Journal article Open Access

Assessing the Vertical Distribution of Convective Available Potential Energy

Blanchard, David O.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/publicdomain/zero/1.0/legalcode</subfield>
    <subfield code="a">Creative Commons Zero v1.0 Universal</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">1998-09-01</subfield>
  </datafield>
  <controlfield tag="005">20190409134312.0</controlfield>
  <controlfield tag="001">1234637</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1234637</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Comparisons of convective available potential energy (CAPE) with standard instability indices for evaluating the convective potential of the atmosphere such as the lifted index (LI) reveal only moderate correlations. This is because the LI is a measure of single-level buoyancy while CAPE is a measure of both integration depth and the buoyancy. Normalizing the CAPE values by the depth over which the integration takes place provides an index (NCAPE) that is independent of the depth and is a convenient measure of the mean parcel buoyancy. This normalization effectively distinguishes between environments with similar CAPE but exhibiting different buoyancy and integration depth. Also, because the vertical distribution of CAPE can have an important effect on convective updraft strength, it is advantageous to vertically partition CAPE and NCAPE into multiple layers. NCAPE may provide a more useful indicator of buoyancy in environments in which the depth of free convection is shallow and total CAPE is small. It is suggested that NCAPE computations be used in combination with CAPE for evaluation of convective potential.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">142682</subfield>
    <subfield code="z">md5:b8ba4dddb930e760d7f4fb7f35558bc1</subfield>
    <subfield code="u">https://zenodo.org/record/1234637/files/article.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Blanchard, David O.</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1175/1520-0434(1998)013&lt;0870:atvdoc&gt;2.0.co;2</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Assessing the Vertical Distribution of Convective Available Potential Energy</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
38
39
views
downloads
Views 38
Downloads 39
Data volume 5.6 MB
Unique views 38
Unique downloads 38

Share

Cite as