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Apoptosis is a form of programmed cell death that is controlled
by aspartate-specific cysteine proteases called caspases. In the
immune system, apoptosis counters the proliferation of lympho-
cytes to achieve a homeostatic balance, which allows potent
responses to pathogens but avoids autoimmunity1,2. The CD95
(Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruit-
ing Fas-associated death domain (FADD), caspase-8 and caspase-
10 proteins into a death-inducing signalling complex3,4. Hetero-
zygous mutations in CD95, CD95 ligand or caspase-10 underlie
most cases of autoimmune lymphoproliferative syndrome
(ALPS), a human disorder that is characterized by defective
lymphocyte apoptosis, lymphadenopathy, splenomegaly and
autoimmunity5–14. Mutations in caspase-8 have not been
described in ALPS, and homozygous caspase-8 deficiency causes
embryonic lethality in mice. Here we describe a human kindred
with an inherited genetic deficiency of caspase-8. Homozygous
individuals manifest defective lymphocyte apoptosis and homeo-
stasis but, unlike individuals affected with ALPS, also have
defects in their activation of T lymphocytes, B lymphocytes
and natural killer cells, which leads to immunodeficiency.
Thus, caspase-8 deficiency in humans is compatible with normal
development and shows that caspase-8 has a postnatal role in
immune activation of naive lymphocytes.

Some individuals studied at the NIH under approved protocols
manifest ALPS-related clinical features but do not have mutations
in CD95, CD95 ligand or caspase-10 (ref. 15). Among them, we
identified two siblings in family 66, a 12-yr-old female (patient 1)

and an 11-yr-old male (patient 2), who showed lymphadenopathy,
splenomegaly and defective CD95-induced apoptosis of peripheral
blood lymphocytes (PBLs; Table 1 and Fig. 1a). Unlike typical
individuals affected with ALPS, they had immunodeficiency charac-
terized by recurrent sinopulmonary and herpes simplex virus
(HSV) infections and poor responses to immunization (Table 1).
The affected siblings were developmentally normal. The unaffected
mother, father and sister were clinically well, although their PBLs
showed partial defects in apoptosis mediated by CD95 (Fig. 1a and
data not shown). Cells from patient 1 responded normally to the
mitochondrial apoptosis inducers staurosporine, ceramide and
etoposide (Fig. 1b).

Biochemical analysis of the death-inducing signalling complex
(DISC) showed normal CD95-induced FADD recruitment in all
members of family 66 examined (Fig. 1c and data not shown). By
contrast, the cellular abundance of caspase-8 and its recruitment to
the DISC were decreased markedly in patient 1 and patient 2, but
were normal in the mother (Fig. 1c, d, and data not shown). Neither
caspase-8 nor the downstream effector caspase-3 underwent clea-
vage after Fas ligation, indicating that the DISC from patient 1 cells
was not functional (Fig. 1e). We sequenced the complementary
DNAs of CD95, CD95 ligand, caspase-10 and FADD from family
members but found no mutations; however, we identified a homo-
zygous C to T mutation in caspase-8 in both patient 1 and patient 2
that changed an arginine to a tryptophan at residue 248 in the p18
protease subunit (Fig. 2a).

The asymptomatic mother, father and sister were heterozygous
carriers of this mutation. We screened 13 extended family members
and detected seven asymptomatic heterozygous carriers, but no
additional homozygous or immunodeficient individuals. The pedi-
gree revealed consanguinity (Fig. 2b). We did not find the mutation
in DNA samples from 40 normal donors and 40 individuals affected
with systemic lupus erythematosus, indicating that the Arg248Trp
mutation is not a polymorphism. No additional caspase-8
mutations were found in 10 individuals with common variable
immunodeficiency or 30 individuals with ALPS-like conditions
(data not shown).

