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Ecology, 76(2), 1995, pp. 628-639 
? 1995 by the Ecological Society of America 

ANALYSIS OF SHORT TIME SERIES: CORRECTING FOR 
AUTOCORRELATION' 

JAMES R. BENCE2 
National Marine Fisheries Service, Southwest Fisheries Science Center, Tiburon, California 94920 USA 

Abstract. Short time series are common in environmental and ecological studies. For 
sample sizes of 10 to 50, I examined the performance of methods for adjusting confidence 
intervals of the mean and parameters of a linear regression for autocorrelation. Similar 
analyses are common in econometric studies, and serious concerns have been raised about 
the adequacy of the common adjustment approaches, especially for estimating the slope of 
a linear regression when the explanatory variable has a time trend. Use of a bias-corrected 
estimate of the autocorrelation, either in an adjusted t test or in a two-stage approach, 
outperformed other methods, including maximum likelihood and bootstrap estimators, in 
terms of confidence interval coverage. The bias correction was, however, sometimes awk- 
ward to apply. It was generally better to test for autocorrelation at the 0.5 level and use 
ordinary least squares if the test was not significant, although this pretesting mainly helped 
for weak autocorrelation and small sample sizes. For the best methods, the coverage was 
sometimes still substantially less than the stated 95% when autocorrelation was strong, 
even for sample sizes as large as 50. This was true for estimates of the mean, the regression 
intercept, and, when the explanatory variable had a time trend, the slope. Simulation results 
and an example show that different adjustment methods can produce substantially different 
estimates and confidence intervals. Cautious interpretation of confidence intervals and hy- 
pothesis tests is recommended. 

Key words: autocorrelation; autoregressive; confidence intervals; independence; regression; se- 
rial correlation; statistics; time-series; two-stage estimator. 

INTRODUCTION 

Data consisting of a sequence of observations col- 
lected over time are common and often unavoidable in 
environmental and ecological studies. It is well known 
that when data are collected sequentially in time the 
usual assumption of independence of errors is not guar- 
anteed. The uncritical treatment of such data, as though 
they were a random sample, has been termed "pseu- 
doreplication in time" (Hurlbert 1984). Often auto- 
correlation is positive, so that errors close in time are 
similar. The effect of ignoring positive autocorrelation 
is (1) to produce nominal confidence intervals about 
parameter estimates that are smaller in size than they 
should be, or in a hypothesis testing context to make 
too many Type I errors (e.g., Cochrane and Orcutt 1949, 
Hurlbert 1984); and (2) potentially to produce less ef- 
ficient estimates of parameters than could be obtained 
if the autocorrelation were taken into account (Coch- 
rane and Orcutt 1949). A reasonable approach, es- 
pecially when dealing with the relatively short time 
series of most ecological studies, is to estimate the 
extent of first-order autocorrelation and to adjust es- 
timates and hypothesis tests for the estimated autocor- 

I Manuscript received 19 January 1993; revised 2 June 
1994; accepted 15 June 1994; final version received 8 July 
1994. 

2 Present address: Department of Fisheries and Wildlife, 
Partnership for Ecosystem Research and Management, Mich- 
igan State University, East Lansing, Michigan 48824-1222 
USA. 

relation (e.g., Stewart-Oaten 1987, Carpenter et al. 
1989). This approach has been widely applied in econo- 
metrics, where similar relatively short time series are 
common (e.g., Cochrane and Orcutt 1949, King and 
Giles 1984, Doran et al. 1992), and concerns have been 
raised about the adequacy of the standard approaches. 

Here I review several of the more commonly used 
methods that have been suggested for making this ad- 
justment, and explore the performance of these meth- 
ods, and variants of them, for small to moderate sample 
sizes by Monte Carlo simulation. I consider the special 
but important cases of estimating the mean and the 
parameters of a linear regression with one explanatory 
variable. 

Estimation of the mean from relatively short time 
series is a common goal in environmental assessment 
work and in the analysis of results from unreplicated 
ecosystem-level experiments. In these cases, the mean 
being estimated is often for the differences between a 
"control" and "impact" site (e.g., Millard et al. 1985, 
Stewart-Oaten et al. 1986, Stewart-Oaten 1987, Car- 
penter 1989, 1990, Carpenter et al. 1989, Schroeter et 
al. 1993, Osenberg et al. 1994, Bence et al., in press), 
or candidate sites being considered as locations for a 
development or mitigation project (e.g., California 
Coastal Commission 1991, EPA 1993). Ecological ex- 
amples of the need to estimate regression parameters 
from short time series abound. They range from re- 
gressing abundance or some other variable against time 
to detect temporal trends (Gerodette 1987, Jasby and 
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Powell 1990, Link and Hatfield 1990), to regressing 
estimates of year-class strength or other measures of 
performance of marine fishes and invertebrates against 
environmental variables (e.g., Mearns et al. 1980, Bots- 
ford et al. 1989, Cury and Roy 1989). After presenting 
the simulation results I apply several of the methods 
to two example data sets. 

A key result is that in many situations all of the 
adjustment methods undercorrect for autocorrelation 
by producing confidence intervals with substantially 
less than their nominal coverage. In the econometrics 
literature this result has been well established for the 
slope of a linear regression when the explanatory vari- 
able has a time trend. The results presented here em- 
phasize that this problem can be quite severe for es- 
timating the mean, or for the intercept of a regression, 
whether or not the explanatory variable has a trend. I 
consider approaches that might improve on the con- 
ventional methods, and end with a discussion of some 
promising alternatives. 

