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We report our findings of a 1�f power spectrum for the total amount of sand in directed and
undirected Bak-Tang-Wiesenfeld models confined to narrow stripes and driven locally. The underlying
mechanism for the 1�f noise in these systems is an exponentially long configuration memory giving
rise to a very broad distribution of time scales. Both models are solved analytically with the help of an
operator algebra to explicitly show the appearance of the long configuration memory.

PACS numbers: 05.65.+b, 05.40.Ca, 05.45.–a, 45.70.Ht
The ubiquitous 1�f noise fascinated physicists for gen-
erations [1]. This phenomenon usually indicates a broad
distribution of time scales in the system. One simple
scenario of having an exponentially broad distribution of
time scales is through an exponential dependence of local
characteristic frequency on some parameter [2], e.g., ther-
mal activation events in equilibrium systems over a suf-
ficiently broad and flat distribution of energy barriers [3].
To account for broad scale distributions in space and time
in interacting dynamical systems, Bak, Tang, and Wiesen-
feld (BTW) introduced the notion of self-organized criti-
cality (SOC) [4]. Although the original BTW “sandpile”
model did not exhibit the 1�f power spectrum per se[5],
variants of the model indeed show 1�f-like noise [6]. In
this Letter, we report the observation of 1�f noise for
directed and undirected BTW models confined to nar-
row stripes (quasi-one-dimensional geometries). In these
models, sand flows in the long direction, with periodic or
closed boundary conditions in the other direction. The
system is driven locally by randomly adding sand to a
unique set of sites that have the same coordinate along
the long axis. The total amount of sand in the sandpile
as a function of time exhibits a clean 1�f power spec-
trum with an exponentially small lower cutoff. Surpris-
ingly, the outcome of these interacting systems falls into
the above mentioned simple scenario—the dynamics or-
ganizes the system into a state with exponentially long
configuration memory.

Let us first consider the directed model [7]. An integer
variable z�x, y� is assigned on each site �x, y� of a
two-dimensional lattice of size Lx 3 Ly (1 # x # Lx ,
1 # y # Ly). Throughout the paper, we refer to z�x, y�
as the number of grains of sand (or height) at the site
�x, y�. The dynamics consists of the following steps:
(i) Add a grain of sand to a randomly selected site in
the first column, �1, y�: z�1, y� ! z�1, y� 1 1; (ii) if as a
result of the process the height z�x, y� exceeds a critical
value zc � 2, the site topples and three grains of sand
are redistributed from this site to three of its nearest
neighbors up, down, and to the right; (iii) repeat step (ii)
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until all sites are stable, i.e., z�x, y� # 2 everywhere. This
chain reaction of updates is referred to as an avalanche;
and (iv) when the avalanche is over, measure the total
amount of sand in the system Z�t� �

P
z�x, y�. Then

go to step (i). Notice that the flow of sand is directed
to the right along the x axis. Also note the separation
of time scales—the duration of individual avalanches is
taken to be much faster than the unit time interval defined
by the addition of sand grains. The boundary condition in
the x direction is always set to open: z�Lx 1 1, y� � 0.
While in the y direction we either choose the periodic
boundary condition (which we refer to as model 1) or the
closed boundary condition. In the latter case we restrict
ourselves to Ly � 2 and refer to it as model 1A. In
model 1A, we set zc � 1 and the redistribution rule (ii)
prescribes to move two grains of sand from the toppling
site: one to the right along the x direction and the other to
its nearest neighbor (up or down) in the y direction.

After some transient period the above dynamics brings
the system to a stationary state, where the total amount
of sand in the system Z saturates and fluctuates about
its average value. At this point we start recording Z�t�
and measure its power spectrum S�f� � jẐ�f�j2, where
Ẑ�f� is the Fourier transform of Z�t�. In Fig. 1(a), we
show the power spectra for models 1 and 1A. Even for
small systems one observes a very broad 1�f region.
In fact, as we will demonstrate later, the lower cutoff
of the 1�f region falls off with Lx exponentially. Our
simulations indicate that as the width of the stripe Ly is
increased the 1�f region shrinks, as shown in the bottom
curve of Fig. 1(a). Direct observations of configurational
changes at each time step clearly indicate that the rate
of configurational changes at x decreases drastically with
increasing x [8], suggesting that there are many time
scales and some kind of long memory in the system. To
understand this, we proceed with solving model 1A using
the group of operators introduced by Dhar [9].

