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PHENOBARBITAL CONFERS ITS DIVERSE EFFECTS BY 
ACTIVATING THE ORPHAN NUCLEAR RECEPTOR CAR

Susumu Kodama and Masahiko Negishi
Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxi-
cology, National Institute of Environmental Health Sciences, National Institutes of
Health, Research Triangle Park, North Carolina, USA

In the early 1960s, phenobarbital (PB) was shown to induce hepatic drug metabolism and
the induction was implicated in the molecular mechanism of drug tolerance development.
Since then, it has become evident that PB not only induces drug metabolism, but also
triggers pleiotropic effects on liver function, such as cell growth and communication,
proliferation of the endoplasmic reticulum, tumor promotion, glucose metabolism, steroid/
thyroid hormone metabolism, and bile acid synthesis. Upon activation by PB and numerous
PB-type inducers, the nuclear receptor CAR mediates those pleiotropic actions by regulat-
ing various hepatic genes, utilizing multiple regulatory mechanisms.

Key Words: Liver; CAR; Nuclear receptors; Hepatic metabolism; Gluconeogenesis;
Hepatocellular carcinoma; Gene transcription; Cytochrome P450.

In grappling with the difficult process of accepting Dr. David Kupfer’s death, I
(M.N.) could not help but reminisce about the earliest encounters with phenobarbital (PB)
that I had as a new graduate student at the Institute of Protein Research, Osaka University,
1967. Under the supervision of Professor Tsuneo Omura, I ran the first technique to con-
duct my project: how to inject PB into rats through tail vein. The project was to investigate
the synthesis of cytochrome b5 in rat livers, in which PB was used to induce the cyto-
chrome (Negishi and Omura, 1970). These experiments introduced me to the concept of
drug induction. It was also around this time that I ran across an article by Dr. Alan Conney
entitled, “Pharmacological implications of microsomal enzyme induction” (Conney,
1967). I still clearly remember the significant impact this article made on the direction of
my research: PB was to be on my mind forever. Looking back these 38 years, I realize that
PB has always been a subject of my research. Therefore, you can well imagine the deep
sense of satisfaction/fulfillment I felt when it was observed that mice lacking the nuclear
receptor CAR gene will sleep longer than normal mice following PB administration
(Swales and Negishi, 2004). Here we describe a short history of how CAR emerged as a
coordinate factor that regulates diverse liver functions (Fig. 1). This review is by no means
a comprehensive coverage of CAR research.
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76 S. KODAMA AND M. NEGISHI

PBREM

The first PB-inducible gene was cloned and sequenced in the early 1980s (Mizukami
et al., 1983); however, it wasn’t until the mid 1990s when the molecular mechanism of
PB induction began to be understood. Anderson and his associates used rat primary
hepatocytes to identify a 176-bp PB response sequence in the far upstream region of the
CYP2B2 promoter (Trottier et al., 1995). Subsequently, Paavo Honkakoski delineated
this PB response activity to the 51-bp sequence in the mouse Cyp2b10 gene, termed the
PB-responsive enhancer module or PBREM (Honkakoski et al., 1998). Finally, the
Omiecinski group, producing a transgenic mouse bearing the mutated sequence, showed
that PB-induced transcription of the CYP2B gene requires the presence of the PBREM
(Ramsden et al., 1999). In addition to PB, the PBREM is activated in response to numerous
PB-type inducers; its sequence is conserved in the mouse, rat, and human CYP2B genes
(Honkakoski et al., 1998; Sueyoshi, 1999). The nuclear receptor binding motif DR4 is the
key element confering PB response activity to the PBREM (Honkakoski et al., 1998). DR4
motifs are found in CAR-regulated genes such as CYP3A, CYP2C, and UGT1A1 (Swales
and Negishi, 2004; Sueyoshi and Negishi, 2001). The identification of the PBREM
provided us with the foundation for further elucidating the mechanism of PB induction.