BACKGROUND AND ESTIMATORS 

The data consist of an ordered sequence, yi = [i + 
ei, i = 1, 2, . . ., T, where T is the total number of 
times observations were collected, ki is the expected 
value at time i, and the Ei are stochastic errors. With 
no explanatory variables, ki = tt, and for a linear re- 
gression of Y on X, i = R + raxi. For many situations, 
a reasonable model would assume positive autocorre- 
lation that decreases steadily as the time between ob- 
servations increases. An autoregressive process of or- 
der one [AR(1)] is the simplest model that can produce 
this pattern. In this case Ei = Pei_1 + ai, where the ai 
are independent errors with mean zero and variance 
U2a, and the autocorrelation coefficient p is restricted 
to the interval { - 1, 1}, with values greater than zero 
producing positive autocorrelation. For this model the 
correlation between observations k time steps apart is 

k 

Let Pi be an estimate of [Li. The ith estimated residual 
is ri = yi - ji. All but one of the methods I describe 
below for adjusting for autocorrelation use an estimate 
of the autocorrelation coefficient calculated from these 
residuals. The widely used Prais-Winsten estimate of 
the autocorrelation coefficient is 

T 

E i rjiji 
i=2 

P -1(1 

i=2 

Initially I used this as an estimator of the autocorre- 
lation coefficient, except for the maximum likelihood 
approach. A number of variants of this estimator exist 
differing in the way the end points of the series are 
included or excluded from the denominator, and wheth- 
er the estimator is adjusted when the number of com- 
ponents in the numerator differs from the number in 

the denominator. For moderately small samples (10- 
50) and positive autocorrelation, the Prais-Winsten es- 
timator is less negatively biased than other conven- 
tional competitors. An alternative symmetric estimator 
(Dickey et al. 1984) was also tried, with less satisfac- 
tory results. In some experiments I replaced the esti- 
mator for p in Eq. 1 by a bias-corrected estimator sug- 
gested by Doran et al. (1992). The bias-corrected 
estimator is 

= ? (m + 1)(1 + P) + 2p2 
Pt = P +T , (2) 

where m is the order of a polynomial describing the X 
variable. In the case of the mean or regressions against 
an untrended explanatory variable, m was set to zero; 
for regressions against time m was set to one. Whenever 
inadmissible estimates were obtained [i.e., outside (- 1, 
1)], P was set to -0.99 or 0.99. 

For uncorrelated errors, the usual estimate of the 
mean is the sample average, Pi = 1i y/T. Assuming 
normality, its confidence interval is 

ji ? stV,(a/2) 7 (3) 

where s is the usual estimated standard error of the 
mean 

X (y, 2 

T(T- 1) 

and for the desired 100(1 - lx) percent confidence in- 
terval, t is obtained from tables of student's t distri- 
bution using v = T - 1 df. For the regression case, 
estimates of p. and 1 and their standard errors are usu- 
ally obtained using ordinary least squares (e.g., Draper 
and Smith 1981), and confidence intervals are obtained 
from 

0j + st(a/2) (5) 

where 0 = (0,1 02) = ( S i), Sj is the standard error 
for the specified parameter, and v = T - 2. I will call 
these estimators, including the sample mean, ordinary 
least squares (OLS). All the adjusted methods for con- 
structing confidence intervals described below use Eqs. 
3 and 5, differing only in the estimates of the param- 
eters and their standard errors. 

The simplest correction method I call corrected OLS, 
and apply it only to estimating the mean. This method 
still uses the sample average as an estimate of pl, but 
multiplies s by a correction factor k, either by adjusting 
the variance or the effective sample sizes (e.g., Bayly 
and Hammersley 1946, Stewart-Oaten 1986). A priori, 
this corrected OLS method seems a reasonable con- 
tender since the OLS mean has efficiency near what 
can be obtained with the minimum variance unbiased 
estimator (Chipman et al. 1968, Fishman 1972, Mack 
1986). Under the usual assumptions, s is an estimate 
of the standard deviation of y-. We want k so that E(ks) 
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FIG. 1. Correction factors (assuming known autocorre- 
lation) for adjusting the usual standard error of a sample 
mean. Shown are exact correction factors for sample size T 
= 10 and sample size T = 50 and an approximation. 

equals the standard deviation of y- when the Ei = - 

w come from an AR(1) process. A correction factor 
that approximates this for moderate-to-large sample 
sizes is k = [(1 + p)/(l - p)]112, and a correction factor 
for which this holds exactly is 

r ~~~~~~~~1/2 
1 + 28/T 

k= - 28/T(T - 1(6) 

[(T - l)p- Tp2 + pT+1] 
8 = 

(1 - p)2 

(Stewart-Oaten 1986). Fig. 1 gives the approximate and 
exact correction factors (for sample sizes of 10 and 50) 
as a function of p. Fig. 1 is also illustrative of just how 
far from correct s (and thus also confidence intervals) 
can be if the autocorrelation is ignored. Of course, in 
virtually all applications, p is replaced by an estimate. 

A second method of correction is by two-stage es- 
timation (Cochrane and Orcutt 1949). First, p is esti- 
mated from the OLS residuals, and this estimate is then 
substituted for p, acting as though it were known. Es- 
timation of the parameters 0 [0 equals Vw or (Vl, 1)] is 
by generalized least squares, minimizing over 0 

S(0) = (1 - P2)[yL - f(0, xl)]2 

T 

+ E {[yi - f(0, X)] - P[Yi- 
i-2 

- f(O, Xi_)]}2, (7) 

where f(0, xi) is Ai or w + raxi for estimating the mean 
or regression parameters, respectively. These estimates 
and their standard errors can be obtained by doing an 
ordinary least squares regression on a transformed Y 

and X. A clear description of this approach is given by 
Seber and Wild (1989). 

The iterated two-stage estimator is a variant of the 
above estimator. The estimate of p is recalculated based 
on residuals about the two-stage estimates of the f(O, 
xi)'s, and then an updated estimate of 0 is produced by 
substituting this new estimate of p into the generalized 
least squares procedure. These steps are then iterated 
until the estimate of p converges. This procedure finds 
the values of 0 and p that jointly minimize Eq. 7, be- 
cause the Prais-Winsten estimate of autocorrelation is 
the value of P that minimizes Eq. 7 for a given 0. 