To simplify the notation let us denote the configura-
tion at the pair of sites �x, 1� and �x, 2� by the column
� z�x,2�

z�x,1� �, and let Lx � L. Any pair configuration with both
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FIG. 1. (a) From top to bottom, power spectra for model 1A
with Lx � 8, model 1 with Lx � 8 and Ly � 4, and model 1
with Lx � 8 and Ly � 8. The second and the third curves
are shifted vertically by 21 and 22 decades, respectively, for
clarity. The dashed line has the slope 21. (b) Autocorrelation
functions C�x, t� at x � 3, x � 4, and x � 5, for model 1A
with Lx � 8.

z�x, y� # zc � 1 is stable. However, the recurrent pair
configurations, present in the stationary SOC state, are
� 0

1 �, � 1
0 �, and � 1

1 �, while � 0
0 � is never realized after the

transient period. There are no additional restrictions on
pair configurations at different columns [7]; the total num-
ber of recurrent states is thus 3L. Let us define operators
Ux and Dx acting on recurrent configurations. The ac-
tion of these operators consists of adding one grain of
sand at sites �x, 2� and �x, 1� correspondingly, and, if nec-
essary, relaxing the resulting configuration according to
the avalanche rules. The final stable configuration is the
result of the operator acting on the initial configuration.
The following operator identities [9] result directly from
the avalanche rules

U2
x � DxUx11 , (1)

D2
x � UxDx11 . (2)

Open boundary at x � L 1 1 corresponds to UL11 �
DL11 � I, where I is the identity operator. From
Eqs. (1) and (2) it immediately follows that

U1D1 � U2D2 � · · · � ULDL � UL11DL11 � I . (3)

In other words, addition of one grain of sand to both upper
and lower sites at any column x triggers a downstream
avalanche, in which two grains fall off the right edge,
leaving the underlying configuration unchanged. Since
Dx � U21

x , Eq. (1) can be rewritten as U3
x � Ux11.

Therefore, U3L

1 � U3L21

2 � U3
L � UL11, and U3L

1 � I.
Repeated application of U1 3L times makes the system
visit every one of the 3L recurrent states exactly once
and return to its original configuration. If U1 and D1 are
applied in random order (that is how we drive the system),
since Um

1 Dn
1 � Um2n

1 , the average time required to visit
all 3L states is given by

p
T � 3L, or T � 9L.

Now let us study the “microscopic” details of how
operators Ux and Dx change the configurations of the
sandpile. Note that Ux� 1

0 � � � 0
1 �Ux11, Ux� 0

1 � � � 1
1 �, and

Ux� 1
1 � � � 1

0 �I. It is clear that the only cases where the
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operator Ux or Dx can “propagate” to the right and change
the state of the next neighbor are Ux� 1

0 � � � 0
1 �Ux11 and

Dx� 0
1 � � � 1

0 �Dx11. So, in order for the operator U1 to
be able to change the configuration of a pair at x, all
x 2 1 pairs to the left of this pair must be in the state
� 1

0 �. Thus, the probability that a pair at x changes its
configuration as a result of the addition of a grain of sand
at the left end of the system is 1�3x21. If the system is
driven by a random sequence of U1 and D1, on average it
will take tx � �3x21�2 � 9x21 grains of sand to change
the configuration of a pair at x.

This exponential increase of the characteristic time tx

with x is manifested in the local autocorrelation functions
C�x, t� � ��Z�x, 0�Z�x, t�� 2 �Z�x, 0��2����Z�x, 0�2� 2

�Z�x, 0��2�, where Z�x, t� � z�x, 1� 1 z�x, 2� is the
number of grains at column x and at time t. In Fig. 1(b)
we plot C�x, t� vs t�9x21 for several x’s. One sees that
C�x, t� � F�t�9x21�. This form of the local autocorrela-
tion function implies a scaling form for the local power
spectrum: Sloc�f, x� � �1�fchar �x��S���f�fchar �x���� with
fchar �x� � f0 exp�2x ln9�, where Sloc�f, x� is the power
spectrum of Z�x, t�. Note that if Ux or Dx propagates
through a column it leaves the number of grains on that
column Z�x� unchanged. It follows that the addition
of a grain at the left end of the system can change at
most the number of grains at one column. If we assume
that the local events of changing Z�x� are independent
for different x’s (or the correlations are not too strong),
which is a reasonable approximation when we drive
model 1A with a random sequence of U1’s and D1’s,
then the global power spectrum of the total number of
grains in the system is the superposition of the local
power spectra. The exponential fall off of the local
characteristic frequencies of configuration changes would
give rise to a global 1�f power spectrum. That is [2,3]

Sg�f� �
Z L

0
Sloc�f, x� dx

�
Z L

0
�1�fchar �x��S���f�fchar�x���� dx

�
Z L

0
exp�lx�S���f exp�lx��f0��� dx�f0

� �1�f�
Z f exp�lL��f0

f�f0

dyS�y��l .

The lower cutoff of the 1�f region is fc � f0 exp�2lL�,
which for the top curve in Fig. 1 (l � ln9 and L � 8) is
of the order of 1027.

