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We present a forecasting technique for chaotic data. After embedding a time series in a state space
using delay coordinates, we “learn” the induced nonlinear mapping using a local approximation. This al-
lows us to make short-term predictions of the future behavior of a time series, using information based
only on past values. We present an error estimate for this technique, and demonstrate its effectiveness
by applying it to several examples, including data from the Mackey-Glass delay differential equation,

Rayleigh-Bénard convection, and Taylor-Couette flow.
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One of the central problems of science is forecasting:
Given the past, how can we predict the future? The
classic approach is to build an explanatory model from
first principles and measure initial data. Unfortunately,
this is not always possible. In fields such as economics,
we still lack the “first principles” necessary to make good
models. In other cases, such as fluid flow, the models are
good, but initial data are difficult to obtain. We can
derive partial differential equations that allow us to pre-
dict the evolution of a fluid (at least in principle), but
specification of an initial state requires the measurement
of functions over a three-dimensional domain. Acquisi-
tion of such large amounts of data is usually impossible.
Typical experiments employ only a few probes, each of
which produces a single time series. Partial differential
equations simply cannot operate on such data. In either
case, when we lack proper initial data or when we lack a
good model, we must resort to alternative approaches.

Such an alternative is exemplified by the work of
Yule,! who in 1927 attempted to predict the sunspot cy-
cle by building an ad hoc linear model directly from the
data. The modern theory of forecasting? as it has
evolved since then views a time series x(¢;) as a realiza-
tion of a random process. This is appropriate when
effective randomness arises from complicated motion in-
volving many independent, irreducible degrees of free-
dom.

An alternative cause of randomness is chaos,> which

can occur even in very simple deterministic systems.
While chaos places a fundamental limit on long-term
prediction,? it suggests possibilities for short-term pre-
diction: Random-looking data may contain simple deter-
ministic relationships, involving only a few irreducible
degrees of freedom. In chaotic fluid flows, for instance,
experimental® and theoretical results® indicate that in
some cases the state space collapses onto an attractor of
only a few dimensions.

In this paper we present a method to make predictions
about chaotic time series. These ideas were originally in-
spired by efforts to beat the game of roulette, in colla-
boration with Packard.®

If the data are a single time series, the first step is to
embed it in a state space. Following the approach intro-
duced by Packard et al.,” and put on a firm mathemati-
cal basis by Takens,” we create a state vector x(z) by as-
signing coordinates x,(t) =x(t), x,(1)=x(—1),...,
x4(1)=x(—(d—1)1), where 7 is a delay time. If the
attractor is of dimension D, a minimal requirement is
that d = D.

The next step is to assume a functional relationship
between the current state x(z) and the future state
x(t+7),

x(t+7T)=fr(x@)). 1)

We want to find a predictor Fr which approximates f7.
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If the data are chaotic, then f7 is necessarily nonlinear.
There are several possible approaches: One can assume
a standard functional form, such as an mth-order poly-
nomial in 4 dimensions, and fit the coefficients to the
data set using least squares.® Forecasts for longer times
2T,3T, ..., can then be made by composing F7 with it-
self. This approach has the disadvantage that errors in
approximation grow exponentially with composition. An
alternative is to fit a new function F7 for each time 7.
This has the advantage that global approximation tech-
niques only work well for smooth functions—and higher
iterates of chaotic mappings are not smooth. Yet anoth-
er approach is to recast Eq. (1) as a differential equation
and write x(r+7) as its integral. All of these ap-
proaches suffer from the problem that the number of free
parameters for a general polynomial is (m +d)!/(m'd")
= d"™, which is intractable for large d.

Our preliminary results suggest that a more effective
approach is the local approximation, using only nearby
states to make predictions. To predict x(z +7) we first
impose a metric on the state space, denoted by || ||, and
find the k nearest neighbors of x(r), i.e., the k states
x(¢') with 1" <t that minimize |[x(z) —x(z")||. We then
construct a local predictor, regarding each neighbor
x(¢') as a point in the domain and x(¢'+7) as the cor-
responding point in the range. The simplest approach to
construct a local predictor is approximation by nearest
neighbor, or zeroth-order approximation, i.e., k=1 and
Xpred(t,T)=x(t'+T). A superior approach is the first-
order, or linear, approximation, with our taking k
greater than d, and fitting a linear polynomial to the
pairs (x(¢'),x(t'+7T)). For convenience we usually
treat the range as a scalar, mapping d-dimensional states
into one-dimensional values, although for some purposes
it is desirable to let the range be 4 dimensional. The fit
can be made in any of several ways; for the work report-
ed here we did least squares by singular-value decompo-
sition. When k=d +1 this is equivalent to linear inter-
polation, but to ensure stability of the solution it is fre-

quently advantageous to take K >d +1. We have also
experimented with approximation using higher-order
polynomials, but in higher dimensions our results are not
significantly better than those obtained with first order.