Estimation of 0 and the associated standard error can 
also be done by maximum likelihood. The log likeli- 
hood equation, assuming normality, is 

L(0, p, U2) = cost - -log &2 + Ilog(1 - p2) L(O, E =const 
-2 E 2 

1 
- S(0, p), (8) 

(2u ) 

with S(0, p) defined as in Eq. 7, now with p replacing 
P and treated as a parameter, and the maximization is 
over 0, p, and Ue. I maximized this log likelihood equa- 
tion using a standard quasi-Newton procedure. (Note 
that a concentrated likelihood estimation approach can 
be more efficient for linear models; see the discussion 
in Seber and Wild [1989: 316-317].) Asymptotically 
valid estimates of the standard errors for 0 were ob- 
tained from the Hessian matrix (e.g., Seber and Wild 
1989). Note that the difference between the iterated 
two-stage and maximum likelihood approaches is in 
the log(1 - p2) term of Eq. 8. This term arises because 
the maximum likelihood estimator treats the first ob- 
servation as coming from its stationary distribution, 
while in the estimation of p the iterated two-stage ap- 
proach takes the first observation as given. The log(1 
- p2) term enforces stationarity and acts to bound the 
maximum likelihood estimate away from - 1 and + 1. 

Another potential method for producing confidence 
limits of the appropriate size is the use of computer- 
intensive resampling procedures such as Monte Carlo 
simulations, the jackknife or the bootstrap (see Crow- 
ley 1992 for a review). Carpenter et al. (1989) suggest 
estimation of autocorrelation followed by a Monte Car- 
lo approach for ecological time series. Freedman and 
Peters (1984) discuss the application of the bootstrap 
in a multiequation time series context, and in their ap- 
plication the resulting confidence intervals were much 
closer to correct than those obtained from a two-stage 
estimator. Efron and Tibshirani (1986) illustrate an ap- 
plication of the bootstrap procedure to an autoregres- 
sive process. Rayner (1990) showed that the bootstrap 
worked well for determining P values for hypothesis 
tests on the autocorrelation coefficient of an AR(1) pro- 
cess, even when sample sizes were quite small. The 
key feature of applying the (ordinary) bootstrap to a 
potentially autocorrelated time series is that residuals 
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FIG. 2. Standard error of estimated coverage of confi- 
dence interval based on 1000 replicates, as a function of the 
actual coverage of the confidence interval. 

from the time series model (which are asymptotically 
independent and identically distributed) are resampled, 
not the original autocorrelated observations. 

MONTE CARLO EXPERIMENTS 

The true size of nominal 95% confidence intervals 
for the above methods was explored in several exper- 
iments. In most experiments T was set at 10, 25, and 
50, and for each T. p took values of 0, 0.1, 0.3, 0.5, 
0.7, and 0.9. One thousand data sets were generated in 
each case. For this number of replications the standard 
error of the estimated coverage is 0.7% when the cov- 

erage is 95%, and the standard error of the estimated 

coverage for 1000 replications is plotted as a function 
of the coverage in Fig. 2. In each case y, was generated 
from its stationary gaussian distribution [i.e., with 
mean zero and variance U2,/(l 

- 
p2)] . The yi, i > 1, 

were generated from the AR(1) process yi = PYi-I + 

aj, where the ai are independent gaussian errors with 
variance U2a- 

All simulations were done in the Gauss statistical 
simulation language. Where feasible, routines were 
checked against hand-calculated values. Other quan- 
tities (e.g., maximum likelihood and iterated two-stage 
estimates) were compared with standard output from 
the SAS autoreg procedure (SAS Institute 1984). To 
make these comparisons with SAS output for the two- 

stage and iterated two stage methods, I modified my 
programs to replace the Prais-Winsten estimate of the 
autocorrelation with the Yule-Walker estimate used by 
SAS, which differs from Eq. I by including the first 
and nt' terms in the denominator sum. For small sam- 

pies this alternative estimator is substantially more bi- 
ased, and is not recommended (see Results and Park 
and Mitchell [1980]). 

The first experiment evaluated the corrected OLS and 
maximum likelihood methods for estimating the sam- 
ple mean. A second experiment evaluated the two-stage 
and iterated two-stage estimators. In practice, often 
OLS is first fit, and the residuals are tested for signif- 
icant autocorrelation, with OLS being replaced by a 
"corrected" method only when significant autocorre- 
lation is detected. Consequently, variants of the meth- 
ods following this approach were also examined. Au- 
tocorrelation was tested for using the Durbin-Watson 
statistic Q, with P values determined by matching the 
first two moments of the linear transformation a + bQ 
to those of a beta distribution (Henshaw 1966, Durbin 
and Watson 1971). Pretesting for autocorrelation was 
done at both the conventional level of 0.05 and at 0.50 
(Fomby and Guilkey 1978), and when the autocorre- 
lation was declared statistically significant the OLS 
method was replaced by the specified method. 

In a third experiment, bootstrap estimates of confi- 
dence intervals for the mean were evaluated using only 
the two-stage method. One thousand sets of data were 
generated, and for each data set 1000 bootstrap samples 
were taken to estimate the confidence interval. Here I 
used the percentile method to construct confidence in- 
tervals, rather than the more involved BC or BCa meth- 
ods, because neither bias nor skewness are significant 
problems for the estimate of the mean (see Efron and 
Tibshirani 1986). Because of the computationally in- 
tensive nature of bootstrapping simulation results (106 
estimates per case), I only examined the T = 10, p = 
0.7 case as an example; this case was chosen because 
there was serious undercoverage in experiment one. 