We examined the activity of the mutant enzyme. Using purified
chimaeric proteins of wild-type or mutant caspase-8 protease fused
to glutathione S-transferase (GST), we found that the mutant
protein was unable to cleave the reporter substrate DEVD-AMC
(Fig. 2c). In a cellular reconstitution assay using a caspase-8-
deficient Jurkat cell line (I9.2) that fails to undergo apoptosis after
CD95 crosslinking, expression constructs encoding wild-type cas-
pase-8 restored CD95-induced apoptosis, but the mutant caspase-8

Table 1 Phenotype of kindred that are genetically deficient for caspase-8

Subject* Patient 1 Patient 2 Mother 66 Sister 66
.............................................................................................................................................................................

Total lymphocytes (832–2,028) 1,510 2,362 1,456 1,677
CD4 % (32.6–58.9) 23.1 25.0 42.3 36.2
CD8 % (17.8–46.7) 49.6 46.2 30.7 32.3
CD4/CD8 ratio (0.75–3.31) 0.5 0.5 1.4 1.1
B lymphocytes (88–330) 361 570 326 354
Clinical symptoms

Failure to thrive/short stature þ þ 2 2

Lymphadenopathy þ þ 2 2

Splenomegaly þ þ 2 2

Eczema þ þ 2 2

Reactive airway disease þ þ 2 2

HSV labialis þ þ 2 2

Pneumonia þ þ 2 2

Asthma þ þ 2 2

Chronic diarrhoea 2 þ 2 2

Response to pneumococcal immunization 2 2 ND þ

Immunoglobulin concentrations (mg dl21)
IgG (723–1,685) 857 544 ND 864
IgA (81–463) 112 56 ND 114
IgM (48–271) 52 32 ND 27
IgE (,180) 7 20 ND 28

.............................................................................................................................................................................

*The normal range for each value is shown in parentheses. ND, not determined.
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did not (ref. 16 and Fig. 2d). In an apoptosis assay in which fusion to
the CD8 ectodomain spontaneously drives the multimerization of
caspase-8 (ref. 17), the wild-type construct (CD8–C8wt) induced
cell death, whereas the mutant construct (CD8–C8mt) was inactive
(Fig. 2e). Densitometry showed that the abundance of mutant
caspase-8 protein in the homozygotes was less than 5% of the
wild-type amount, indicating that the mutant protein is unlikely to
be partially functional or have allosteric regulatory effects. Thus, the
Arg248Trp mutation reduces the stability of the caspase-8 protein
and renders it enzymatically inactive.

The association between the homozygous caspase-8 mutation
and immunodeficiency led us to study lymphocyte activation
responses. We found interleukin-2 (IL-2) production was markedly
defective when PBLs from individuals homozygous for the mutant
caspase-8 were stimulated through the T-cell receptor (TCR; Fig.
3a). Notably, the heterozygous family members had a partial defect
in IL-2 release. IL-2 production was rescued by stimulation with
phorbol myristate acetate (PMA) and ionomycin, which bypass
proximal TCR signalling and induce second messengers directly
(Fig. 3b). We also found diminished T-cell proliferation responses
to phytohaemagglutinin (PHA) in the two homozygotes, whereas
the heterozygotes showed minimal proliferative defects (Fig. 3c).

CD4- and CD8-postive T-cell populations from patients 1 and 2
showed calcium defects, indicating that the defect in activation
affected both subsets of T cells (Fig. 3d and data not shown).

We examined the influence of caspase-8 on surface activation
markers after lymphocyte stimulation (Table 2). The basal surface
expression of CD3, CD28 and CD95 was normal (data not shown);
however, CD25 induction was markedly defective on both CD4- and
CD8-positive T lymphocytes from patients 1 and 2. Induction
defects were also observed for CD28, CD71, CD95, CD134,
CD152 and MHC class II molecules, whereas induction of CD137
and downregulation of the TCR were not affected (Table 2 and data
not shown). Cells from heterozygous family members also showed
substantial defects in activation marker expression that were
exacerbated by the caspase inhibitor zVAD-fmk (Table 2 and data