If done in the most straightforward manner, finding a
neighboring value in a data base of NV points requires the
order of NV computational steps. This can be reduced to
logV by the partitioning of the data in a decision tree.’
Furthermore, once the neighbors are found predictors for
many times 7 can be computed in parallel. With these
speedups the computations reported here can be done on
small computers.

To facilitate the comparison of results, in this paper
we simply build the data base from the first part of the
time series, and hold it fixed as we make predictions on
the remainder. Alternatively, it is possible for one to op-
timize the performance with respect to either memory or
data limitations by dynamically updating the data base.

To evaluate the accuracy of our predictions, we com-
pute the root-mean-square error, o,(7) =([xpweq(r,7)
—x(t+T)1»"2 For convenience we normalize this by
the rms deviation of the data o, =((x —(x)) %2, form-
ing the normalized error E =c,(T)/o.. If E=0, the
predictions are perfect; £ =1 indicates that the perfor-
mance is no better than a constant predictor xpreq(7,7)
=(x). To estimate E we make as many predictions as
we need for reasonable convergence, typically on the or-
der of 1000.

We have applied our method to several artificial and
experimental systems, including the logistic map,? the
Hénon map,? the Mackey-Glass delay-differential equa-
tion, ' Taylor-Couette flow,'" and Rayleigh-Bénard con-
vection in an *He-*He mixture.'> Our results are sum-
marized in Table I.

An illustration of the performance of the local linear
approximation is given in Fig. 1, with use of convection
data obtained by Haucke and Ecke.'? The dimension of
this time series is D= 3.1 (see Ref. 12). To compare
with a “standard forecasting technique,” we also show

TABLE I. A summary of forecasts using local linear approximation for several different data sets. D is an estimate of the attrac-
tor dimension, d is the embedding dimension, N is the number of data points used, Tmax is the rough prediction time (Ref. 13) at
which the normalized error approached 1, and fchar is the “characteristic time” for the time series estimated as the inverse of the
mean frequency in the power spectrum. In comparison, a standard forecasting technique (global linear autoregression) gave T max

values that were typically about one characteristic time.

Differential delay?® Rayleigh-Bénard® Couette®
tg= R/R.= R/R.=
17 23 30 100 10.55 12.19 12.24 10.2 12.9 13.7
D 2.1 2.7 3.5 10 2.0 2.6 3.1 2.0 2.7 3.1
d 4 4 6 18 5 6 6 10 6 6
N 104 2x10* 2x10* 10° 104 10* 3x104 104 3x10* 3x10*
T max 600 300 300 150 oo 1000 s 100 s oo 3s ls
t char 50 55 60 65 3s 2s 1.5s 0.5s 0.4s 0.1s
4Reference 10. “Reference 11.

bReference 12.

846



VOLUME 59, NUMBER 8§

PHYSICAL REVIEW LETTERS

24 AUGUST 1987

A i - ST o S e B S
1' LA S e S B A S T T T T

LL3

t o
B /\/\/\/\\/ Z N GL15-

(/\%ﬁ\fw o

in LL6
R NLE

} Lo o
i n AnarNBEL Ot ULL15
10 " 80857 GagdtT =
N NN 4T
P L o e ]
-7 wo- 1
- DDD:’ 7
a
o
a
10 2 a " L Ll R L0
0 10 20 30 40
PREDICTION TIME (sec)
FIG. 1. Top: A time series obtained from Rayleigh-Bénard

convection in an ‘He-*He mixture (Ref. 12), with Rayleigh
number R/R.=12.24, and dimension D = 3.1. Bottom: The
normalized error E(T) =0,(T)/o.. The top and bottom time
scales are the same. We show results for the local linear (LL)
and global linear (GL) methods; numbers following the initials
indicate the embedding dimension. The dashed lines are from
Eq. (2), with k equal to the computed metric entropy from
Ref. 12, and C determined by a least-squares fit.

results obtained using a global linear approximation
(linear autoregression?). When d <D, the quality of
prediction for the local approximation is roughly the
same as that obtained with the global linear approach,
but for d sufficiently large the predictions are signifi-
cantly better.

How well does this local approximation work? This
depends on the parameters of the problem, including the
number of data points NV, the attractor dimension D, the
metric entropy A, the signal-to-noise ratio S, and the pre-
diction time 7. There are two distinct regimes: If the
typical spacing between data points, e<N ~'/P < § 7!
then the forecast is limited by noise. Following Shaw,?3
the average information in a prediction is {/(T))=InS
—hT. For a narrowly peaked distribution with £ <1, to
first order <I/(T)) is proportional to —InE.