Results of the first two experiments, and results of 
other studies (e.g., King 1986, Wilson 1989, Doran et 
al. 1992, Al-Subhi 1993) suggest that bias in estimation 
of p can cause problems. Therefore, in a fourth exper- 
iment, corrected OLS, two-stage, and iterated two- 
stage estimators of the mean were evaluated using a 
bias-corrected estimator of p. The bias-corrected 
two-stage estimator was suggested by Doran et al. 
(1992). 

Experiments five through eight examined the cov- 
erage of confidence intervals of intercept and slope 
estimates from a linear regression. In the fifth and sixth 
experiments, regressions were against "time" as rep- 
resented by the index i associated with each yi. This 
was chosen as a strongly trended explanatory variable. 
In the fifth experiment I used the same suite of esti- 
mators as in experiments one and two (excluding the 
corrected OLS method), and in the sixth experiment I 
used the same estimators as in experiment four. Ex- 
periments seven and eight were the same as five and 
six, but now the explanatory variable was untrended 
"white noise," i.e., independent values from a normal 
distribution. For all the regression experiments the true 
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TABLE 1. Estimated coverage (%) of nominal 95% confidence intervals based on 1000 simulation trials, for each combination 
of sample size (j), pretest level (PT), and autocorrelation (p). Methods are: ordinary least squares (OLS), corrected OLS 
(Corr. OLS), two-stage estimator (2-stage), iterated two-stage estimator (I. 2-stage) and maximum likelihood (ML). PT 
N means no pretest was done. 

Autocorrelation (p) 

Pre- T= 10 T= 25 T= 50 

Method test 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9 

Corr OLS N 90 90 87 84 77 56 95 93 90 90 83 73 96 96 94 92 90 83 
2-stage N 91 91 88 84 74 52 95 93 91 85 83 70 95 94 94 92 89 76 
1. 2-stage N 91 91 88 84 75 53 95 93 91 85 83 71 95 94 94 92 89 77 
ML N 89 89 86 83 74 54 94 92 91 89 83 72 95 95 96 93 89 83 

Corr OLS 0.5 95 94 91 85 77 57 97 94 91 90 91 73 97 96 94 92 91 83 
2-stage 0.5 95 95 90 85 74 52 97 95 91 89 83 70 96 94 95 92 89 76 
1. 2-stage 0.5 95 95 90 85 75 53 97 95 91 89 83 71 96 94 96 92 89 77 
ML 0.5 95 94 89 84 75 55 96 94 91 88 90 72 96 96 96 93 89 83 

Corr OLS 0.05 95 95 88 82 72 55 94 89 90 83 83 73 96 96 94 92 90 83 
2-stage 0.05 95 96 90 85 74 52 94 89 91 87 83 70 96 96 91 92 89 76 
I. 2-stage 0.05 95 96 90 85 75 53 94 90 91 87 83 71 96 96 91 92 89 77 
ML 0.05 95 95 88 88 72 53 94 89 88 82 82 77 96 96 95 92 89 83 

slope was zero, i.e., Y values were generated with no 
underlying relationship to the explanatory X. 

RESULTS 

Confidence intervals for the mean 

As expected, the estimated coverage (i.e., the percent 
of the time the confidence interval contained the true 
value) of the OLS confidence intervals of the mean was 
near 95% for p = 0, and decreased as p increased, to 
values near 30% for p = 0.9 and sample sizes of 10 
or 25 (Table 1). Of more interest is the coverage of the 
methods that "correct" for autocorrelation. In the pres- 
ence of moderate-to-high autocorrelation, all these 
methods used in experiments 1 and 2 produced con- 
fidence intervals with substantially less than the 95% 
nominal coverage (Table 1). Even for sample sizes of 
50, coverage fell below 90% for p = 0.9. Pretesting 
led to true coverage nearer 95% for small sample sizes 

TABLE 2. Means of 1000 estimates of p (with no pretesting) 
associated with different methods of estimating [L, for each 
combination of sample size (F), and autocorrelation (p). 
Methods are: P based on ordinary least squares residuals 
(OLS), P based on iterated two-stage residuals (I. 2-stage), 
and P estimated by maximum likelihood (ML). Note that 
the corrected OLS and two-stage method use the OLS es- 
timate of p. 

Autocorrelation (p) 

T Method 0 0.1 0.3 0.5 0.7 0.9 

10 OLS -0.11 -0.04 0.09 0.24 0.37 0.48 
I. 2-stage -0.12 -0.05 0.10 0.24 0.47 0.48 
ML -0.11 -0.04 0.09 0.25 0.38 0.50 

25 OLS -0.02 0.05 0.20 0.39 0.56 0.73 
I. 2-stage -0.03 0.07 0.23 0.38 0.58 0.74 
ML -0.03 0.05 0.20 0.39 0.56 0.75 

50 OLS -0.02 0.06 0.24 0.43 0.64 0.82 
I. 2-stage -0.01 0.07 0.27 0.45 0.64 0.82 
ML -0.02 0.08 0.27 0.44 0.64 0.82 

and mild autocorrelation and worked best at the 0.50 
level, but the improvement was only modest. The un- 
dercoverage was quite similar for all estimators but 
OLS, and in all but a few cases the small differences 
(excluding OLS results) can be reasonably attributed 
to chance (compare Fig. 2 and Table 1). 

Part of the cause for undercoverage is that all the 
estimates of p are biased downward, with the bias being 
stronger for smaller sample sizes and stronger auto- 
correlation (Table 2). Thus we are tending to "under- 
correct." The situation is more complex than simply 
underestimating p, since the estimates vary about their 
expected value, and for positive autocorrelation are 
skewed to the left (e.g., Fuller 1976, Fig. 3a). To il- 
lustrate how the undercorrection comes about, I present 
results from the corrected OLS estimator for one case 
(p = 0.7, T = 25) in greater detail. Fig. 3a gives the 
distribution of estimated autocorrelations. A majority 
of estimates are less than the true value, and there is 
a substantial skew in the distribution. 