Figure 1 Defective apoptosis and DISC analysis in family 66. a, Activated PBLs from

normal volunteers (NL), patient 1 (PT1), patient 2 (PT2), the sister (S) and mother (M) were

stimulated with antibody to CD95 and analysed for cell loss. b, B cells transformed with

the Epstein–Barr virus (EBV) were treated with staurosporine (1), etoposide (2), ceramide

(3) or antibodies to CD95 (4) and analysed for cell loss. Filled bars represent normal

control cells, open bars represent PT1 cells. c, DISC immunoprecipitates (IP) using

antibodies to CD95 and whole-cell lysates (WCLs) from PBLs either treated (þ) or

untreated (2) with antibody to CD95 (APO-1.3) were blotted using antibody to CD95,

FADD or caspase-8. d, Immunoblot showing amount of caspase-8 in PBL lysates. e, DISC

immunoprecipitates from cells with or without anti-CD95 crosslinking were blotted with

antibody to caspase-8 (top), and the corresponding lysates were blotted with antibody to

caspase-3 (bottom). Cleavage products of caspase-8 and caspase-3 are marked by dots

and an asterisk, respectively. Data are representative of four experiments.

Figure 2 Characterization of an inherited caspase-8 mutation. a, Caspase-8 protein

showing the death effector domains (DED) and the enzyme subunits (p18 and p11). The

location and predicted amino acid substitution of the mutation are indicated by the arrow.

b, Pedigree of family 66. Patient 1 is indicated by the red arrow. c, Measurement of DEVD-

AMC cleavage using GST fusion proteins of wild-type (wt, filled circles) or Arg248Trp

mutant (mt, open circles) caspase-8. Inset, immunoblot for caspase-8 shows that nearly

equivalent amounts of the two GST–caspase-8 fusion proteins were used in the assay.

F.U., arbitrary fluorescence units. d, Jurkat I9.2 cells were transfected with vector (open

circles), wild-type caspase-8 (filled squares) or Arg248Trp mutant caspase-8 (filled

circles), treated with antibody to CD95, and assessed for cell loss. e, 293T cell lines were

transfected with vector (top), or with CD8 fusions of wild-type (middle) or mutant

Arg248Trp (bottom) caspase-8 along with a b-galactosidase expression vector. The

immunoblot of transfected cell lysates with antibody to caspase-8 shows similar

expression of caspase-8 protein. Data are representative of three experiments.
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not shown). By contrast, control experiments showed that lympho-
cytes from individuals with conventional ALPS and CD95
mutations did not have defective induction of surface activation
molecules (data not shown). These results show that caspase-8 has a
pivotal role in a proximal signalling event that is essential for a
selected subset of TCR-induced responses.

A prominent feature of human homozygous caspase-8 deficiency
is severe infection by mucocutaneous HSV. Because defects in
natural killer (NK) cells predispose to herpes virus infections, we
examined signalling by the CD16 and 2B4 pathways in purified NK
cells18–20. Activation of NK cells manifested by CD69 expression was
induced by stimulating the cells with antibodies to CD16 or 2B4 in
the control samples, but not in samples from patients 1 or 2 (Fig.
3e). Defective NK cell activation by 2B4 could be reconstituted in
normal controls by pretreatment with zVAD-fmk (data not shown).
The variable decreases in serum immunoglobulin concentrations in
these individuals also prompted us to test their B-cell function. We

Figure 3 Defective immune cell responses in homozygous caspase-8 mutants. a, IL-2

release after stimulation with antibodies to CD3 and CD28 (10 mg ml21 each) for family

members abbreviated as in Fig. 1. b, IL-2 release after stimulation with PMA and

ionomycin. c, Stimulation index measured by thymidine incorporation after treatment with

PHA. d, Calcium flux in CD4þ (top) or CD8þ (bottom) cells after TCR and CD28

stimulation. e, CD69 expression in purified NK cells after stimulation with antibodies to

CD16 (left) or to 2B4 (right). f, Production of immunoglobulins by PBLs that were

unstimulated (unstim) or stimulated with pokeweed mitogen (PWM; left) or by purified B

cells that were stimulated with SAC and IL-2 for the indicated number of days (right). Data

are representative of four experiments.

