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ABSTRACT

The formulation of a fully compressible nonhydrostatic atmospheric model called the Model for Prediction

Across Scales–Atmosphere (MPAS-A) is described. The solver is discretized using centroidal Voronoi

meshes and a C-grid staggering of the prognostic variables, and it incorporates a split-explicit time-integration

technique used in many existing nonhydrostatic meso- and cloud-scale models. MPAS can be applied to the

globe, over limited areas of the globe, and on Cartesian planes. The Voronoi meshes are unstructured grids

that permit variable horizontal resolution. These meshes allow for applications beyond uniform-resolution

NWP and climate prediction, in particular allowing embedded high-resolution regions to be used for regional

NWP and regional climate applications. The rationales for aspects of this formulation are discussed, and results

from tests for nonhydrostatic flows on Cartesian planes and for large-scale flow on the sphere are presented. The

results indicate that the solver is as accurate as existing nonhydrostatic solvers for nonhydrostatic-scale flows,

and has accuracy comparable to existing global models using icosahedral (hexagonal) meshes for large-scale

flows in idealized tests. Preliminary full-physics forecast results indicate that the solver formulation is robust

and that the variable-resolution-mesh solutions are well resolved and exhibit no obvious problems in the

mesh-transition zones.

1. Introduction

Computational capabilities that are expected to be

generally available in the near future will enable global

atmospheric model applications permitting explicitly re-

solved nonhydrostatic motions that will require the so-

lution of the nonhydrostatic equations. The applications

will likely include both variable-resolution mesh model-

ing with limited areas allowing nonhydrostatic motions,

such as the exploratory efforts in the global nonhydro-

static variable-resolution modeling of Yeh et al. (2002),

and global high-resolution uniform-mesh modeling where

nonhydrostatic scales are permitted everywhere on the

globe, as in Satoh et al. (2008). Development efforts for

atmospheric models capable of these applications are

in their early stages and face significant challenges in

discretizing the nonhydrostatic fluid-flow equations on

the sphere (Williamson 2007), in allowing selective re-

finement, and in achieving efficient scaling on massively

parallel computer architectures.

We have constructed a global fully compressible non-

hydrostatic model using finite-volume numerics dis-

cretized on centroidal Voronoi (nominally hexagonal)

meshes using C-grid staggering of the prognostic var-

iables based on the work of Thuburn et al. (2009) and

Ringler et al. (2010). This model is called the Model for

Prediction Across Scales (MPAS), and its development

is a collaborative project being led by the National

Center for Atmospheric Research (NCAR) and Los

Alamos National Laboratory (LANL). NCAR is respon-

sible for developing the MPAS atmospheric component,

LANL is responsible for the ocean component, and the
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shared software infrastructure is being developed

jointly.

Quasi-uniform centroidal Voronoi meshes are similar

to icosahedral (hexagonal) meshes, such as those used

in the nonhydrostatic icosahedral atmospheric model

(NICAM; Satoh et al. 2008), and they provide nearly

uniform resolution over the globe. In contrast, global

atmospheric models have typically employed latitude–

longitude grids for their discretization (Williamson 2007).

Latitude–longitude mesh implementations of finite-

difference, finite-volume, and spherical transform methods

do not scale well on the latest generations of supercom-

puters that rely on large numbers of distributed-memory

processing elements; the domain decomposition needed

for efficient distributed-memory parallelism conflicts

with the need to use global transforms of some sort.

Finite-difference and finite-volume methods used on

latitude–longitude meshes need polar filters and other

extensions to the numerical schemes because of the con-

vergence of grid lines at the poles. Spherical transform

methods, while not requiring polar filtering, also do not

scale optimally with increasing resolution, and the semi-

Lagrangian transport with which they are often paired

needs special attention in the polar regions in addition to

polar filtering. As with the icosahedral meshes, Voronoi

meshes do not require polar filtering, and parallelization

based on standard horizontal (2D) domain decomposition

is possible and appears to allow good weak scaling perfor-

mance on massively parallel architectures in our early tests.

The centroidal Voronoi meshes also allow for local

refinement, and the variable-resolution horizontal mesh

takes advantage of the unstructured-mesh capabilities of

our nonhydrostatic solver. The variable-resolution meshes

are generated such that there is a gradual change in mesh

density from the coarse- to the high-resolution regions

(Ringler et al. 2008), and they allow much more flexible

mesh-refinement capabilities than approaches using a

remapping of a structured mesh [e.g., the clustering of

latitude and longitude grid lines used in Yeh et al. (2002)

or the remapping of the global icosahedral mesh employed

in a shallow-water (SW) equation solver by Tomita (2008)].

The smooth mesh transitions we use stand in contrast to

the abrupt mesh transitions used in traditional two-way

nested models (e.g., Skamarock et al. 2008) or in mesh

refinement achieved directly through cell division (e.g.,

Walko and Avissar 2008). We believe the smooth mesh

transition will ameliorate many of the difficulties asso-

ciated with traditional nesting approaches, as indicated

in the results of Ringler et al. (2011) using the shallow-

water equations. Thorough testing of the variable-mesh

capabilities of the MPAS nonhydrostatic solver is not

a focus of this paper; we expect to report test results for

this important capability in future publications.

The approach we are using to solve the nonhydrostatic

equations can be considered an extension of existing

techniques used in nonhydrostatic models, such as the

Advanced Research Weather Research and Forecasting

model (ARW-WRF; Skamarock and Klemp 2008), to

the horizontal Voronoi mesh, and this includes the use

of C-grid staggering. Using established techniques allows

us to directly compare our Voronoi mesh results with

those from state-of-the-art cloud–mesoscale models and

to establish the accuracy and efficiency of the solver at the

smallest resolved scales. Our formulation differs from

other nonhydrostatic icosahedral mesh models, such as

NICAM, in the use of C-grid staggering and the cen-

troidal Voronoi mesh. C-grid staggering had not previously

been incorporated in Voronoi or icosahedral hexagonal

mesh models because of numerical problems recently re-

solved by Thuburn et al. (2009) and Ringler et al. (2010).

In this paper, we focus on describing the nonhydro-

static fluid-flow solver and demonstrate its accuracy in

applications on the sphere and in nonhydrostatic test

cases on Cartesian domains. We begin in section 2 by

presenting the equations and the finite-volume split-

explicit discretization used in the unstructured-mesh

solver, and we discuss some aspects of the variable un-

structured mesh and considerations involving the dis-

cretization. In section 3 we present nonhydrostatic test

results on a Cartesian plane and compare them with

results from existing nonhydrostatic solvers. Tests in-

dicate that the solver is producing solutions comparable

to those of existing cloud models. Test simulation results

for large-scale flow on the sphere are presented in sec-

tion 4, and include both idealized tests and example full-

physics forecasts on uniform and variable-resolution

meshes. These test results indicate that the solver is per-

forming as well or better than existing Voronoi and ico-

sahedral mesh models based on the results presented here

and on shallow-water tests and theoretical considerations

presented in the previous work of Ringler et al. (2011).