These two properties of the distribution contribute 
to the estimated bias. The underestimates of p lead to 
undercorrection (Fig. 3b), so the majority of estimated 
"correction factors" are less than the "true" correction 
factor [i.e., the value k so that E(ks) = a]. Note that 
the distribution of correction factors is skewed to the 
right. This reversal in skew occurs because k is an 
accelerating function of p (Fig. 2). The assumption un- 
der which the confidence intervals are constructed is 
that (p, - pi)/&v = milks follows a t distribution on T 

- 1 df. The effect of the frequent undercorrection's is 
to make the tails of the distribution of Auks heavier 
than the assumed t distribution (Fig. 3c), and this is 
what leads to the undercoverage of the confidence in- 
tervals. In this example, large overcorrections are not 
common enough to produce a noticeable increase in 
the frequency near zero. 
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TABLE 3. Estimated coverage (%) of nominal 95% confi- 
dence intervals using bias-corrected methods based on 1000 
simulation trials, for each combination of sample size (I), 
and autocorrelation (p). Shown are results for a bias-cor- 
rected variant of corrected OLS estimator (B. C. OLS), the 
bias-corrected two-stage estimator (B. 2-stage), and the 
bias-corrected iterated two-stage estimator (BI. 2-stage). 

Autocorrelation (p) 

T Method 0 0.1 0.3 0.5 0.7 0.8 

10 B. C. OLS 92 90 91 87 81 82 
B. 2-stage 97 96 93 89 85 73 
BI. 2- stage 97 96 93 89 87 77 

25 B. C. OLS 94 94 91 91 91 95 
B. 2-stage 96 96 94 93 90 83 
BI. 2-stage 96 96 94 93 90 85 

50 B. C. OLS 93 94 93 93 95 99 
B. 2-stage 96 96 93 93 93 87 
BI. 2-stage 96 96 93 93 93 88 

In a third experiment a bootstrap estimator of the 
confidence interval was applied only to the two-stage 
method for p = 0.7 and T = 10, with a pretest at the 
0.5 level. The percentage of the bootstrap confidence 
limits that overlapped zero (the true value of iA) was 
52.6%, which was substantially lower than the cov- 
erage of the confidence intervals for the conventional 
two-stage method (Table 1). The bootstrap procedure 
used a conventional estimate of the autocorrelation, and 
thus was not different than conventional approaches 
with respect to bias of autocorrelation estimates. An 
additional problem for the bootstrap is that for small 
samples the variability of the resampled residuals about 
the fitted model is less than the variability of the actual 
random errors. 

In experiment 4 I evaluated methods using a bias- 
corrected estimate of the autocorrelation. As in exper- 
iments 1 and 2, each method used in experiment 4 was 
done without a pretest, and with pretests at the 0.05 
and 0.5 levels. Results with and without pretests were 
similar, with slightly better coverage for small sample 
sizes and modest autocorrelation when a pretest was 
used. For the brevity I report here (Table 3) the results 
of the estimators with a 0.50 pretest. 

The use of the bias correction was effective in bring- 
ing the actual coverage of the confidence intervals for 
the mean closer to the nominal level for each method 
(Table 3), but none of the methods completely solved 
the problem of undercoverage for sample sizes of 25 
or less. At times, the procedure can be awkward to 
apply; for short time series and strong autocorrelation 
there is a reasonable probability that the bias-corrected 
estimates of p will cross the 1.0 bound. The arbitrary 
value (0.99) these estimates were set to in the simu- 
lations greatly influences the size of the confidence 
intervals. It might be best to conclude only that the 
confidence bounds are wide but not well estimated in 
such cases. As a practical matter, for most short time 
series it might not matter much whether p is set to 0.99 
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TABLE 4. Estimated coverage (%) of nominal 95% confidence intervals for intercept (p,) and slope (1) parameters (Par.) 
of regressions vs. time based on 1000 simulation trials, for each combination of sample size (1), and autocorrelation (p). 
Methods are: iterated two-stage estimator (I. 2-stage), bias-corrected two-stage estimator (B. 2-stage), bias-corrected iterated 
two-stage estimator (BI. 2-stage), and bias-corrected iterated two-stage estimator with a pretest at the 0.5 level (PBI. 
2-stage). 

Autocorrelation (p) 

T= 10 T= 25 T= 50 

Method Par. 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7.- 0.9 0 0.1 0.3 0.5 0.7 0.9 

1. 2-stage p 87 87 81 77 67 49 93 92 88 89 79 60 92 93 91 90 86 69 
B. 2-stage p 89 88 87 82 75 69 93 93 93 90 86 76 94 95 94 93 91 85 
BI. 2-stage p, 89 89 88 85 79 77 93 93 93 90 87 82 94 95 94 93 92 87 
PBI. 2-stage p. 97 94 92 88 81 77 95 95 94 91 87 82 95 95 94 93 92 87 

1. 2-stage 1 87 87 81 78 73 58 92 92 89 84 81 64 92 93 91 90 86 69 
B. 2-stage 1 90 89 88 83 78 69 93 93 92 91 86 79 94 95 94 93 92 85 
BI. 2-stage 1 90 89 88 85 81 77 93 93 92 92 88 84 94 95 94 93 92 88 
PBI. 2-stage 1 96 95 92 88 82 77 96 95 93 92 88 84 96 96 94 93 92 88 

or 0.9999, because in either case the confidence bounds 
will be so broad that little could be claimed on the 
basis of the estimate. 