Figure 1 PB activates CAR to diversify its effects. CAR activation results in the coordinated up- or down-regu-
lation of numerous hepatic genes, altering various liver functions from drug metabolism, to bilirubin secretion, to
gluconeogenesis, to fatty acid oxidation, and to tumor promotion (Ueda et al., 2002). Because CAR regulates
half of the hepatic genes that were up- or down-regulated by PB, there must be additional factors (X and Y) that
coordinate the CAR-independent PB actions.
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CAR IN HEPATIC METABOLISMS AND DISEASES 77

Nuclear receptor CAR. Most importantly, PBREM allowed researchers to iden-
tify a PB-activating nuclear factor. Using transient transfection assays with a PBREM-
reporter gene, Paavo Honkakoski screened various nuclear receptors for their ability to acti-
vate the PBREM in HepG2 cells. Igor Zelko used DNA (PBREM) affinity chromatography
to purify a nuclear protein from mouse liver nuclear extracts that bound to the PBREM in
response to PB. Their work resulted in the characterization of the nuclear receptor CAR
(NR1I3) as the key regulator of PBREM and CYP2B gene (Honkakoski et al., 1998). Subse-
quently, Takeshi Kawamoto demonstrated that CAR is retained in the cytoplasm in mouse
livers and translocates into the nucleus to activate the transcription of the Cyp2b gene in
response to PB treatment (Kawamoto, 1999). Finally, the laboratory of David Moore used
Car−/− mice to confirm that the presence of CAR is essential in the induction of the Cyp2b
gene by PB (Wei et al., 2000). Nearly half a decade has passed since PB induction was first
reported. The PB-CAR pathway is now established as the accepted induction mechanism of
the CYP2B gene.

Consequences of CAR activation. A recent cDNA microarray analysis
revealed that CAR up-regulates a set of genes that encode CYP2B, CYP2C, CYP3A,
NADPH-cytochrome P450 reductase, sulfotransferases, glucuronosyltransferases, and glu-
tathione S-transferases (Ueda et al., 2002). In addition to these phase I and II drug-metabo-
lizing enzymes, CAR also up-regulates drug transporters such as Mrp2 and Mrp4 (Kast et
al., 2002; Assem et al., 2004). Thus, PB activation of CAR diversifies its ability to induce
various enzymes and transporters, increasing the hepatic activities of drug metabolism and
secretion. Given the fact that numerous therapeutic drugs and xenobiotics can activate CAR,
this receptor constitutes a central defense mechanism against their toxicity and carcinogenic-
ity (Yamamoto et al., 2003). The presence of CAR shortens the duration of PB-induced
sleeping time, highlighting the roles that CAR plays against chemical toxicity and/or drug
efficacy (Swales and Negishi, 2004).

These same enzymes and transporters are also involved in the metabolism and
secretion of endobiotics, such as steroid and thyroid hormones, bilirubin, and bile acids.
Therefore, activation of CAR can exert protective or adverse effect on liver functions.
Bilirubin is the catabolic byproduct of heme derived from β-globin and cytochromes and
is the most toxic of all endobiotic byproducts. Increased accumulation of bilirubin can
cause hyperbilirubinemia. PB is used to treat mild forms of hyperbilirubinemia, such as
Gilbert disease, since it induces UDP-bilirubin glucuronosyltransferase (UGT1A1), the
rate-limiting enzyme of bilirubin metabolism. Junko Sugatani found that CAR regulates
PB-induced transcription of the UGT1A1 gene and identified the CAR-responsive
enhancer element gtNR1 (Sugatani et al., 2002). In addition, CAR also mediates PB
induction of glutathione S-transferase A1/A2 and the transporters OATP2 and MRP2 to
increase bilirubin clearance (Huang et al., 2003).