We conclude in section 5 with a summary.

2. Solver formulation

a. Continuous equations

We cast the governing equations in terms of a new

height-based terrain-following vertical coordinate z fol-

lowing Klemp (2011). In this formulation, illustrated for

simplicity on a Cartesian grid, the height of the co-

ordinate surface is defined by

z 5 z 1 A(z)hs(x, y, z), (1)

where z represents the nominal heights (ignoring ter-

rain) of the coordinate surfaces, A(z) defines the relative
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weighting between the terrain-following coordinate and

the pure height coordinate with 0 # A # 1 2 z/zt, zt is the

height of the model top, and the array hs is specified to

produce increased smoothing of the terrain influence

with height with the requirement that hs(x, y, 0) 5

h(x, y). For A(z) 5 1 2 z/zt and hs(x, y, z) 5 h(x, y) (the

terrain height), we recover the traditional terrain-

following height coordinate, and for A(z) 5 0 we re-

cover a pure height coordinate. As described in Klemp

(2011), A(z) and hs can be chosen to control the amount

and scale of terrain influence on the vertical coordinate.

The metric terms associated with the vertical coordinate

transformation are represented by $z 5 (zx, zy, zz), with

zH 5 (zx, zy) and zH 5 2zH/zz. We use the traditional

terrain-following height-coordinate option in all the test

results presented in this paper.

We cast the continuous prognostic equations using the

flux variables

(U, V, W, Qm, Qj) 5 ~rd � (u, y, w, um, qj), (2)

where rd is the density of dry air, ~rd 5 rd/zz, qj repre-

sents the mixing ratio of the respective water species,

and

um 5 u[1 1 (R
y
/Rd)q

y
]

is a modified moist potential temperature with qy rep-

resenting the water vapor mixing ratio. The velocities

(u, y, w) represent two orthogonal horizontal velocities

and a vertical velocity radially outward from the center

of the earth; the velocities obey the right-hand rule,

y 5 (ui, yj, wk), where i 3 j 5 k. In the transformed co-

ordinate V 5 V � $z is the component of the mass flux

normal to the coordinate surfaces, where V 5 (U, V, W).

The full equation set can be expressed as
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1 FQ
j

. (7)

Pressure is obtained diagnostically from the equation of

state,

p 5 p0

RdzzQm

p0

� �g

, (8)

with g 5 cp/cy. Here, rm is the density of moist air, and

rm

rd

5 1 1 q
y

1 qc 1 qr 1 . . . , (9)

where qy, qc, and qr are mixing ratios of vapor, cloud

water, rainwater, etc. In (3), h 5 k � $ 3 yH 1 f is the

absolute vertical vorticity, and K 5 jyHj2/2 is the hori-

zontal kinetic energy. In the curvature and Coriolis

terms in (3) and (4), f 5 2Ve sinc, e 5 2Ve cosc, c is the

latitude, Ve is the angular rotation rate of the earth, re is

the earth’s radius, and ar is the rotation angle between

the line normal to the horizontal velocity and the me-

ridians. The terms FVH
, FW, F

Qm
, and FQj

represent

sources and sinks from physics, subgrid models, and

filters. Following the notation of Dutton (1986), we de-

fine the equation ($ � Vb)z 5 $z � (VHb) 1 ›(Vb)/›z for

any scalar b, where $z refers to the divergence operator

along a constant z surface and VH 5 (U, V).

The compressible nonhydrostatic equations (3)–(7)

are written in flux form, with the horizontal momentum

equations expressed in vector-invariant form, to help

achieve the desired conservation properties in the dis-

crete model. The use of the vector-invariant form of the

horizontal momentum equation (3) also allows us to by-

pass the potentially problematic discretization of non-

linear horizontal momentum transport. Our discrete

formulation, described in the following subsections, ex-

actly conserves dry air mass, scalar mass (e.g., moisture),

and Qm. The horizontal discretization is largely taken

from the shallow-water model discretization of Ringler

et al. (2010), with exceptions noted in section 2c below.

The 3D discrete nonhydrostatic model, however, does

not inherit the exact conservation of potential vorticity

and energy (to time truncation) of the SW model.

b. Temporal discretization

The fully compressible nonhydrostatic equations are

solved using the time-split integration technique described

in Klemp et al. (2007) for the height-coordinate equations.

As in Klemp et al., we recast the governing equations
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(3)–(7) in terms of thermodynamic variables (r9
d
, Q9

m
, p9)

that are perturbations from a hydrostatically balanced

reference state that is only a function of the geometric

height z. In this way we reduce the truncation error as-

sociated with the horizontal pressure gradient terms and

the roundoff error associated with the right-hand-side

terms in the vertical momentum equation. We use the

third-order Runge–Kutta scheme and explicit time

splitting as described in Wicker and Skamarock (2002).

The time-splitting technique integrates gravity waves

and horizontally propagating acoustic waves on smaller

explicit substeps within the three-step Runge–Kutta

time integration. Vertically propagating acoustic waves

are integrated implicitly. Thus, the Runge–Kutta time

step is limited by the maximum advective velocity, and

the acoustic time step is limited by the horizontal

acoustic wave speed. The use of the vector-invariant

form of the horizontal momentum equation (3) does not

complicate this solution procedure, but note that we cast

this equation in flux form to facilitate the acoustic in-

tegration. This gives rise to the additional term yH $z �V
that does not appear in nonflux-form equations that are

usually used in this context (e.g., Ringler et al. 2010).

Again, following Klemp et al. (2007), we cast the acous-

tic-step equations in terms of perturbation variables from

the values at time step t for the integration from t to t 1 Dt.

c. Spatial discretization

In the MPAS atmospheric solver, the continuous

equations are spatially discretized on an unstructured

C-grid centroidal Voronoi mesh following Thuburn

et al. (2009) and Ringler et al. (2010). Quasi-uniform

meshes as well as variable-resolution meshes can be

generated for the sphere, for regional domains on the

sphere, and for Cartesian planes using techniques de-

scribed in Ringler et al. (2008). It is our use of the C-grid

centroidal Voronoi mesh that distinguishes MPAS from

other models such as NICAM.

A horizontal C-grid Voronoi mesh is depicted in Fig. 1.