No one bias-corrected estimator performed best in 
all situations (Table 3). The bias-corrected variants of 
the two stage and iterated two-stage estimators per- 
formed similarly and, for sample sizes of ?25 and mod- 
erate autocorrelation, there was a tendency for them to 
outperform the bias-corrected variant of corrected 
OLS. This difference, however, was not large. For 
strong autocorrelation (0.9), the bias-corrected variant 
of corrected OLS produced higher coverage than the 
other methods, and for a sample size of 50 actually had 
coverage substantially above 95%. 

Confidence intervals for 
regression parameters 

Park and Mitchell (1980) previously evaluated the 
two-stage, iterated two-stage, and maximum likelihood 
estimators for the regression model, including regres- 
sion against time. They found that the iterated two- 
stage estimator outperformed the others to a modest 
degree, a result that my simulations agree with. Con- 

sequently, among these methods results are presented 
only for the iterated two-stage estimator. Results are 
also presented for the bias-corrected two-stage and 
bias-corrected iterated two-stage estimators. These re- 
sults are presented without pretests to facilitate com- 
parisons with results of Park and Mitchell (1980) and 
Doran et al. (1992). Results are also presented for the 
bias-corrected iterated two-stage estimator with a 0.50 
pretest since this was the best method overall for 
matching claimed coverage of the confidence intervals. 

In regressions against time, even for the best method, 
for T = 10 the actual coverage of confidence intervals 
of the intercept fell below 85% for p - 0.7 (Table 4). 
For T = 25 the coverage fell below 85% at p = 0.9, 
and for T = 50 coverage fell below 90% when p = 
0.9. The results were similar for estimates of the slope 
(Table 4). Modest improvement was obtained by pre- 
testing. 

For regressions against untrended white noise, the 
results for the intercept were much the same as for the 
regression against time, and again there was substantial 
undercoverage (Table 5). Again the bias-corrected it- 
erated two-stage estimator with a pretest at the 0.5 level 

TABLE 5. Estimated coverage (%) of nominal 95% confidence intervals for intercept (p.) and slope (!) parameters (Par.) 
of regressions vs. untrended "noise" based on 1000 simulation trials, for each combination of sample size (1), and 
autocorrelation (p). Methods are: iterated two-stage estimator (I. 2-stage), bias-corrected two-stage estimator (B. 2-stage), 
bias-corrected iterated two-stage estimator (BI. 2-stage), and bias-corrected iterated two-stage estimator with a pretest at 
the 0.5 level (PBI. 2-stage). 

Autocorrelation (p) 

T= 10 T= 25 T= 50 

Method Par. 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9 

1. 2-stage p. 89 91 84 85 76 56 93 91 92 90 86 63 94 94 93 92 89 78 
B. 2-stage p. 91 92 93 86 79 67 93 94 91 93 86 78 93 94 95 92 90 85 
BI. 2-stage p. 91 93 94 88 84 76 93 94 91 93 89 84 93 94 95 93 92 88 
PBI. 2-stage p. 96 96 95 89 85 77 95 95 92 93 89 84 96 95 95 93 92 88 

1. 2-stage 1 90 90 91 94 96 97 93 94 92 95 95 96 94 94 95 95 96 95 
B. 2-stage 1 91 92 90 95 95 94 94 94 93 95 95 95 94 95 94 96 95 94 
BI. 2-stage 1 89 92 89 94 94 94 94 93 93 95 95 94 94 95 94 96 95 94 
PBI. 2-stage 3 91 92 91 95 95 94 95 94 93 95 95 94 95 95 94 96 94 94 
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was best at matching nominal coverage. In contrast, 
the actual coverage of confidence intervals of the slope 
were generally close to the stated coverage for all the 
estimators shown in Table 5. The only problem appears 
to be a moderate amount of undercoverage for T = 10 
when. the autocorrelation was low. 

Efficiency 

In general, the efficiency of parameter estimates, as 
well as the true coverage of their nominal confidence 
intervals, should play a role in choosing among esti- 
mators. Relative efficiency of the estimators considered 
here, as measured by the ratio of the root mean square 
error (RMSE) of the estimate to the RMSE for the OLS 
estimate, did not differ substantially from 1.0 in most 
cases. The one exception was for slope estimates in 
regressions against trendless white noise. Here, the 
relative efficiency of both the conventional and bias- 
corrected iterated two-stage estimators increased sub- 
stantially above 1.0 for sample sizes >25 and auto- 
correlation stronger than 0.7 (Table 6). 

ANALYSIS OF EXAMPLE DATA SETS 

Two contrasting examples were selected. The first 
example (Fig. 4a) is for the case of estimating the mean, 
and comes from baseline sampling of large benthic 
invertebrates living in the shallow rocky subtidal zone 
offshore from the San Onofre Nuclear Generating Sta- 
tion in southern California (Schroeter et al. 1993). The 
data are on the relative abundance of the white sea 
urchin (Lytechinus anamesus), and come from nine sur- 
veys that were done at =3-mo intervals prior to the 
start of operations by the generating station's two new 
units in mid-1983. Each data point represents the dif- 
ference in log-transformed density (numbers per unit 
area) between a Control site (Barn kelp forest -11 km 
from the station) and an Impact site (the upcoast portion 
of San Onofre kelp forest). The idea was to estimate 
the mean difference and its standard error or confidence 
interval prior to any influence of the new units. This 

TABLE 6. Efficiency relative to OLS (ordinary least squares) 
estimator of two candidate estimators of the slope (f) of a 
linear regression against trendless "noise" for each com- 
bination of sample size (I) and autocorrelation (p). Relative 
efficiency is defined by the ratio of the root mean square 
error (RMSE) of the OLS estimator to the RMSE of the 
candidate estimator. The candidate estimators are the it- 
erated two-stage estimator (I. 2-stage) and the bias-cor- 
rected iterated two-stage estimator (BI..2-stage). 