We now turn our attention to the undirected model on
a stripe Lx 3 Ly . In this model an unstable site with
z�x, y� . zc � 3 redistributes one grain of sand to each
of its four neighbors. In our simulations at each time
step we randomly select a site on the central column [x �
�Lx 1 1��2, or, if Lx is an even number we randomly
select one of the 2Ly sites on the two central columns]
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FIG. 2. (a) Power spectra for the center-driven BTW models.
From top to bottom: model 2A with Lx � 16, model 2 with
Lx � 17 and Ly � 8, and model 2 with Lx � 17 and Ly �
24. The dashed line has the slope 21. (b) Autocorrelation
functions C�x, t� for model 2A with Lx � 12, at x � 8, 9, 10,
11, which are k � 1, 2, 3, 4 distance away from the driving
pairs x � 6 and x � 7.

and add one grain of sand to that site. We choose
to have open boundaries at x � 0 and x � Lx 1 1.
Again, we study two versions of the model— the first
with periodic boundary condition along the y direction
(model 2) and the second defined on an L 3 2 stripe with
closed boundary condition in the y direction (model 2A).
In model 2A zc � 2 and a site with z�x, y� . 2 moves
one grain of sand to each of its three neighbors. In
Fig. 2(a), we show the power spectra of the total amount
of sand in models 2 and 2A. Similar to the case of the
directed model 1, in model 2 the 1�f region shrinks when
Ly is increased. The dynamics of the undirected models
is apparently more complex than that of the directed
ones. However, much of the apparent complexity is due
to the motion of “troughs” [8]—columns in which all
z # zc 2 1, so that avalanches cannot propagate beyond
them [10]. We first concentrate on understanding the
trough dynamics.

Let us focus on model 2A. The operator relations (1)
and (2) now become

U3
x � DxUx11Ux21 , (4)

D3
x � UxDx11Dx21 . (5)

The open boundaries at two ends imply U0 � D0 �
UL11 � DL11 � I. Let us define the operator Ox �
UxDx . In model 1A we have shown that Ox � I for
every x. This is not so in the undirected model. However,
in this model the operators Ox form a simple small
subgroup of all operators in the system. From Eqs. (4)
and (5) it follows that O2

x � Ox11Ox21. Using this
operator identity repeatedly one gets O2

x � Ox11Ox21 �
Ox12Ox22 � · · · � Ox1nOx2n. And in general,

OxOx0 � O�x1x0� mod�L11� . (6)

In other words, operators O0 �� I�, O1, O2, . . . , OL form
a cyclic subgroup of L 1 1 elements. To understand
the physical nature of this subgroup let us take a closer
look at the set of recurrent configurations in model 2A.
If a stable subconfiguration at a subset of sites F does
not occur in the recurrent states, it is called a forbidden
subconfiguration (FSC) [9]. A subconfiguration on F
is an FSC if for every site �x, y� [ F z�x, y� is strictly
smaller than the number of its neighbors in the subset
F [9]. It is clear that the pair � 0

0 � is an FSC. Let
us refer to pairs � 1

1 �, � 0
1 �, � 1

0 � as troughs. It is easy to
see that a subconfiguration enclosed by two troughs is
an FSC. Thus a recurrent configuration cannot contain
more than one trough. Therefore, all SOC states fall into
one of the L 1 1 classes: those with no troughs (jS�),
and those with a trough in the mth column (jSm�). The
action of OmjSm� does not produce any topplings but
simply fills up the trough. On the other hand, OkjSm�
(k fi m) creates an avalanche in which two grains of sand
fall off the pile. However, this avalanche produces only
minor changes in the configuration of the pile. Indeed,
since Ok � OmO21

�m2k� mod�L11� the action of OkjSm� fills
up the trough at x � m and creates a trough at x �
�m 2 k� mod�L 1 1� [11]. The action of Ok on a state
jS� with no troughs results in a system-wide avalanche
with four grains of sand falling off the pile. The only
configurational change, however, is the creation of a new
trough at L 1 1 2 k (recall that Ok � O21

L112k). These
rules mean that the action of the L operators Ok results
only in the motion, creation, and annihilation of the
trough, and does not destroy the configuration memory
of the system.

Having understood the role of the operators Ok , we
separate the trivial trough dynamics from others by
defining the equivalence relation of operators. If A �
BOk , we say that A is equivalent to B and denote it
by A 	 B. Thus Uk 	 D21

k . One can rewrite the basic
operator identity (4) as U4

k � Uk21Uk11Ok , or

U4
k 	 Uk21Uk11 . (7)

Since U0 � I, Eq. (7) implies U4
1 	 U2. Write

U
N�k�
1 	 Uk11. One has U

4N�k�
1 	 U4

k11 	 UkUk12 	
U

N�k21�
1 U

N�k11�
1 , which gives the recursion relation

N�k 1 1� � 4N�k� 2 N�k 2 1� with initial conditions
N�0� � 1, N�1� � 4. It is easy to show that N�k� �
��3 1 2

p
3� �2 1

p
3�k 2 �2

p
3 2 3� �2 2

p
3�k��6. In

a system of size L one has U
N�L�
1 	 UL11 � I. The total

number of recurrent states is then N
�2A�
SOC � �L 1 1�N�L�.