Bile acids are the major products of cholesterol catabolism and, acting as physiological
detergents, help intestinal absorption of lipophilic nutrients. The level of bile acids is
regulated by the balance of synthesis and elimination; cytochrome P450 7A (CYP7A) is
the rate-limiting enzyme of bile acid synthesis, while phase I and II enzymes and transporters
play a major role in the elimination (Sinal et al., 2000; Eloranta and Kullak-Ublick, 2005).
While CAR does not regulate the expression of CYP7A, the receptor appears to play a role
in bile acid elimination by inducing enzymes and transporters (Guo et al., 2003; Zhang
et al., 2004). Excess accumulation of bile acids, particularly those of high hydrophobicity,
such as lithocholic acid, impairs liver function and causes intrahepatic cholestasis. Treatment
with the potent CAR activator TCPOBOP protects against intraheptic cholestasis in the
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78 S. KODAMA AND M. NEGISHI

Car+/+ but not in Car−/− mice (Zhang et al., 2004). PB has been used for decades to treat
pruritis associated with intrahepatic cholestasis (Jenkins and Boothby, 2002); CAR may
play a role in the response to this treatment.

Chronic treatment with PB and PB-like inducers is known to promote thyroid hyper-
trophy in humans and both hypertrophy and tumors in rats (Hiasa et al., 1982; Curran and
DeGroot, 1991; Diwan et al., 1996). Levels of thyroid hormone (TH) are determined by a
balance of synthesis, metabolism, and secretion. Thyroid stimulating hormone (TSH)
regulates synthesis of inactive tetraiodothyronine (T4) in the thyroid gland. T4 is con-
verted to the bioactive triiodothyronine (T3) by deiodenases in the peripheral target tis-
sues, such as the liver and kidney (Bianco et al., 2002). Phase II enzymes sulfate or
glucuronidate T3 and T4 to promote their biliary and urinary excretion (Visser, 1990).
Recently, two groups have reported that treatment with PB or TCPOBOP decreases the
levels of total serum T4 20 to 50% in Car+/+ but not Car−/− mice (Maglich et al., 2004;
Qatanani et al., 2005). CAR-dependent induction of conjugation enzymes such as
UGT1A1 and SULT1A1 was then proposed as the basis for this decrease. Given these
findings, Qatanani et al. suggested that the decrease of total T4 levels increases TSH,
causing thyroid hypotrophy. However, since serum levels of total T3 were not affected by
treatments and those of free T4 were not determined, implicating these conjugation
enzymes in the specific elimination of T4 may be problematic. A major flaw of the two stud-
ies is the fact that they did not show whether the serum level of free T3, the clinical criterion
of TH function, is affected by CAR. So, the question still remains whether the decrease of
total T4 has any implication in TH activity and function.

In humans, chronic treatment with PB-like inducer phenytoin is also reported to
decrease levels of total serum T4, promoting thyroid hypertrophy (Hegedus et al., 1985,
Curran and DeGroot, 1991, Wang, et al., 2004). However, it is not known whether this
decrease is caused by the augmentation of metabolism and/or excretion of TH or the
attenuation of TH synthesis. Because human SULT1A1 appears to sulfate both T3 and
T4 (Li et al., 2001), it is problematic to suggest that this enzyme is responsible for specific
elimination of T4. In addition, human SULT1A1 is not induced by PB (Hempel et al.,
2004). Thus, the role of CAR in the PB-induced thyroid diseases remains elusive, but an
important question for future investigations.

CAR, where is it driving us? PB activates CAR to induce phase I and II
enzymes and transporters, increasing metabolism and secretion of both xenobiotics and
endobiotics. So far, what has been established for the mechanism of PB induction is the
direct binding of CAR to the PB-responsive enhancer elements such as PBREM and
DR4, activating the transcription of genes that encode these enzymes. Now we are com-
ing to realize that there is also a type of CAR regulation that cannot be explained by this
mechanism. For example, Susumu Kodama investigated the molecular mechanism of PB-
induced repression of gluconeogenic enzymes, such as phosphoenolpyruvate carboxykinase
1 (PEPCK1), in which CAR, acting as co-repressor, regulates the insulin response transcrip-
tion factor FoxO1 (Kodama et al., 2004). The repression of FoxO1 by CAR provides a
molecular basis for understanding a long-standing question of drug-insulin cross-talk.