Autocorrelation (p) 

T Method 0 0.1 0.3 0.5 0.7 0.9 

10 I. 2-stage 0.98 0.92 0.99 1.11 1.15 1.21 
BI. 2-stage 0.89 0.92 0.98 1.12 1.19 1.62 

25 I. 2-stage 0.98 0.98 1.08 1.20 1.74 3.18 
BI. 2-stage 0.95 0.98 1.04 1.14 1.49 1.82 

50 I. 2-stage 1.00 0.99 1.08 1.27 1.65 3.45 
BI. 2-stage 0.98 0.98 1.04 1.29 1.53 2.16 
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FIG. 4. Two example data sets. (a) The difference in log- 
transformed density (numbers per square metre) of white sea 
urchins between an impact site (upcoast San Onofre kelp 
forest) and a potential control site (Barn kelp forest) for nine 
surveys (Schroeter et al. 1993). (b) The relationship between 
catch per unit effort (catch biomass per trap) and cumulative 
biomass (kilograms) of removals from a population of cari- 
dean shrimp (Ralston 1986). As a continuity correction, cu- 
mulative removals on day i are defined as including half the 
removals on the ith day (see Ralston 1986). 

mean difference then could serve as a basis for com- 
parison with differences observed after the new units 
began operating. The underlying rationale for this ap- 
proach is described in the context of a time series pro- 
cess by Stewart-Oaten et al. (1986). 

An important lesson emphasized by the analysis of 
this data set is that although it is important to adjust 
for autocorrelation, such adjustments can be difficult 
and problematic when time series are quite short and 
autocorrelation is strong. 

For this example, a reasonable procedure based on 
the simulations is to use the bias-corrected two-stage 
estimator after a pretest at the 0.5 level. In this case 
there was strong evidence for positive autocorrelation. 
The estimated autocorrelation (p) based on the OLS 
residuals was 0.70 and the P value for the Durbin- 
Watson test was 0.0001. The final estimate of auto- 
correlation after bias correction exceeded 1.0 (1.04) 
and was set to 0.99. Table 7 gives the estimated means 
and 95% confidence intervals from the bias-corrected 
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TABLE 7. Parameter estimates and nominal 95% confidence 
intervals for two example data sets. Methods are: ordinary 
least squares (OLS), two-stage (2-stage), bias-corrected 
two stage (B. 2-stage), and the bias-corrected variant of the 
iterated two-stage estimator (BI. 2-stage). 

Parameter Method Confidence interval 

Sea urchin mean example (Schroeter et al. 1993) 
p. OLS -1.83 ? 1.36 

2-stage -2.40 ? 3.25 
B. 2-stage -3.41 ? 26.26 

Shrimp regression example (Ralston 1986) 
p. OLS 3.33 ? 0.77 

2-stage 3.35 ? 0.65 
BI. 2-stage 3.35 ? 0.66 
OLS -0.0019 ? 0.0015 
2-stage -0.0020 ? 0.0012 
BI. 2-stage -0.0020 ? 0.0012 

two-stage estimator (using p = 0.99) and, for compar- 
ison, from the widely used OLS and conventional two- 
stage estimators. The results show that the choice of 
estimation method strongly influences both the point 
estimate and the size of the confidence interval, with 
the bias-corrected variant of the two-stage method hav- 
ing a much larger confidence interval than the other 
methods. 

As part of a simulation procedure, setting estimates 
of p exceeding 1.0 to an arbitrary value like 0.99 seems 
reasonable. This becomes more awkward during the 
analysis of a real data set. Quite different confidence 
intervals would be obtained if different arbitrary val- 
ues, say 0.999 or 0.9999, were used instead. However, 
the simulation results show us that falling back on the 
conventional two-stage estimator is likely to lead to 
greater undercoverage. In spite of the awkwardness in 
this application, the bias correction results lead to the 
conclusion that the confidence interval is poorly es- 
tablished, and potentially should be much broader than 
is suggested by the conventional estimators. 

The second example data set comes from intensive 
experimental removals from a small isolated population 
of caridean shrimp in the Mariana Archipelago (Ralston 
1986). Removals were done by trapping over a 15-d 
period, and data on catch biomass per unit effort 
(CPUE), i.e., per trap, and total removals were col- 
lected each day (Fig. 4b). The aim of the experiment 
was to estimate catchability of the gear being used, and 
to estimate total population biomass. The analysis fol- 
lows the Leslie method (see Ricker 1975). This method 
is based on the assumption that expected CPUEj = qBj 
= q(BO - Re), where q is catchability, Bi is the biomass 
at time i, Bo is the initial biomass, and Ri are the re- 
movals up to time i. For the estimated regression equa- 
tion E(CPUEj) = fi + f3R,, estimates of q and Bo are 
given by -I, and -f/J, respectively. In this experi- 
ment, the cumulative removals (R) increased approx- 
imately linearly over time, and thus the explanatory 
variable is strongly trended. A value of m = 1 was 

used in the bias correction methods. In contrast with 
the first example, there is no evidence for positive au- 
tocorrelation in this case. The estimated autocorrelation 
was -0.19 for OLS, and -0.17 for the bias-corrected 
iterated two-stage approach. The Durbin Watson P val- 
ue was 0.64. It is reasonable to use OLS here, because 
the pretest was not significant at the 0.5 level. If a 
correction method were used, the bias-corrected variant 
of the iterated two-stage estimator would be the choice 
because of its relatively good performance in the sim- 
ulations. These estimates and confidence intervals, 
along with a conventional two-stage estimate for com- 
parison, were all similar (Table 7). In spite of this lack 
of sensitivity to estimation method, the simulation re- 
sults suggest that the confidence intervals need to be 
interpreted cautiously. 