In other words, any recurrent configuration can be ob-
tained from a given one by the action of some power of
U1 and, if necessary, creation, annihilation, or change
of the position of the trough achieved by the action of
L operators Ok . Asymptotically, only 2 1

p
3 
 3.732

pair configurations per site are allowed in a recurrent
state, compared to 9 stable pair configurations.

Now we are in the position to address the question of
long memory in model 2A. Let us restrict ourselves to
the operator Uk acting on a state that has no trough. We
have Uk� 0

2 � � � 1
2 �; Uk� 1

2 � � � 2
2 �; Uk� 2

0 � � � 0
1 �Uk11Uk21;
2451
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Uk� 2
1 � � � 2

0 �Ok; Uk� 2
2 � � � 2

1 �Ok . It seems that the third
relation could propagate Uk through a string of � 2

0 �’s,
changing the configurations away from the driving point,
similar to the case of directed models. This is not so,
because one cannot have consecutive columns of � 2

0 � in a
recurrent state. In fact it is the last two relations which
can cause configuration changes away from the driving
point. Naively, according to these relations, the action
of Uk on � 2

1 � or � 2
2 � causes only local changes apart

from some trough dynamics. However, this is true only
if the local changes [� 2

1 � ! � 2
0 � or � 2

2 � ! � 2
1 �] do not

result in any FSC. If an FSC does appear as a result of
the change, the change in the original configuration will
not be restricted to one pair, but instead will propagate
throughout the FSC. The FSC responsible for such a
propagation is the string � 0 1 1 · · · 1 0 �. This
FSC can be created by the action of Uk on a column
of � 2

1 � followed by a string of � 2
1 �’s ended with � 2

0 �. Or
it can be created by acting Uk on a column � 2

2 � that
is inside a string of � 2

1 �’s bounded between two � 2
0 �’s.

In both cases, direct application of the avalanche rules
shows that all pairs associated with this FSC and the pairs
next to it would be updated. These scenarios require that
the starting configuration contains a string of � 2

1 �’s with
� 2

0 � at at least one of the ends. Such a string of length

x is just one among N
�2A�
SOC�x� � �2 1

p
3�x 
 3.732x

recurrent states of a string of x columns. That is why the
irreversible changes of pairs at distance x from the driving
pair are exponentially unlikely. In model 2A, driven by
random addition of sand at sites on the central pair(s)
the characteristic frequency at distance k from the driving
point is given by fchar �k� � 1���2 1

p
3�k�2 � 13.932k

[see Fig. 2(b)].
In spite of the apparent differences between directed

and undirected models, the mechanism for a long term
memory and the 1�f spectrum is the same: (a) Operators
Ox � UxDx do not produce irreversible changes in the
configuration; (b) In order to produce irreversible changes
at a distance k from the place of sand addition, all
k pairs in between have to be in a unique peculiar
configuration (out of NSOC�k� � Ak possible recurrent
subconfigurations); (c) Such an exponential dependence
of the characteristic frequency on distance leads to the
1�f spectrum of the total amount of sand. Note that
the observed 1�f noise is not related to a power-law
distribution of avalanches. In fact in our models these
two properties are mutually exclusive. Also note that a
1�f spectrum in the total amount of sand would imply
a spectrum ~ f for the sand falling off the edge. It is
straightforward to generate the case to higher dimensions
in which sand flows in one direction with closed or
periodic boundaries in other directions. Recently, De
Los Rios and Zhang [12] observed a 1�f spectrum in
2452
a nonconserved sandpilelike model in which a certain
fraction of sand is lost in each toppling process. Because
of the absence of conservation, avalanches themselves
are exponentially unlikely to reach a distant site, giving
rise naturally to an exponential distribution of time
scales. In contrast, in our model avalanches constantly
pass through the system but they produce only small
changes of the configuration. A 1�f spectrum was also
observed previously for a continuously boundary-driven
BTW model [13]. Its origin was attributed to a (linear)
diffusion of z�x, y� with a noisy boundary condition
[13,14], which gives a power-law lower cutoff fc � 1�L2

x
for the 1�f spectrum—a mechanism very different from
ours. Finally, as a possible experimental realization of the
model, we suggest the system of superconducting vortices
confined to a quasi-1D geometry.
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