The horizontal momentum normal to the cell edge (u in

Fig. 1) is prognosed at the cell edges. The coupled po-

tential temperature Qm, density ~r
d
, and moisture Qj are

prognosed at the cell centers where they represent cell-

averaged values in the finite-volume formulation. The

vertical momentum is prognosed on the vertical cell

faces located half a grid level above and below the cell

center, consistent with a 3D C-grid discretization. All other

quantities are diagnosed from the prognostic variables

[e.g., pressure (8)]. The tangential component of the

horizontal momentum needed at the cell edges, k 3 VH

in (3), is diagnosed following Thuburn et al. (2009). The

horizontal momentum components (U, V) needed at the

cell center in the vertical momentum equation (4) are

computed from a radial basis function reconstruction

(Bonaventura et al. 2011) using the prognosed horizontal

velocities at the cell edges. The absolute vertical vorticity

h is diagnosed following Ringler et al. (2010). Using the

tangential velocity reconstruction described by Thuburn

et al. (2009), this horizontal discretization for the C grid

does not suffer from the problems of the nonstationary

geostrophic mode (Ničković et al. 2002). The horizontal

discretization conserves mass to machine roundoff.

We have two options for kinetic energy K defined at

the cell centers and used in (3). The approach described

in Ringler et al. (2010) defines the kinetic energy in the

cell, here named Kc, as a sum over the edges of the cell:

Kc 5 A21
c �

e
u2

elede/4, (10)

where ue is the edge normal velocity, Ac is the area of the

cell, le is the edge length, and de is the distance between

cell centers sharing edge e (see Fig. 1). The second option,

developed by A. Gassmann (2011, personal communica-

tion), begins with a definition of the kinetic energy at cell

vertices, which we name Ky:

K
y

5 A21
y �

3

e51

u2
elede/4, (11)

where the three edges are those edges that share vertex

y, and Ay is the area of the triangle containing the vertex

(the triangle depicted by the dashed lines in Fig. 1). Using

Ky we construct a second cell-centered value of KE,

named Kc
y
, by computing an area-weighted sum of kinetic

energies Ky at the vertices of a given cell:

FIG. 1. Depiction of the horizontal C-grid staggered Voronoi mesh.
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Kc
y

5 A21
c �

y
K

y
Ac

y

, (12)

where Ac
y

is the shaded area associated with a vertex of

a given cell, as depicted in Fig. 1. The new value of the

cell-centered kinetic energy used in (3) is given by the

weighted sum of Kc [(10)] and K
c

y

[(12)]:

K 5 aKc 1 (1 2 a)Kc
y

, (13)

where a is a weighting coefficient; a 5 1 recovers the

Ringler et al. (2010) formulation (10) and a 5 3/8 is used

in the Gassmann formulation. The Ringler et al. (2010)

formulation (10) guarantees energy conservation to the

time-truncation error within their fully nonlinear SW

equations solver. The formulation from Gassmann (a 6¼ 0)

will not conserve energy in the SW solver, but we have

found that it removes a computational instability we

have encountered in large-scale simulations of barocli-

nic waves. Further discussion of these kinetic energy

formulations and simulation results is given in section 4.

The transport scheme used for the horizontal flux di-

vergence calculations in (4), (5), and (7) on the irregular

Voronoi mesh is described in Skamarock and Gassmann

(2011). It uses nominally third- and fourth-order approx-

imations to the scalar gradient to construct the scalar

values on the cell edges in the conservative flux diver-

gence calculation. The mass flux divergence in (6) is

approximated by averaging the cell-averaged values of

~rd to the cell face from the two cells sharing the face (see

Thuburn et al. 2009). We use the mass flux that is time

averaged over the acoustic steps for scalar transport,

thus maintaining consistency between the scalar trans-

port and the continuity equation. The vertical flux di-

vergence terms in (3), (4), (5), and (7) are calculated

using the third- and fourth-order schemes as described

in Wicker and Skamarock (2002) but using the reduced

dissipation in the third-order scheme as described in

Skamarock and Gassmann (2011). The monotonic op-

tion available in the Skamarock and Gassmann (2011)

scheme is used for moisture in the NWP forecasts pre-

sented in section 4c. The monotonicity constraint in-

troduces dissipation, and we do not use any additional

explicit dissipation for moisture when the monotonic

constraint is used.

As explained in Klemp et al. (2003), it is important to

maintain consistency between the transport operator

and the metric terms associated with the terrain trans-

formation. In MPAS this requires that the diagnosis of

the transformed vertical velocity V is consistent with the

advection operator used in the thermodynamic equation

(5). To satisfy this requirement, we formulate the trans-

formed vertical velocity for cell i as

Vi 5 V � $z 5 VH � zH 1 Wzz

5 zz[W 2 VH � $H(z 2 zi)]

5 zz[W 2 $H � VH(z 2 zi)], (14)

where zi is the coordinate-surface height at cell i for

which Vi is being computed. We apply the same

Skamarock and Gassmann (2011) scheme to the right-

hand side of (14), thus satisfying the consistency re-

quirement. The expensive part of the Skamarock and

Gassmann scheme, evaluating (z 2 zi) at the cell faces,

can be computed and stored before integration begins;

thus, there is little additional cost in implementing the

Klemp et al. (2003) consistency requirement.

Horizontal filters using the Laplacian are evaluated

using a standard finite-volume discretization on the

Voronoi mesh. The discrete version of the Laplacian

=2c 5 $ � $c of the scalar c at cell i is expressed as

$ � $c 5 A21
i �

n
e

e
(ce 2 ci)le/de, (15)

where ne is the number of edges making up cell i, le is the

length of edge e on cell i, ce is the scalar value in cell j

sharing edge e with cell i, and de is the distance between

the centers of cells i and j. The formulation (15) follows

directly from the definitions of the divergence and gra-

dient operators in Thuburn et al. (2009) and Ringler et al.

(2010), and experimental results show that (15) exhibits

second-order convergence on smooth Voronoi meshes. A

fourth-order hyperdiffusion is enabled by taking the dis-

crete Laplacian of the discrete Laplacian (15).

The Laplacian of the momentum u is evaluated using

the vector identity

=2ui 5
›

›xi

$
z
� y 2

›h

›xj

, (16)

where ui is the edge normal velocity defined on cell edge

i, h is the relative vertical vorticity, and $z � y is the

horizontal divergence. The first term on the right-hand

side of (16) is the difference between the horizontal di-

vergences of the two cells sharing edge i, and the second

term is the difference of the vorticities defined at the ver-

tices on either side of edge i. The evaluation of the vertical

vorticity at the vertices and the divergence for each cell

is described in Ringler et al. (2010). As with scalar diffu-

sion, a fourth-order hyperdiffusion for momentum can be

evaluated by applying this discrete operator twice.