DISCUSSION 

Ignoring positively autocorrelated errors and using 
the usual confidence intervals (or hypothesis tests) can 
lead to serious undercoverage, or inflated Type I error 
rates. This is well known, although as Hurlbert (1984) 
pointed out, it is a problem that is often ignored. Per- 
haps more disturbing is that reasonable methods to ad- 
just confidence intervals and tests often undercorrect 
for the problem, especially when sample sizes are 
small. The problem appears, in part, to be related to 
bias in the estimation of the autocorrelation coefficient. 
This general result is well known in the econometric 
literature, but is not as well known to ecologists. 

Of the methods evaluated here, approaches using 
bias-corrected estimates of autocorrelation had true 
coverage closest to the nominal 95%. When autocor- 
relation was strong, the best methods still displayed 
substantial undercoverage, even for sample sizes of 25- 
50. The only exception was for estimates of the slope 
when the explanatory variable was untrended white 
noise. Doran et al. (1992) provide a theoretical expla- 
nation for this exception. 

For very small sample sizes (on the order of 10) and 
strong autocorrelation, the bias correction approach can 
be awkward because corrected estimates of autocor- 
relation will frequently be greater than 1.0. In such 
cases, the reality is that not only is there great uncer- 
tainty associated with the parameter estimates but also 
with their standard errors and confidence intervals. 

As noted above, concern about undercorrection by 
standard "corrected" methods has been repeatedly ex- 
pressed in the statistical and econometric literature. 
When Cochrane and Orcutt (1949) introduced a variant 
of the two-stage estimator, they pointed out that, bias 
in estimation of the autocorrelation coefficient limited 
the applicability of the method; they in fact speculated 
on the use of a bias correction method. For a number 
of years, the warning of Cochrane and Orcutt was large- 
ly ignored, as the two-stage estimator became a stan- 
dard method for fitting regressions to time series. Since 
then, many papers have discussed the bias of estimated 
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autocorrelation and speculated on the implications for 
confidence intervals and hypothesis tests (e.g., Kendall 
1954, Marriot and Pope 1954, Kobayashi 1985, Sha- 
man and Stine 1988). There have also been a number 
of direct examinations of the validity of confidence 
intervals for the standard methods used to analyze au- 
tocorrelated data, mostly in a regression context (e.g., 
Nakamura and Nakamura 1978, Park and Mitchell 
1980, Griffiths and Beesley 1984, King and Giles 1984, 
Doran et al. 1992, Al-Subhi 1993). 

The results of this study are not the final word on 
the best way to deal with autocorrelation, and this re- 
mains an active area of research. As pointed out by 
Fomby and Guilkey (1978), discussed by Doran et al. 
(1992), and illustrated here, the performance of an es- 
timator can depend upon the type of explanatory vari- 
able (e.g., untrended, trended, or correlated in time). 
Furthermore, there are many other ways to construct 
confidence intervals in addition to those used here. 

Two promising (and related) alternative approaches 
are conditional marginal likelihood (CML) (e.g., Wil- 
son 1989) and Bayesian methods (e.g., Severini 1993). 
For CML, the autocorrelation coefficient with the max- 
imum of the marginal likelihood is used as an estimate 
of p in a two-stage approach. Marginal likelihood has 
been advocated as a means for treating nuisance pa- 
rameters and reducing bias in parameters of interest 
(Kalbfleisch and Sprott 1970). Doran et al. (1992) sug- 
gested using the mean of the Bayesian posterior dis- 
tribution as an estimate of the autocorrelation in a two- 
stage approach. This is related to CML because the 
Bayesian posterior distribution is proportional to the 
marginal likelihood (e.g., Levenbach 1972). A more 
fully Bayesian approach is to determine the Bayesian 
posterior density of the parameter of interest (e.g., the 
mean or regression slope), and treat the 100(1 - ()% 
posterior density interval as though it is a confidence 
interval. 

Al-Subhi (1993) examined CML and this "fully" 
Bayesian approach along with three other methods, 
only one of which (maximum likelihood) overlaps with 
the methods used here. He examined the performance 
of the methods for estimating the mean, the slope of a 
regression against time (t), and in a quadratic regres- 
sion, the slope against t2. Of the methods he considered, 
conditional marginal likelihood (CML) and the Baye- 
sian method worked best in producing correct cover- 
age. He recommended the conditional marginal like- 
lihood method because it was computationally less 
intensive. 

Comparison of the results in this paper with those 
of Al-Subhi (1993) for overlapping sample sizes and 
autocorrelation indicates that the CML method does 
not have as good coverage properties as the best pro- 
cedures examined here for estimating the mean. In con- 
trast, for estimating the slope of a regression the CML 
procedure appears generally superior. Al-Subhi does 
not report results for the intercepts of his regressions. 

The CML method appears a promising approach, and 
further work and comparisons are needed. It has an 
advantage over the bias correction approach in that the 
order of a polynomial does not need to be specified for 
the explanatory variable. 

Although Al-Subhi's (1993) results show that the 
Bayesian estimator provides little benefit in terms of 
confidence interval coverage over CML for the situa- 
tions he examined, it remains a viable approach. It has 
the advantage of avoiding autocorrelation estimates 
that end up at the bound +1. In cases where prior 
information on the likely strength of autocorrelation is 
available or can be assumed, the Bayesian approach 
would likely prove an even stronger contender. 

In conclusion, confidence intervals estimated for the 
mean or regression parameters from a short time series 
should be regarded as only approximate, even in the 
best case. The results shown here and in other studies 
suggest that errors will often be in the direction of 
undercoverage. In all the simulations I assumed (cor- 
rectly) that the real model was an autoregressive pro- 
cess of order one, and thus the undercoverage of the 
confidence intervals was not related to identification of 
the error model. Most practitioners recognize that ac- 
tual correlation structures will often be more complex, 
and use the first-order corrections as approximations. 
The effect of this approximation on confidence interval 
coverage was not evaluated here. 
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