Chronic PB treatment reduced plasma glucose levels in diabetic patients (Lahtela et al.,
1985). Hepatic gluconeogenic enzymes, such as PEPCK1 and glucose 6-phosphatase
(G6Pase), are repressed in PB-treated rats and mice (Argaud et al., 1991; Manenti et al.,
1987). Moreover, it was found that CAR regulates the PB-induced repression of PEPCK1
(Ueda et al., 2002), in which the receptor directly binds and represses FoxO1 (Kodama
et al., 2004). FoxO1 is a 70 K protein and a member of the Forkhead box “Other” (FoxO)
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CAR IN HEPATIC METABOLISMS AND DISEASES 79

proteins. The Forkhead transcription factor family is characterized by a highly conserved
“winged-helix” DNA-binding motif, known as a Forkhead box. FoxO proteins contain a
unique insert of five amino acids within the α-helix 3 of the Forkhead box that defines
their sequence-specific DNA binding (Barthel et al., 2005). FoxO proteins directly bind to
a consensus sequence [(T/C)(G/A)AAACAA] known as the insulin response sequence
(IRS) in the promoter region of gluconeogenic genes, such as PEPCK1 and G6Pase, and
activate their transcription (Schmoll et al., 2000; Yeagley et al., 2001; Nakae et al., 2001;
Puigserver et al., 2003). The mechanism of insulin regulation of these genes is as follows:
Insulin binds to the insulin receptor at the cell membrane to activate phosphatidylinsitol 3
kinase (PI3K). Subsequently, PI3K activates Akt to phosphorylate FoxO1. Once phospho-
rylated, FoxO1 is excluded from the nucleus, resulting in the repression of IRS-bearing
genes (Biggs et al., 1999; Rena et al., 2001). In addition to the nuclear exclusion, it is also
suggested that the phosphorylated FoxO1 undergoes ubiquitination and proteasomal
degradation (Matsuzaki et al., 2003). The phosphorylation-dependent nuclear exclusion
and degradation of FoxO1 is a major pathway of insulin repression of gluconeogenesis.
CAR is now found to repress gluconeogenesis by regulating FoxO1.

Using CAR as bait, Susumu Kodama identified FoxO1 as a CAR-binding protein
and elucidated the cross-talk mechanism of FoxO1 and CAR (Fig. 2, Kodama et al.,
2004). GST pull-down as well as mammalian two hybrid assays were performed to
confirm direct binding of CAR to FoxO1. Co-expression of CAR repressed the FoxO1-
mediated trans-activation of the IRS in HepG2 cells, similar to the repression by insulin.
Activation of Akt by insulin phosphorylates FoxO1, which is removed from the nucleus,
resulting in the repression of IRS-bearing genes such as PEPCK1 and G6Pase. CAR
forms a complex with the un-phosphorylated FoxO1. Because this CAR-FoxO1 complex

Figure 2 Schematic representation of CAR-FoxO1 cross-talk. Upon PB activation, CAR forms a complex with
RXR and binds to PBREM, resulting in the induction of drug metabolizing enzymes. FoxO1 directly binds and
activates IRS, up-regulating gluocneogeic enzymes. Insulin excludes FoxO1 from the nucleus, preventing bind-
ing of FoxO1 to the IRS. In addition, CAR binds directly to FoxO1, thus preventing the FoxO1-IRS interaction.
Thus, both insulin and PB repress the FoxO1-IRS activity. Because FoxO1 is a co-activator of CAR, the insulin-
dependent nuclear exclusion of FoxO1 results in repression of PB-CAR-PBREM activity. Arrows indicate acti-
vation or co-activation, while stop bars indicate repression or co-repression.
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80 S. KODAMA AND M. NEGISHI

no longer binds to the IRS, the activation of CAR results in repressing the PEPCK1 and
G6Pase genes. PB treatment is known to improve insulin sensitivity in diabetic patients
(Lahtela et al., 1985), which is explained by the fact that both insulin and CAR repress
gluconeogenesis through regulating the same transcription factor FoxO1. Consistent with
the repression of FoxO1 by CAR, after chronic treatment with PB, serum glucose remains
at normal levels in the Car+/+ mice, but is elevated in the Car−/− mice. The regulation of
FoxO1 by CAR is the first observation that CAR can work independently of the PBREM
and bind directly to and co-regulate another transcription factor.