The horizontal filtering formulation of Smagorinsky

(1963) uses the second-order Laplacians (15) and (16)

along with an eddy viscosity Kh defined on the Cartesian

plane using the Cartesian velocities (u, y):
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Kh 5 c2
s l2[(ux 2 yy)2

1 (uy 1 yx)2]1/2. (17)

We have implemented this approach by evaluating Kh in

(17) at cell centers on the sphere. The eddy viscosities

are averaged to the cell faces such that the diffusion op-

erator is in conservation form:

$ �Kh$c.

The evaluation of the eddy viscosity Kh is accomplished

by projecting the velocities onto a tangent plane, inte-

grating the squared terms involving the velocities in (17)

over the cell, and applying Stokes theorem to transform

the cell integrals to discrete line integrals around the cell

edge. The evaluation is inexpensive because the prog-

nostic normal and diagnostic tangential velocities exist,

and the time-independent coefficients for the line integrals

are precomputed and stored before the time integration

begins.

d. Discretization considerations

Compared with other Voronoi and icosahedral mesh

models using finite-volume or finite-difference formu-

lations, there are a number of new aspects in the MPAS

solver formulation that benefit global multiscale (hydro-

static and nonhydrostatic scale) atmospheric simulations.

The first advance in MPAS is the formulation for the

C-grid staggering of the prognostic variables. Ničković

et al. (2002) examined hexagonal C-grid formulations

for the shallow-water equations on an f plane. The tan-

gential velocity needs to be reconstructed from the

prognosed normal velocities on the cell faces of the C

grid to evaluate the Coriolis term, and Ničković et al.

showed that the stationary geostrophic mode in the lin-

earized SW equations will be nonstationary using the

most obvious reconstruction of the tangential velocity.

The nonstationary geostrophic mode produces distor-

tion in rotational modes that renders the scheme useless

for most applications. Thuburn (2008) and Thuburn

et al. (2009) developed a method to reconstruct the

tangential velocity such that the geostrophic mode re-

mains stationary for the linear SW equations. Ringler

et al. (2010) extended this formulation to the nonlinear

SW equations such that it conserves potential vorticity

and potential enstrophy, conserves energy to the time

truncation error, and allows for the dissipation of po-

tential enstrophy following Sadourny and Basdevant

(1985). These advances are based on the constraint that

the horizontal mass divergence on the triangular mesh (the

dashed triangular cell in Fig. 1; the dual of the hexagonal

mesh) that is computed using the reconstructed tangential

velocities is equal to the area-weighted sum of the

divergences in the hexagons underlying the triangular cell.

These conservation properties can be considered a gener-

alization of the conservative rectangular-mesh discretiza-

tions of Sadourny (1975) and Arakawa and Lamb (1981).

Our use of C-grid staggering is guided by theory and

practical experience. Mesoscale and cloud-scale motions

are dominated by horizontally divergent gravity wave mo-

tions, and C-grid staggering provides twice the resolution

of divergent modes compared to the unstaggered (A)

grid; it does not require any averaging of the velocities or

pressures in the pressure gradient and divergence terms

as is required in the A-, B-, D-, and E-grid staggerings.

Pressure and velocity averaging lead to stationary grid-

scale modes (often referred to as parasitic modes) that

must be filtered, and the parasitic modes associated with

the divergence and pressure gradient terms will require

a higher level of filtering on these meshes. Our experi-

ence is that the level of filtering needed on these other

meshes is considerably higher than that needed to pro-

vide sinks for the downscale energy and enstrophy cas-

cades in our full nonlinear simulations using the C-grid

staggering. In practice, we find that solvers not using

C-grid staggering need finer meshes to produce similarly

resolved features (such as clouds). Our experience also

indicates that higher-order differencing of the mass di-

vergence and pressure gradient terms does not appre-

ciably change the behavior for the non-C-grid meshes;

parasitic modes remain, increased filtering is still needed,

and higher mesh densities are still needed to produce

comparably resolved solutions. Generally speaking, all

grid staggerings can be made to work with some level

of filtering, and the choices affect scheme efficiency

(accuracy versus cost). We have found that the C-grid

discretization results in the highest efficiency.

Randall’s (1994) analysis of geostrophic adjustment

indicates that the C-grid staggering is not optimal for

large-scale flows. Our intended applications for MPAS

are cell spacings of the order 100 km and less. Our tests

indicate that MPAS produces solutions similar in accu-

racy to other finite-volume and finite-difference models

for large-scale flows [based on results in Ringler et al.

(2010) for shallow-water tests, and our results for the

Jablonowski and Williamson (2006a) baroclinic wave

tests]. We have not identified any problems arising from

the C-grid discretization or with the computational Rossby

modes addressed in Thuburn et al. (2009). For higher-

resolution applications (to resolve mesoscale circulations),

the rotational modes will be well resolved regardless of the

specific numerics. In this regime, numerical accuracy will

be most strongly influenced by the treatment of the gravity

wave modes.

The second advance incorporated into MPAS is the

use of higher-order operators within the advection scheme.
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Atmospheric models using unstructured, irregular meshes

often employ simple low-order operators within the ad-

vection algorithms. For example, the flux divergence term

in the scalar conservation equation requires that mass flux

be evaluated at the cell edge, and a common second-order

formulation uses the average of the scalar values in the

two cells sharing that edge. However, these schemes do

not produce solutions on hexagonal meshes that are as

accurate as those produced in state-of-the-art rectangular-

mesh cloud and mesoscale models. Within MPAS we have

implemented a transport scheme, described in Skamarock

and Gassmann (2011), that uses a least squares fit poly-

nomial to evaluate higher-order scalar derivatives used in

the third- and fourth-order transport schemes [similar to

that employed in ARW-WRF (Skamarock and Klemp

2008)]. A significant increase in accuracy is demonstrated

with the Skamarock and Gassmann (2011) scheme over

that obtained using other second-order formulations.

Finally, unstructured-mesh solvers such as MPAS make

use of indirect addressing when building the horizontal

operators during a time step. We keep vertical columns

contiguous in memory in our FORTRAN implementa-

tions, and we find that our solvers have computational

efficiencies similar to our rectangular (structured) grid

solvers (e.g., ARW-WRF). MacDonald et al. (2011) have

examined the question of efficiency in 3D atmospheric

solvers and find that, on cache-based computer archi-

tectures, unstructured-mesh solvers having vertical col-

umns contiguous in memory are as efficient as their

structured-mesh counterparts.