The second regime occurs when ¢>S ™" and the ac-
curacy of forecasts is limited by the number of data
points. In this case, providing d is sufficiently greater
than D, in the limit that £ <1 we propose the following
error estimate:

EzCé’("'+l)kTN—(m+l)/D, )

where m is the order of approximation and C is a con-
stant. k equals the largest Lyapunov exponent when
m =0, and equals the metric entropy otherwise. The ar-

AT
5 10 15
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FIG. 2. The normalized error as a function of the prediction
time 7, for the logistic and Hénon maps (Ref. 3). Results are
shown using zeroth-order (0) and first-order (1) local approxi-
mation. The dashed lines are from Eq. (2), with a least-
squares fit for C and the positive Lyapunov exponents, k =log2
for the logistic map, and k = 0.42 for the Hénon map (Ref.
14).

E T T T T T T l T T T N E]
E b
1k n
E H o £
F a ©
2
107" 95 -
E o8 % El
E oo e At 3
2 T prcas _a” N
10 E O//e /?/ A //// 3
E - e 3
F - Nl i
L /O/O e R 1
107° E O B o’ x -
E jag -7 4 E
o J=ad & /r:v/ b
// 4 . .
10 * = B/ﬂ s w’ o logistic(0) _
E A / . . B
F e / x logistic(1) ]
5 | A pal )
10 1 - o © henon(0) =
. - E
A L/ o henon(1)
_6 s
10°L a ti
10 Tl 1 L Lo 1 1 L 1
0

guments leading to this formula are too involved to re-
port here, but they are based on the following facts: The
error of interpolation in one dimension is proportional to
fim+Dem+1 6 leading order the mth derivative grows
under iteration as the mth power of the first derivative,
and the average derivatives along the unstable manifold
grow according to the positive Lyapunov exponents. De-
tailed arguments leading to this result will be presented
elsewhere. '

The scalings predicted by Eq. (2) are illustrated in
Figs. 2 and 3. The exponential increase of E(T) is
demonstrated in Fig. 2, for numerical experiments on the
logistic and Hénon maps.? For the logistic map the
slopes are very close to those predicted. For the Hénon
map, a least-squares fit gives slopes about 10% greater
than those expected with the positive Lyapunov ex-
ponent, indicating a possible correction'* to Eq. (2). For
the convection data on Fig. 1, agreement with computed
values of the metric entropy'? is very good as indicated
in the figure.

Note that setting E(Tpax) =1 in Eq. (2) yields
Tmax=UnN)/kD, independent of the order m. Thus
zeroth-order interpolation is less effective than first or-
der, except when E is the order of 1. Equation (2) sug-
gests that higher-order polynomial interpolation might
be more effective, but this is difficult in more than two
dimensions.

The power-law variation of E with N is illustrated in
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FIG. 3. The normalized error with use of local linear ap-
proximation as a function of the number of data points N, at
fixed prediction time 7. For the logistic map (Ref. 3) r =4 and
T =3; for the Mackey-Glass delay-differential equation (Ref.
10) 7=40, with two values of the delay parameter r,. The
dashed lines are from Eq. (2), with D=1 for the logistic map
and D=D, the Lyapunov dimension, from Ref. 10 for
Mackey-Glass equation.

Fig. 3, where we show the behavior for the logistic map
and the Mackey-Glass equation. The agreement of the
slopes with the expected values of (m +1)/D based on
computations of the Lyapunov dimension ' is quite good.
This scaling law breaks down for large N, on account of
an approach to the noise floor (when e <.S '),

In addition to the obvious practical applications of
forecasting, the construction of approximate models can
be a useful diagnostic tool to investigate chaos. Equation
(2) demonstrates how forecasting can be used to esti-
mate dimension and entropy; Lyapunov exponents are
also easily obtained. Forecasting provides a way to
determine whether the resulting numerical values of di-
mension and entropy are reliable. Ultimately, the ability
to forecast successfully with deterministic methods may
be the strongest test of whether or not low-dimen-
sionality chaos is present.

At this point, this work is still in a preliminary stage
and many possibilities remain to be investigated. In a
future paper we plan to compare the local approximation
in more detail to some other approaches, in particular
recursive~-ordinary-differential-equation models such as
neural nets.

In this paper we have shown that a forecasting ap-
proach based on deterministic chaos can be quite
effective in predicting low- to moderate-dimensionality
time series. Furthermore, this can be done with reason-
able amounts of data and computer time. The most im-
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portant point is not the specific technique, but rather the
demonstration that approaches based on deterministic
chaos can be effective; we expect that new and better
techniques will emerge rapidly as more attention is fo-
cused on this problem. Such methods should be effective
for problems in fluid dynamics, control theory, artificial
intelligence, and possibly even economics.

We would like to thank Scott Konishi for assistance on
numerical procedures, Glenn Carter for assistance in
reading nonstandard computer tape formats, and lan
Percival, Josh Deutsch, and particularly Norman
Packard for valuable conversations. We would also like
to thank Steve Omohundro for making us aware of the
literature on decision trees. In a different context, he has
recently independently proposed a local linear approxi-
mation as an efficient means of performing artificial-
intelligence tasks. !’
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