At the same time, when PB was first reported to induce drug metabolism in the early
1960s, scientists at the National Institute of Environmental Health Sciences found that
insulin represses drug metabolism (Dixon et al., 1961). Hepatic levels of CYP2B and
CYP3A were increased in diabetic mice and rats and insulin treatment decreased them to
normal levels (Sakuma et al., 2001; Yamazoe et al., 1989). In support of these observations,
insulin blocks PB induction of CYP2B in rat primary hepatocytes (Yoshida et al., 1996;
Sidhu and Omiecinski, 1999). In addition, we demonstrated that insulin repression of
the Cyp2b10 gene is mediated by FoxO1 (Kodama et al., 2004), which co-activates
CAR and augments CAR-mediated PBREM activity in HepG2 cells. Insulin represses
this FoxO1-dependent co-activation of CAR activity. Moreover, co-expression of
constitutively activated Akt also represses CAR activity. Thus, by excluding it from the
nucleus, insulin limits the availability of the co-activator FoxO1 to enhance CAR activity,
resulting in the repression of CAR-PBREM activity. In addition to CAR, pregnane X
receptor (PXR) also co-represses FoxO1-IRS activity. Similar to CAR, FoxO1 co-represses
PXR-mediated trans-activation. Thus, drug-insulin interactions can be mediated by the
reciprocal regulation by CAR/PXR and FoxO1 of their specific target genes (Fig. 2).

The most severe form of adverse effect of PB exposure is the development of liver
tumors in rodents. Acute treatment with PB causes hepatomegaly, an increase in cellular
hypertrophy and hyperplasia (Wei et al., 2000). It was first reported in the 1970s that
chronic PB treatment promotes hepatocellular carcinoma (HCC) (Peraino et al., 1971). PB
is the prototype of many so-called nongenotoxic carcinogens that cause tumors without
mutating DNA. Despite intense investigations for decades, the molecular mechanism of
PB promotion of HCC remains virtually unknown. Because CAR is activated by PB, it
was logical for us to examine whether CAR is involved in PB promotion of HCC. Yukio
Yamamoto studied this subject and the results were unquestionably clear: CAR is an
essential factor in PB promotion of HCC (Yamamoto et al., 2004). In this study, liver
tumors were initiated by a single injection of a typical genotoxic carcinogen diethylnitro-
samine (DEN) in Car+/+ and Car−/− mice, subjected to chronic treatment with PB. After 35
weeks of PB treatment, HCC only developed in the Car+/+ mice. After 50 weeks, all the
Car+/+ mice had died of liver tumors, while no Car−/− mice had either developed liver
tumors or died. In the absence of CAR, PB does not promote HCC.

The molecular mechanism by which CAR promotes HCC is not known. Because
non-genotoxic carcinogens can both increase cell proliferation and suppress apoptosis,
CAR may regulate factors (enzymes, receptors, and proteins) that are involved in the
regulation of proliferation and/or apoptosis. CAR may regulate those factors through gene
expressions, as well as direct protein-protein interactions. No consensus on what these
factors may be has arisen yet, although c-Jun, FoxM1B, Connexin32, and Mdm2 have
been suggested as candidates (Eferl et al., 2003; Kalinichenko et al., 2004; Moennikes
et al., 2000, Huang et al., 2005). Although PB has been used to treat epilepsy patients for
decades, liver tumors have never been associated with PB treatment, PB does not cause
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CAR IN HEPATIC METABOLISMS AND DISEASES 81

liver tumors in human. However, the role of CAR in human HCC development should not
be ruled out at the moment, since there is intriguing suggestions that CAR might be
involved in this. C3H mice are susceptible to PB promotion of HCC, while C57/BL6 mice
are resistant to it. Recent genetic studies linked this susceptibility to the markers D1Mit33
of mouse chromosome 1 (Bilger et al., 2004). The corresponding region 1q21–23 of
human chromosome 1 is found to be amplified in more than half of human HCC samples.
Intriguingly, the Car locus is present within this region of both mouse and human chromo-
somes 1. Thus, the relationship of CAR to HCC deserves intense investigations.