3. Test cases: Nonhydrostatic flows on
Cartesian planes

It is very costly and difficult to assess the nonhydrostatic

response of global atmospheric solvers because very

high resolutions are needed to resolve nonhydrostatic

scales, particularly for convection, where cell spacings

of a few kilometers or less are needed. The MPAS un-

structured Voronoi mesh and solver can be used on

Cartesian planes in addition to the sphere, and we have

performed extensive tests of the solver for nonhydrostatic-

scale motions on Cartesian planes using both 2D (x, y) and

3D test cases, including mountain waves, 2D and 3D

squall lines, and 3D supercell thunderstorms. For the

mountain wave cases we have exact linear and nonlinear

solutions, and these tests have helped us verify the cor-

rectness of our coding. We present results from the

Schär et al. (2002) test case that has been used to ex-

amine the numerical treatment of terrain and some as-

pects of the consistency of the discretization. A strongly

nonlinear 2D density current test from Straka et al. (1993)

is presented to demonstrate the nonlinear response of the

numerics. In our experience, we have found that deep

moist convection provides the most challenging tests of

nonhydrostatic solver robustness (stability) and accuracy

because of the significant latent heating occurring near

the grid scale. Thus, we also present results from 3D ide-

alized supercell thunderstorm simulations to demonstrate

the robustness of the MPAS nonhydrostatic solver.

a. 2D Schär test case

Schär et al. (2002) proposed a test case using flow over

terrain containing small-scale structure that has been

used to uncover some problems within terrain-following

coordinate models. In the Schär et al. study, smoothing

the coordinate surfaces helped remove the spurious mo-

tions generated using particular model formulations.

Klemp et al. (2003) showed that the spurious motions

examined by Schär et al. were associated with an in-

consistency between the transport terms and the diagnosis

of the vertical velocity in terrain-following coordinate

model formulations.

The test case uses a terrain height,

h(x) 5 H exp 2
x2

a2

� �
cos2px

l
,

where H 5 250 m, l 5 4000 m, and a 5 5000 m. A

constant mean-state buoyancy frequency N 5 0.01 s21 is

prescribed along with a constant horizontal environ-

mental wind U 5 10 m s21. Schär et al. (2002) and

Klemp et al. (2003) use horizontal mesh spacings of 500 m

and a vertical mesh spacing of 300 m nominally in their

tests, and we use these same mesh spacings. The hori-

zontal mesh in the 2D (x, y) configuration for MPAS

is constructed using two rows of perfect hexagons in x

along with periodic boundary conditions in y.

Figure 2 depicts the vertical velocity in the steady-

state solutions for three test configurations; the first

(Fig. 2a) uses a fully second-order model configuration,

the second (Fig. 2b) uses the fourth-order transport

scheme for the potential temperature (see Skamarock and

Gassmann 2011) but only a second-order evaluation of the

transformed vertical velocity using (14), and the third

(Fig. 2c) uses the fourth-order scheme for both transport

and the transformed vertical velocity diagnosis. The results

can be compared with those in Klemp et al. (2003). The

solution depicted in Fig. 2c, using the fourth-order scheme

for both transport and the transformed vertical velocity

diagnosis, best reproduces the analytic solution, and the

second-order solution depicted in Fig. 2a reproduces the

analytic solution fairly well. In contrast, the discretization

using the fourth-order transport and second-order vertical

velocity diagnosis in Fig. 2b has a very large error in the

vertical velocity field above the mountain. This error is the
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same as that found in Schär et al. (2002) and Klemp et al.

(2003). Our model formulation follows Klemp et al. by

employing a consistent diagnosis of the vertical velocity

using (14) to remove the source of the error.

b. 2D density current

The density current test case is described in Straka

et al. (1993). This 2D simulation of a highly nonlinear

density current uses a fixed physical viscosity of 75 m2 s21;

hence, converged solutions can be computed. The domain

extends from 225.6 to 125.6 km in x and from 0 to 6.4 km

in z, and the boundary conditions are periodic in x and

upper solid and lower free-slip surfaces in z. There is no

flow at the initial time and the atmosphere is neutrally

stratified. The density current is produced by specifying an

initial thermal perturbation of the form

DT 5
08C if R $ 1,

215:08C[cos(pR) 1 1]/2 if R , 1,

�

where R2 5 [(x 2 xc)/xr]
2 1 [(z 2 zc)/zr]

2, xc 5 0 km,

xr 5 4 km, zc 5 3 km, and zr 5 2 km. This cold bubble

descends to the surface and spreads out to produce left-

and right-moving density currents.

For these tests, MPAS is configured to use the third-

order upwind scheme from Skamarock and Gassmann

(2011) for potential temperature transport with an up-

winding coefficient of 0.25. Figure 3 depicts the simula-

tion results at 900 s and these results can be directly

compared with those from Straka et al. (1993). While the

25-m mesh solution is essentially converged, the 100-m

mesh solution is beginning to exhibit noticeable differ-

ences from the converged solution (none of the published

model results are visibly converged on the 100-m mesh).

FIG. 2. Vertical velocity from the Schär et al. (2002) mountain-wave

test case for a (a) fully second-order formulation, (b) fourth-order

transport for u and second-order diagnosis of V, and (c) fourth-order

transport for u and consistent fourth-order diagnosis of V. The con-

tour interval is 0.05 m s21, and negative contours are dashed.

FIG. 3. Potential temperature at 900 s from the Straka et al.

(1993) density current test case. The field is plotted as in Straka

et al. extending from 0 to 19.2 km in x and from 0 to 4.8 km in z

with a contour interval of 1 K.

SEPTEMBER 2012 S K A M A R O C K E T A L . 3097



For example, the maximum temperature in the second

eddy behind the leading edge is colder, and there is some

evidence of overshoots in the temperatures closest to the

surface. These errors are significantly larger on the 200-m

mesh where many features can no longer be resolved.

Using a standard second-order advection formulation

(bottom panel of Fig. 3), the solution error increases

dramatically because of the less-accurate transport

scheme. Overall, the MPAS solutions compare well with

other published cloud-model solutions for this test, in-

cluding the model solutions presented in Straka et al.

(1993) and more recently those for the Advanced Regional

Prediction System (ARPS) model (Xue et al. 2000) and

the ARW-WRF model (Skamarock and Klemp 2008).

c. Supercell simulation

We have performed 3D supercell simulations with

MPAS and a rectangular-mesh model. The horizontal

domain (x, y) is square and doubly periodic with a length

of 84 km. The domain height is 20 km and 40 levels are

used in the vertical decomposition (Dz 5 500 m). Both

models use a 4-s time step and 28 224 thermodynamic

points on a horizontal plane, with cell-center spacings of

500 and ;539 m for the rectangular and Voronoi meshes,

respectively. The horizontally homogenous environment

is initialized using the sounding from Weisman and

Klemp (1982) and a unidirectional-shear hodograph

with a horizontal wind speed of zero at the surface, in-

creasing linearly to 25 m s21 at 5 km and constant above

5 km. A positive thermal perturbation in u is used to ini-

tiate convection as described in Weisman and Klemp.