Figure 4 Caspase-8 is required for lymphocyte activation. a, Induction of the surface

expression of CD69. Resting PBLs were transfected for 16 h with RNAi primers that were

either nonspecific (NS) or specific for caspase-8 (primer pair 2 or 3), and were then

stimulated with TCR and CD28 for 18 h. Inset shows that less caspase-8 mRNA is

produced by RT–PCR with primer pair 3 (C8) than with the nonspecific primers (NS).

b, Induction of the surface expression of CD25 analysed as in a. Inset shows a reduced

percentage of cell loss after anti-CD95 antibody (500 ng ml21) stimulation of HeLa cells

transfected with primer pair 2 (2) or primer pair 3 (3), as compared with nonspecific

primers (1). c, Flow cytometry of PBLs co-transfected with 2 mg of pEGFP and 5 mg of

vector (Vct, black) or a caspase-8 antisense construct (C8as, red) and cultured for 72 h

before treatment with control medium (thin curves) or TCR and CD28 stimulation

(1 mg ml21 each, thick curves) for 6–24 h. Expression of CD69 at 6 h (top) or CD25 at 24 h

(bottom) is shown. Protein blots show less expression of caspase-8 in samples transfected

with C8as as compared with controls; the results in a–c were reproduced with eight

random blood donors. d, Flow cytometry analysis of the surface expression of CD25 by

normal (NL) and patient 1 PBLs transfected with GFP control (left) or wild-type caspase-8–

GFP fusion protein (right) and either stimulated with antibodies to CD3 and CD28 (blue

line) or left unstimulated (red line). Black line indicates the positive gate used for

quantification. e, Representation of the results shown in d. f, Calcium flux after stimulation

with antibodies to CD3 and CD28 in PBLs from normal controls (green area) or from

patient 1, transduced with either GFP control (red line) or caspase-8–GFP retrovirus (blue

line). Data are representative of three experiments.
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found that PBLs stimulated with pokeweed mitogen (PWM), a
T-cell-dependent mitogen, showed markedly decreased production
of immunoglobulin-m (IgM) and immunoglobulin-g (IgG) in
patients 1 and 2, whereas the mother showed normal production
of immunoglobulins (Fig. 3f). IgM release was also impaired when
purified B cells from patients 1 and 2 were stimulated with the T-
cell-independent mitogen Staphylococcus aureus Cowan I (SAC)
plus exogenous IL-2 (Fig. 3f). Thus, immunodeficiency and the
resultant opportunistic infections associated with homozygous
caspase-8 mutation reflect pleiotropic defects that involve the
functions of T, NK and B cells.

We validated the association of caspase-8 deficiency with defec-
tive lymphocyte activation by two approaches. First, we inactivated
caspase-8 in normal human peripheral blood lymphocytes with
RNA interference (RNAi) and antisense techniques. Using an
electroporation apparatus (Nucleofector System, Amaxa) for effi-
cient gene transfection of resting human PBLs, we introduced two
different duplex RNAi ribonucleotides specific for caspase-8 and
then stimulated the cells through the TCR complex21. Induction of
CD69 and CD25 showed that RNAi primer pairs 2 and 3 substan-
tially reduced the response to TCR stimulation as compared with
nonspecific primers (Fig. 4a, b). Controls showed that the specific
primer pairs reduced caspase-8 messenger RNA and decreased
CD95-induced apoptosis (Fig. 4a, b, insets). In addition, transfec-
tion of caspase-8 antisense constructs impaired CD69 and CD25
induction as compared with vector controls, further showing that
interfering with expression of the caspase-8 gene blocks activation
responses (Fig. 4c).