Mechanism of CAR activation. CAR, as its name indicates, is a constitutively
activated receptor, making any effort to investigate its “activation mechanism” sound irra-
tional. On the contrary, the fact is that this constitutive active nature is tightly controlled in
liver in vivo, allowing CAR to be activated in response to PB. CAR is also characterized
as a nuclear receptor that is activated without directly binding to PB, making the investiga-
tion challenging and adventurous. The ultimate question is: What protein, lipid or carbo-
hydrate binds PB directly and triggers CAR activation? Therefore, it is important to
decipher the cellular and molecular events occurring during CAR activation. Two recent
advances that address this question are described next; CAR nuclear translocation regu-
lated by dephosphorylation and the transcriptional regulation of the CYP2B gene by multi-
ple CAR binding sites.

PB triggers CAR, which is sequestered in the cytoplasm, to translocate into the
nucleus. Okadaic acid (OA), the serine/threonine protein phosphatase inhibitor, represses
PB-triggered nuclear translocation and PB induction of the Cyp2b gene in mouse primary
hepatocytes (Kawamoto et al., 1999). While OA repression suggests that dephosphoryla-
tion of CAR may be an essential step regulating the CAR translocation, previous efforts to
demonstrate CAR phosphorylation always ended in disappointment. Fardin Hosseinpour
has recently undertaken the laborious, yet ingenious task of identifying Ser-202 of mouse
CAR as a key phosphorylation site (Fig. 3, Hosseinpour et al., 2006). Given the fact that
the ligand-binding domain of mouse PXR can translocate into the nucleus in response to
PB, when it is placed after the DNA binding domain of CAR, all serine and threonine res-
idues conserved in the ligand-binding domains of both CAR and PXR were selected and
mutated to aspartic acid. These mutants were directly expressed in mouse livers to exam-
ine their nuclear translocation. Only the mutation of serine-202 to aspartic acid retained
CAR in the cytoplasm after PB treatment. On the other hand, the alanine mutation of
serine-202 allowed normal translocation of CAR into the nucleus. An antibody
against a peptide containing phosphorylated Ser-202 was employed to show that
serine-202 is phosphorylated only in the cytoplasm of HepG2 cells. Thus, serine-202 is a
critical phosphorylation site in the ligand-binding domain and its dephosphorylation is
required for CAR to undergo PB-triggered nuclear translocation.

CAR forms a complex with Hsp90 to remain in the cytoplasm of mouse hepatocytes
in vivo. This CAR:Hsp90 complex recruits protein phosphatase 2A (PP2A) in response to
PB (Yoshinari et al., 2003). If PP2A is the protein phosphatase that dephosphorylates
serine-202, PB should elicit a signal pathway to regulate PP2A for dephosphorylating
serine-202. The question arose as to what pathway PB might elicit. Recently, PB has been
reported to activate the AMP-activating protein kinase (AMPK) in HepG2-derived WGA
cells that are capable of inducing CYP2B gene in response to PB (Rencurel et al., 2005).
AMPK regulates the CAR-mediated activation of PBREM in WGA cells. AMPK is an
adaptive as well as systemic energy sensor and has been implicated in obesity and type-2
diabetes (Kahn et al., 2005). Whether AMPK regulates PP2A to dephophorylate serine-202
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82 S. KODAMA AND M. NEGISHI

remains a question for future investigations. Over-expression experiments show that the
CAR:Hsp90 complex also contains a co-chaperone, known as cytoplasmic CAR retention
protein, or CCRP. CCRP is a tetratricopeptide repeat protein and accumulates CAR in the
cytoplasm of HepG2 cells. The possibility exists that CCRP is also involved in regulating
the desphosphorylation of serine-202. In addition to this advance in the area of the nuclear
translocation of CAR, we have also obtained a new insight into understanding the regulatory
mechanism of CAR-mediated transcription.