Mirror-image right- and left-moving supercells are pro-

duced in these simulations, and depictions of the storms

from the rectangular-mesh model and MPAS are given in

Fig. 4, which shows the vertical velocity and rainwater

fields at z 5 5 km and the surface cold pool. The storms

are very similar on both meshes, and perfect symmetry is

maintained in both solvers. The solutions compare well

FIG. 4. Horizontal cross sections at 2 h from supercell simulations using MPAS (perfect

hexagonal mesh) and a rectangular-mesh model. Rainwater mixing ratio and vertical velocity

(contour interval 5 5 m s21) are contoured for a horizontal plane at height z 5 5 km. The

lowest-model-level (z 5 0.25 km) perturbation potential temperature is contoured using blue

lines with an interval of 2 K centered around 0 K, and the region of u9 , 23 K is shaded.
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with those published in the literature (e.g., Weisman and

Klemp 1982). Moreover, the solutions are much more

similar to each other than those generated using other

discrete model formulations [e.g., Weisman and Klemp

(1982) use the advective form of the governing equa-

tions], indicating that the differences in mesh configura-

tion lead to solution differences that are very small relative

to other possible model formulation differences.

The maximum vertical velocity as a function of time

for these two simulations is given in Fig. 5. The maxi-

mum velocities are very similar in the two simulations,

especially for the first half-hour of the simulation. They

are sensitive to the configuration of the models, and we

are using the same discretizations and filtering (second-

order dissipation with a constant eddy viscosity n 5

500 m s21). The similarity of these two solutions to each

other and to those in the cloud-modeling literature leads

us to conclude that MPAS produces convective solu-

tions of similar accuracy, quality, and robustness to our

state-of-the-art cloud models, such as ARW-WRF

(Skamarock and Klemp 2008). We have also found that

MPAS has similar computational efficiency compared to

rectangular-mesh cloud models such as ARW-WRF; the

run times are within a few percent of each other and

exhibit variability of a similar magnitude for different

compilers, compiler options, and even runs on the same

machines. Importantly, the cost of the additional hori-

zontal momentum equation in MPAS [there are nomi-

nally three horizontal velocities on the Voronoi mesh

for each thermodynamic point (cell) compared to two

horizontal velocities for rectangular meshes] is offset by

the ability to take longer time steps; experience, and a

linear stability analysis, indicate that we can take a time

step 1.25 times greater on the Voronoi mesh compared

to the time step allowed on a rectangular mesh.

4. Test cases: Large-scale flow on the sphere

A standard test for 3D solvers on the sphere is the

Jablonowski and Williamson (2006a) baroclinic wave

test. We have simulated the baroclinic wave as described

in the reference using horizontal mesh resolutions from

approximately 480-km cell-center spacing (2562-cell

mesh) to approximately 30-km cell spacing (655 362-cell

mesh). The initial state consists of identical zonally sym-

metric unstable jets in both the northern and southern

Hemispheres and represents an unstable but steady-state

solution. Tests include simulations without any initial

perturbation, in which case the steady solution should

be maintained, and simulations of a baroclinic wave train

that is triggered with a small perturbation in the Northern

Hemisphere zonal wind.

To initialize the model state for these tests, we begin

by computing the initial state on a 2D (y, z) mesh on the

sphere where the horizontal dimension y extends from

the south pole to the north pole and the vertical mesh

spacing is that used for the full 3D mesh. We iteratively

solve for the hydrostatically balanced thermodynamic

state in each column in a manner similar to that described

in Jablonowski and Williamson (2006a). We have found

that there can be small but significant geostrophic imbal-

ances using the analytic zonal velocities; thus we set the

zonal velocities on the 2D mesh to the discrete geostrophic

velocity ug. We use a moist version of Jablonowski and

Williamson’s (2006b) Eq. (A.2) to compute this balanced

velocity:

ug 5 2
1

f

›f

›y
1

ad

1 1 q
y

›p

›y
1

tanu
a

u2

� �
.

We initialize the horizontal velocities by determining

the zonal mass fluxes across each 3D cell edge from the

2D solution. We compute the thermodynamic state on

the full 3D mesh using the same iterative procedure used

for the 2D mesh. The initial state computed for the jet

using this procedure is depicted in Fig. 6; it is in ap-

proximate geostrophic balance and is nondivergent.

In this section we also present examples of full-physics

NWP forecasts on a uniform mesh and a variable-

resolution mesh. We present these forecasts to dem-

onstrate the robustness of the solver at large scales with

full physics and earth’s terrain; evaluation of the full-

physics MPAS forecast capabilities on uniform and non-

uniform meshes will be the subject of future reports.

FIG. 5. Maximum vertical velocity for the supercell simulations using

MPAS (perfect hexagonal mesh) and a rectangular-mesh model.
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a. Dry baroclinic wave simulations

Figure 7 depicts the surface pressure, 850-hPa vor-

ticity, and temperature for the perturbed jet at day 9

using the 60-km (163 842 cell) mesh and can be directly

compared with the solutions from Jablonowski and

Williamson (2006a) in their Figs. 7, 8. MPAS used a time

step of 450 s in the Runge–Kutta solver and a 75-s time

step for the acoustic mode integration. A second-order

Smagorinsky filter was used with a filter coefficient cs 5

0.125 and a constant length scale l 5 6.0 3 104 m. Within

the acoustic substeps of the time-split scheme we used

a 3D divergence damping coefficient of bd 5 0.1 [see

Klemp et al. (2007), their Eq. (19)] and a vertically im-

plicit off-centering parameter bs 5 0.1 [see Klemp et al.

(2007), their Eq. (17)]. We use the third-order transport

scheme described in Skamarock and Gassmann (2011)

for the thermodynamic equation (5). The 60-km MPAS

mesh is of similar mesh resolution to those used in the Ja-

blonowski and Williamson study where most of the results

are presented for the nominally ½8 meshes (;55 km).

The MPAS results in Fig. 7 are qualitatively very similar

to those reported in Jablonowski and Williamson, both

with regard to the structure in the fields and the maxi-

mum and minimum surface pressures and vorticities. We

are using a time step that is significantly larger than those

used by the fully explicit models in the Jablonowski and

Williamson study; the larger MPAS time step is made

possible by the split-explicit time-integration scheme that

handles the gravity waves on the acoustic substep. We

have also used this test case to examine model behavior

using different advection schemes and the results are re-

ported in Skamarock and Gassmann (2011). The test re-

sults reported in Skamarock and Gassmann show that the

phase errors are significantly reduced using the third-

order scheme compared with the second-order scheme

for potential temperature transport.