Second, we transfected lymphocytes from patient 1 with an
expression construct that encoded either a wild-type fusion protein
of caspase-8 and green fluorescent protein (GFP) or GFP alone.
Cells transfected with the GFP control did not show upregulation of
CD25 expression after stimulation, but cells transfected with the
wild-type caspase-8–GFP construct showed a threefold or greater
induction of CD25 expression, comparable to normal controls (Fig.
4d, e). Introduction of a functional caspase-8 molecule by lentiviral
gene transduction also rescued the impaired calcium response to
TCR stimulation in cells from patient 1 (ref. 22 and Fig. 4f). We also
found that the caspase-8-deficient I9.2 Jurkat line manifested
defects in activation responses that could be corrected by retroviral
expression of the wild-type caspase-8 gene (Supplementary Infor-
mation). Together, these findings show that caspase-8 is necessary
for proximal signalling events in lymphocytes.

Our analysis of individuals with inherited caspase-8 deficiency
has shown that caspase-8 has a broad role in the activation of T, B
and NK cells in addition to its function in conveying signals from
death receptors to apoptosis effector mechanisms12,13. Our results
also explain how chemical caspase inhibitors interfere with T-cell
proliferation12–14. Caspase-8 probably functions in lymphocyte
activation independently of CD95, because individuals with type I
ALPS and defects in CD95 do not have immunodeficiency, which

makes it unlikely that this ligand–receptor pair is involved23. The
immunodeficiency associated with defective caspase-8 also con-
trasts with the autoimmune phenotype of individuals with caspase-
10 deficiency, despite the structural homology of these two
enzymes11. Because mice that are deficient in caspase-8 show
embryonic lethality, humans that lack caspase-8 function might
not be expected to survive. Postnatal survival in humans may be due
to the function of caspase-10, the closest paralogue of caspase-8 in
humans. Caspase-10 has no known orthologue in mice but may
compensate for caspase-8 (refs 3, 4). The phenotypes associated
with caspase-8 and caspase-10 mutations in humans are based on
limited genetic data, and studying more individuals with these
disorders may define better the different consequences of these
mutations. The defects in activation of T, NK and B cells suggest that
there may be a common locus of action for caspase-8 in several
lymphocyte signalling pathways that will be interesting to uncover.
Caspase-8 may be a potentially useful target for a new class of anti-
inflammatory or immunosuppressive therapeutics and there may
be non-apoptotic signalling roles for caspases in cellular responses
of non-immune organ systems. Hence, caspase-8 establishes a close
link between the biochemical pathways of cellular activation and
apoptosis that may shed light on the homeostatic regulation of these
seemingly conflicting processes. A

Methods
Cellular preparations and analysis
Individuals were studied under NIH-approved ALPS research protocols with informed
consent. Wild-type (JA3) and caspase-8-deficient (I9.2) Jurkat cells were gifts from
J. Blenis. The 293T cell line was obtained from ATCC. Peripheral blood T lymphocytes
were separated on Ficoll gradients and stimulated first with 5 mg ml21 of PHA (Sigma) for
3 d and then with 100 IU ml21 IL-2. Apoptosis assays used 10–1,000 ng ml21 antibodies to
CD95 (APO-1.3, Kamiya), 0.1 mg ml21 staurosporine, 10 mg ml21 etoposide or 10 mM
ceramide as described5,24. We purified B cells using fluorescein isothiocyanate (FITC)-
labelled antibodies to CD19, followed by positive selection with anti-FITC Microbeads
(MACS). We prepared NK cells by negative selection using the NK Cell Isolation Kit
(MACS). Immunoprecipitation and western blot analyses were carried out using
antibodies to caspase-3 and FADD (Transduction Laboratories), CD95 (Kamiya) and
caspase-8 (a gift from M. Peter).

