 

(A.10) I (xjcij+c3C) 2. (n-2)? 
1?i<jI5n =1 

Define vectors a, x E RC(n, 2) by 

a _(C1I +C22 Cll +C33 Cn-i,n-1 + Cnn) 
- 2 ' 2 ' ' 2 J 

and 
(A.1 1) X = (XI 5, X12, . , Xn-1 ,n) 

where the double subscripts are lexicographically ordered. Then (A. 10) can be 
written as 

(A.12) jjx-al12=r, r= C. 
2 Zc1 
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Consider now the following optimization problem: 

(A.13) min (11alH2- r). 
s.t. c=2 

Applying the Lagrange multiplier method, we have (for fixed i) 

Of 1 1 

aOCii 2 2( (c* nc*I/2* Cij + i]) 

_ V' V7 1 1 2i 

vi__1 Cii 

or [(n - 2)p - q]cii = A - 2p for each i, where 

14 qqc jNj2 

P 2 
5~~~2 112 

From (A.9) we know that (n - 2)p - q $& 0, and (A. 13) attains its minimum at 
cii = 2/n, i = 1, ... , n. The maximum value of (A. 13) is 

(2\2 _ Jy-~ fl(n2)2 v- 

I<i<jn n) 2 1 n 2tn /2+ V'n 

However, we have 

IIXH12 > 11al12 - Ilx - al12 = 1al12- r > vr?, 

and consequently 

xIxI?2 > 2 * X12 
1 (2 _- n- 

2 

for any VE6n,2 such that IIx - aH12= r. Thus, 

(A.14) minlxlo ( > 1 22- n2) 

for any V E Vn,2 such that IIx - aH12 = r. In particular, when x = =ij 
?min (Vij) , (A. 14) is true. 
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