We have also conducted the Jablonowski and

Williamson (2006a) test case without the wind field

perturbation to test the ability of the solver to maintain

the initial steady-state balanced jet, and the results are

given in Fig. 8 for the 240-km (10 242 cell) mesh. These

results can be directly compared with the results depicted

in Fig. 8 of Lauritzen et al. (2010), where six different

dynamical cores were tested. Results for three different

mesh orientations are plotted in Fig. 8, one with penta-

gons of the icosahedral-based mesh set at the poles, and

two with these pentagons rotated latitudinally 458 and 908

from the poles. The tests with no mesh rotation maintain

the steady state best (smallest perturbations in sur-

face pressure at day 9) because the pentagons on the

icosahedral-based mesh are not located in the jet region.

The 458 and 908 mesh rotations place the pentagons

within the jet, and the perturbations in the surface pressure

field are larger because the truncation errors in these

FIG. 6. Initial state for the Jablonowski and Williamson (2006a)

baroclinic wave test simulation. The thick contours are for the zonal

velocity (interval 5 5 m s21) and the thin contours are for potential

temperature (interval 5 5 K). The maximum zonal velocity is

34.99 m s21.

FIG. 7. Solution at day 9 for the Jablonowski and Williamson

(2006a) baroclinic wave test. The quasi-uniform mesh has ap-

proximately 60-km cell-center spacing.
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model formulations are largest around the pentagons

and excite the unstable modes of the jet more quickly.

Comparing these MPAS simulations to those pre-

sented in Lauritzen et al. (2010), the perturbations in

the zonal flow in the MPAS surface pressure field are

somewhat smaller in magnitude than those of the hy-

drostatic Colorado State University (CSU) model results

[using both the sigma and hybrid coordinates; see

Lauritzen et al. (2010), their Fig. 8] and much lower in

amplitude compared to the Icosahedral Nonhydrostatic

model (ICON) results [which use a triangular primal

mesh; also plotted in Lauritzen et al. (2010), their Fig. 8].

Additionally, the surface pressure fields exhibit sym-

metry about the equator in the MPAS results whereas

there is no apparent symmetry in the CSU and ICON

model results, suggesting either asymmetries in the CSU

and ICON meshes or initialization, or errors in the

solvers. We also wish to point out that models based on

latitude–longitude meshes do not introduce any zonal

perturbations, and no unstable modes can be excited,

except when the computational poles are shifted relative

to the geographic poles as shown in Lauritzen et al.

(2010).

Based on the comparisons of these test results with

published results from other models, we find that the

nonhydrostatic MPAS produces results with accuracy

equal to or greater than that of other hydrostatic ico-

sahedral finite-volume formulations on the sphere.

b. Unfiltered baroclinic wave simulations

The baroclinic wave simulations presented in the

previous section used a spatial filter with characteristics

similar to those employed by the models tested in

Jablonowski and Williamson (2006a). Frontal collapse

occurs between days 9 and 10 in the simulations, and

solutions degenerate into grid-scale noise in the frontal

regions shortly thereafter if no spatial filtering is used.

The nonhydrostatic MPAS will, however, run stably

through day 10 in the simulation without spatial filtering.

Figure 9 shows the solution for vorticity at day 8 on

model level 5 (approximately 850 hPa) for two simula-

tions where all spatial filtering is disabled in MPAS. One

simulation uses the kinetic energy formulation (13) with

a 5 1, corresponding to Ringler et al. (2010), and the

second simulation uses this formulation with a 5 3/8.

The noise evident in the simulation using a 5 1 causes

the unfiltered model to be unstable; the model aborts

shortly after day 9. Any of the spatial filters available in

MPAS (the second- and fourth-order filters using constant

FIG. 8. Surface pressure for the unperturbed jet at day 9, where a

is the latitudinal rotation of the geographic pole to the computa-

tional pole of the mesh, which is centered on 1 of the 12 pentagons

of the icosahedral-based grid.

FIG. 9. Vertical vorticity for the Jablonowski and Williamson

(2006a) jet at day 8 on model level 5 (approximately 850 hPa) from

simulations using (13) with (top) a 5 1 and (bottom) a 5 3/8 to

evaluate the cell-center kinetic energy.
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eddy viscosities and hyperviscosities, and the Smagorinsky-

based filter) are sufficient to remove this instability. It is

preferable to remove this instability in the basic solver

formulation, and the kinetic energy evaluation (13) with

a 5 3/8 appears to accomplish this for this test. We do not

have a theoretical analysis explaining this instability.

While it appears to share some of the characteristics of the

instability described by Hollingsworth et al. (1983), the

formulation (13) does not lead to a cancellation of terms

in the nonlinear momentum transport described by

Hollingsworth et al. Furthermore, we do not have a theo-

retical justification for specifying a 5 3/8. We have found that

the instability is not apparent for 0.20 # a # 0.45 in (13).

c. Full-physics global forecast examples

We have performed full-physics multiday forecasts on

both quasi-uniform and variable-resolution meshes to

assess the robustness of the solver. We employ the fol-

lowing model physics taken directly from the Weather

Research and Forecasting model physics suite (see

Skamarock and Klemp 2008; Skamarock et al. 2008): WRF

Single-Moment 6-Class Microphysics scheme (WSM6),

Kain–Fritsch convective parameterization, Yonsei Uni-

versity (YSU) PBL parameterization, Monin–Obukhov

surface layer parameterization, the Noah land surface

model, and the Rapid Radiative Transfer Model–GCM

applications (RRTMG) longwave and shortwave radia-

tion parameterizations. Descriptions and references for

these parameterizations can be found in the ARW-WRF

Technical Note (Skamarock et al. 2008). We use the same

time step on the entire mesh for the variable-resolution

mesh simulations, and this time step is chosen so that it is

stable for the fine-mesh region. We use the Smagorinsky

filter in these forecasts with the coefficient cs 5 0.125. The

length scale in the Smagorinsky filter is scaled with the

local grid spacing.

We have computed 5-day forecasts valid at 0000 UTC

28 October 2010 using a uniform-resolution mesh with a

mean cell-center spacing of 60 km and using a nonuniform

mesh with a mean cell-center spacing varying between

approximately 162 km in the coarse-mesh region and

21 km in the fine-mesh region. Both meshes use the same

number of cells (163 842). The variable-resolution mesh is

the same as that depicted in Fig. 10 except the cell mesh

spacing is 1/4 of that in the figure; it is the 163 842-cell 3 8

mesh used in Ringler et al. (2011) and it is constructed

using the iterative technique described in Ringler et al.