Sequence analysis, plasmids and mutagenesis
We purified RNA using Trizol (Gibco-BRL) and carried out polymerase chain reaction
with reverse transcription (RT–PCR) using the OneStep RT–PCR kit (Qiagen). Sequence
analysis was done by dye primer chemistry (Amersham) on an ABI 377 automated
sequencer and also by Cleveland Genomics. Bacterially expressed GST fusion proteins,
full-length caspase-8 fused to GFP at the carboxy terminus for transfection studies, and
CD8–caspase-8 constructs were prepared as described11,17. We generated mutations using
the QuickChange Site-Directed Mutagenesis kit (Stratagene).

Biochemical and functional assays
Purification of GST fusion proteins and caspase assays using DEVD-AMC have been
described11. We transfected I9.2 cells with various constructs and a GFP control vector at a
molar ratio of 3:1. After 18 h, cells were treated with antibody to CD95 and assayed for
apoptosis. Semiconfluent 293T cells or HeLa cells (RNAi) were transfected using Fugene 6
(Roche) according to the manufacturer’s instructions with 2 mg of caspase-8 constructs
and 1 mg of a 3LacZ construct. Cells were then fixed and stained for b-galactosidase as
described17. To transfect resting PBLs, we mixed 5 mg of DNA containing the GFP fusion
proteins with 100 ml of the human T-cell Nucleofector solution and then used this to
resuspend 5 £ 106 PBLs that had been freshly isolated using Ficoll. The PBL suspension
was immediately electroporated by a Nucleofector instrument (Amaxa Biosystems). The
transfected cells were added to 1 ml of complete RPMI-1640 medium for 24 h before being
exposed to plate-bound anti-CD3 and anti-CD28 antibodies (each at 10 mg ml21,
Pharmingen) for 24 h.

For RNAi analysis, primer pair 2 (5
0
-AATCACAGACTTTGGACAAAG-3

0
and 5

0
-

AACTTTGTCCAAAGTCTGTGA-3 0 , starting at nucleotide 653 from caspase-8 ATG),
primer pair 3 (5

0
-AACTACCAGAAAGGTATACCT-3

0
and 5

0
-AAAGGTATACCTTTC

TGGTAG-3
0
, starting at nucleotide 1,090 from caspase-8 ATG) and nonspecific (NS)

primers (5 0 -AACACGTAGCAGCTCGGATCG-3 0 and 5 0 -AACGATCCGAGCTGCTAC
GTG-3

0
) were used in the Silencer siRNA construction kit (Ambion). The caspase-8

primers used in RT–PCR were FLICE Fr (5
0
- CCTTGGGAATATTGAGATTATATTCTCC-

3 0 ) and FLICE Rev (5 0 -ATAGCACCATCAATCAGAAGGGAAGACAAG-3 0 ). We generated
the antisense construct by inserting the 498-base-pair EcoRI/XmaI caspase-8 cDNA
fragment including the translation start site into a pEGFP-C1 vector (Clontech). The
expression of CD25 and CD69 was determined by staining the surface of cells with the
corresponding phycoerythrin-conjugated antibodies (Pharmingen). We analysed the data
after gating on live GFP-positive cells.

Table 2 Fluorescence of surface markers after CD3/CD28 antibody stimulation

Surface markers
Normal
(þ/þ)

Patient 1
(2/2)

Patient 2
(2/2) Normal þ 50 mM zVAD-fmk

.............................................................................................................................................................................

CD25/CD4 514 42 97 18
CD25/CD8 417 23 112 10
CD28 510 178 316 170
CD71 204 30 64 16
CD95 141 39 60 54
CD134 62 22 50 13
CD137 20 17 44 6
CD152 26 12 16 13
MHC class II molecules 120 45 47 23
.............................................................................................................................................................................