Karen Swales found another example that CAR acts as co-activator to regulate
transcription (Fig. 3, Swales et al., 2005). Ym17 cells are a stable HepG2 cell line that
expresses V5-tagged mouse CAR in the nucleus. Tagging with the V5 peptide at the
C-terminus abrogates high constitutive activity of mouse CAR in cell-based Luc reporter
assays and converts it to a receptor that can be effectively activated by TCPOBOP. The
endogenous CYP2B6 gene is synergistically induced by co-treatment with TCPOBOP and
OA in the Ym17 cells. Because CAR has already accumulated in the nucleus of Ym17
cells before drug treatment, this synergistic induction should be regulated at the level of

Figure 3 The “multi-tasks” mechanism of CAR activation. In the absence of PB, mouse CAR is phospholylated
at Ser-202 and forms a complex with Hsp90 and CCRP in the cytoplasm. Upon activation by PB, PP2A dephos-
phorylates CAR, resulting in dissociation of CAR from the complex and translocation into the nucleus. CAR
herodimerizes with RXR in the nucleus and interacts with the two distinct elements PBREM and OARE to syn-
ergistically activate the transcription of CYP2B6 gene.
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CAR IN HEPATIC METABOLISMS AND DISEASES 83

transcription in the nucleus. The 1.8-kbp CYP2B6 promoter is activated by TCPOBOP in
the transfected Ym17 cells and is synergistically up-regulated by co-treatment with OA.
The synergistic activation is regulated by the binding of CAR to two distinct sites within
the CYP2B6 gene: the distal PBREM and proximal OA response element (OARE). Acting
as the transcription factor, direct binding of CAR activates PBREM (-1732/-1685 bp) in
response to TCPOBOP. OARE, which is located between -256 and -233 bp of the
promoter, is responsible for the synergistic activation by OA. OARE requires CAR to
acquire this synergistic activation. Both DNA affinity chromatography and chromatin
immunoprecipitation assays have shown that, in fact, CAR binds to OARE after co-treatment
with TCPOBOP and OA. The binding of CAR to OARE is indirect and mediated by yet an
unknown DNA-binding protein. Thus, CAR interacts with the two distinct elements,
PBREM and OARE, to synergistically activate the transcription of the CYP2B6 gene.
This is a novel mechanism in which a given receptor regulates multiple distinct enhancer
elements of a single gene by acting as both a transcription factor and a co-regulator. We
call this mechanism the “multi-tasks” mechanism. Further characterization of the “multi
tasks” mechanism of CAR-mediated transcription should greatly enhance our knowledge
of nuclear receptors, their functions, and mechanisms.

PROSPECTS

By activating CAR, PB accomplishes its diverse effects on liver functions (Fig. 1).
One of these effects is the coordinate induction of a large group of phase I and II drug
metabolizing enzymes and transporters, through the CAR-mediated activation of PBREM
found in the genes that encode those enzymes and transporters. Because both xenobiotics
and endobiotics share the same enzymes and transporters for metabolism and excretion,
CAR activation by PB results in the alteration of liver functions proactively or adversely.
CAR also exerts its effects by acting as a co-regulator of gene transcription. Co-repression
of FoxO1 is only the example of this type of CAR regulation at the present time. However,
many situations similar to the CAR-FoxO1 cross-talk may be waiting to be discovered in
future investigations, thus shedding light on drug interactions with endogenous signals
such as insulin. Unlike the classic model of nuclear receptor action in which a receptor
directly binds to its enhancer element, CAR regulates multiple distinct elements of a
single gene. Once the molecular mechanism called “multi-tasks” is further understood, it
will provide a number of targets for drug development and discovery. Our cDNA microarray
study using Car−/− mice showed more than 140 genes that are either up- or down-regulated
by PB treatment, yet CAR regulates only half of those genes (Ueda et al, 2002). Thus,
CAR is not the only factor mediating PB actions; it can explain, at most, half of the diverse
effects of PB. We hasten to find factors that regulate CAR-independent mechanisms for the
complete understanding of PB actions.

ABBREVIATIONS

CAR constitutive active/androstane receptor
CPT1A carnitine palmitoyltransferase 1a.
PXR pregnane X receptor
RXR retinoid X receptor
TCPOBOP 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene
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