(2008). We initialized the forecasts using the National

Centers for Environmental Prediction (NCEP) Climate

System Forecast Reanalysis (CSFR) (Saha et al. 2010),

and the CSFR at day 5 is also presented in Fig. 11. We

chose this time period because of the very strong surface

low pressure region that formed over the north-central

United States during this forecast and the strong North

Pacific jet preceding it that extended through the western

mesh-transition region in the variable-resolution forecast.

The time steps are 225 s for the uniform nominally 60-km

mesh and 90 s for the variable-resolution 162–21-km mesh.

The two forecasts and the analysis shown in Fig. 11 are

similar; the midlatitude baroclinic waves evident in the

height field have similar locations and amplitudes with

some differences in structure, and the general precipitation

patterns are similar. The forecasts are slightly warmer than

the analysis at 500 hPa in the tropics and show slightly

FIG. 10. The 38 variable-resolution Voronoi mesh with 10 242 grid cells from Ringler et al. (2011) with the high-

resolution region centered over North America. The cell-center distances vary by approximately a factor of 8 and are

650 and 85 km in the coarse- and fine-mesh regions, respectively.
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more precipitation at the higher thresholds in the tropics.

The higher tropical precipitation amounts, in addition to

the lighter grid-scale precipitation amounts in the tropics,

are consistent with our experiences using the Kain–Fritsch

convective parameterization in WRF at these resolutions.

The fine-mesh region of the nonuniform-mesh forecast

has some finer-scale structure compared to the uniform-

resolution forecast, although this is difficult to discern in

these global plots. Figure 12 depicts the 500-hPa relative

vorticity at day 4 for the uniform- and variable-resolution-

mesh forecasts over a portion of the Northern Hemisphere

that includes the fine-mesh and mesh-transition regions.

The finer structure over North America is evident in the

variable-mesh forecast, for example, in the increased wave

activity over the western United States and the stronger

wrapping of vorticity south of Alaska. There is a smooth

transition of the relative vorticity field in the variable-mesh-

transition regions (south and west of Alaska and southeast

of Greenland; see Fig. 10). As expected, the coarse-mesh

region of the variable-mesh solution is less well resolved

compared to the uniform-mesh solution, as is evident in the

vorticity filaments over Europe and northern Africa.

These preliminary results suggest that the uniform-mesh

configurations appear viable for traditional global NWP

purposes and that the variable-resolution meshes may be

suitable for high-resolution NWP and regional climate.

Further evaluation of the solutions produced in the variable-

resolution regions is needed; we expect that model physics

and dissipation operators will need tuning or perhaps sig-

nificant reformulations for the variable-resolution mesh.

FIG. 11. The 5-day global forecasts and CSFR analysis valid at 0000 UTC 28 Oct 2010.
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We also note here that MPAS can be run as a regional

model with time-dependent lateral boundary condi-

tions provided from previous MPAS simulations (i.e.,

one-way nesting) or from other sources.

5. Summary

We have described the formulation of a fully com-

pressible nonhydrostatic model whose discretization uses

a horizontal (spherical) centroidal Voronoi mesh with a

terrain-following geometric-height vertical coordinate and

C-grid staggering for momentum. The Voronoi meshes are

unstructured and permit variable horizontal resolution,

and our nonhydrostatic model solves the equations of

motion directly on these unstructured meshes. We em-

ploy a vector-invariant form of the horizontal momen-

tum equation to avoid discretization difficulties on the

unstructured mesh associated with the nonlinear momen-

tum transport and to allow for potential vorticity conser-

vation in the horizontal discretization (Ringler et al. 2010).

The temporal discretization uses the explicit time-split

Runge–Kutta technique from Wicker and Skamarock

(2002) and Klemp et al. (2007). The potential benefits

of this formulation for the compressible flow solver are

made possible by three advances. First, we are making

use of the C-grid discretization techniques for Voronoi

(nominally hexagonal) meshes described by Thuburn

et al. (2009) and Ringler et al. (2010) that solve the prob-

lems associated with the nonstationary geostrophic mode

analyzed by Ničković et al. (2002). Second, we are using

higher-order transport operators as described in Skamarock

and Gassmann (2011); the higher-order transport scheme

allows MPAS to produce solutions of similar accuracy to

that of present-day state-of-the-art cloud and mesoscale

models, and also improves the large-scale response in

early test simulations of baroclinic waves. Finally, MPAS

employs an unstructured mesh that permits continuous

grid refinement and demonstrates computational ef-

ficiency similar to our rectangular-mesh formulations on

existing cache-based supercomputer architectures.

We have presented idealized test results from the

MPAS nonhydrostatic solver for large-scale (hydrostatic)

flows [e.g., the Jablonowski and Williamson (2006a)

baroclinic wave on the sphere] and for nonhydrostatic-

scale flows (e.g., mountain waves, density currents, and

supercell thunderstorms). MPAS has produced results

comparable to other state-of-the-art models in these

tests. Specifically, the results show that our use of the

C-grid Voronoi mesh and the vector-invariant form of

the horizontal momentum equation does not compro-

mise the robustness or accuracy of the nonhydrostatic

solver. We have also presented preliminary results using

a full-physics NWP configuration for MPAS that dem-

onstrates its potential for NWP and regional climate ap-

plications on both quasi-uniform and variable-resolution

meshes. The horizontal meshes are designed such that

there is a smooth transition in mesh density between the

coarse-and fine-resolution regions of the mesh. We have

not observed any significant deleterious effects associated

with the mesh transition in the solutions we have presented

FIG. 12. The 4-day global forecasts of relative vorticity at 500 hPa valid at 0000 UTC

27 Oct 2010.

3104 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



here or in other solutions we have computed with MPAS.

As expected, the fine-mesh regions show finer-scale struc-

ture compared to the structure in the coarse-mesh region.

Further research is needed to explore mesh refinement

limitations and optimal mesh-transition characteristics

(e.g., transition zone width and mesh resolution rate of

change) for these Voronoi meshes and our nonhydrostatic

solver. We will also be exploring the use of different time

steps in regions of different mesh resolutions.

In our example variable-resolution forecast, the same

model physics and subgrid-scale parameterizations were

used over the entire mesh. The model physics and subgrid-

scale parameterizations will need to be scale-aware in

applications with widely varying mesh densities, partic-

ularly when mesh densities transition between resolving

hydrostatic-scale and nonhydrostatic-scale motions.
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A. Staniforth, 2002: The CMC–MRB Global Environmental

Multiscale (GEM) model. Part III: Nonhydrostatic formula-

tion. Mon. Wea. Rev., 130, 339–356.

SEPTEMBER 2012 S K A M A R O C K E T A L . 3105



Copyright of Monthly Weather Review is the property of American Meteorological Society and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