Geometric mean fluorescence of surface activation molecules after stimulation with antibodies to
CD3 and CD28. The geometric mean fluorescence of each marker was calculated from the CD3-
positive populations (or CD4- and CD8-positive populations for CD25). Unstimulated cells had
similar values of geometric mean fluorescence. Data are representative of ten experiments.
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Stimulation, cytokine measurements and proliferation assays
Resting PBLs were stimulated for typically 24 h with 1 mg ml21 anti-CD3 and 5 mg ml21

anti-CD28 antibodies (Pharmingen) or with 5 mg ml21 PHA. We stimulated NK cells with
50 mg ml21 of either plate-bound anti-CD16 (3G8) or anti-2B4 (C1.7) antibodies
(Pharmingen) for 24 h. B lymphocytes were stimulated with either 10 mg ml21 pokeweed
mitogen (Sigma) or 10% (v/v) of SAC cells (Calbiochem) and 200 IU ml21 of IL-2. Surface
molecules of interest were detected using phycoerythrin (PE)- and FITC-labelled
antibodies (Pharmingen) by standard procedures, and analysed on a FACScan flow
cytometer (Becton-Dickinson) using CellQuest (Applied Biosystems) and FlowJo
(TreeStar) software. Concentrations of immunoglobulin in the supernatants of cells at
days 7 and 13 were measured by R. Hornung at the Immunological Monitoring
Laboratory of the National Cancer Institute. For stimulations with PMA and ionomycin,
10 ng ml21 and 0.5 mg ml21 were used, respectively. Where indicated, cells were pretreated
for 36 h with 50 mM zVAD-fmk (Enzyme Systems Products). We measured IL-2 after 48 h
of stimulation using the Quantikine Immunoassay Kit (R&D Systems). In proliferation
assays, cells stimulated for 48 h with PHA and anti-CD28 antibody were pulsed with
tritiated thymidine for 24 h and assessed by scintillation counting.

Luciferase and calcium flux assays
Jurkat T cells were transfected with 10 mg of an IL-2–Luc construct and 0.2 mg of a renilla
construct as described25, stimulated with 20 mg ml21 of plate-bound anti-CD3 and anti-
CD28 antibodies for 24 h, and analysed with the Luciferase Assay System (Promega). To
measure intracellular calcium, we loaded PBLs with 3 mM Indo-1 acetoxymethyl ester
(Indo-1, Molecular Probes), incubated them at 37 8C and then stimulated them with
1 mg ml21 of anti-CD3 and 5 mg ml21 of anti-CD28 antibodies for about 6 min. The Indo-1
ratio of 395 nm/500 nm fluorescence emission was calculated by flow cytometry.

Retroviral infections
Lentiviral transduction of PBLs used plasmids that contained, in order, the HIV long
terminal repeat (LTR), the caspase-8 coding sequence, an internal ribosome entry site
(IRES) and GFP (HIV-LTR–caspase-8–IRES–GFP) or HIV-LTR–IRES–GFP, together with
a packaging vector (D8.2) and a CMV–VSV-G construct (a gift from F. Candotti)22 or the
kat system26. We transfected the lentiviral vectors into 293T cells to generate viral
supernatants, which we then concentrated by spinning.
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Localized attack by a necrotizing pathogen induces systemic
acquired resistance (SAR) to subsequent attack by a broad
range of normally virulent pathogens. Salicylic acid accumu-
lation is required for activation of local defenses, such as
pathogenesis-related protein accumulation, at the initial site of
attack, and for subsequent expression of SAR upon secondary,
distant challenge1,2. Although salicylic acid moves through the
plant, it is apparently not an essential mobile signal2. We
screened Agrobacterium tumefaciens transfer DNA (tDNA)
tagged lines of Arabidopsis thaliana for mutants specifically
compromized in SAR. Here we show that Defective in induced
resistance 1-1 (dir1-1) exhibits wild-type local resistance to
avirulent and virulent Pseudomonas syringae, but that pathogen-
esis-related gene expression is abolished in uninoculated distant
leaves and dir1-1 fails to develop SAR to virulent Pseudomonas or
Peronospora parasitica. Petiole exudate experiments indicate
that dir1-1 is defective in the production or transmission from
the inoculated leaf of an essential mobile signal. DIR1 encodes a
putative apoplastic lipid transfer protein and we propose that
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