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On the energy invariance of open-shell perturbation theory with respect
to unitary transformations of molecular orbitals

T. Daniel Crawford® and Henry F. Schaefer Il
Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602-2556

Timothy J. Lee
NASA Ames Research Center, Moffett Field, California 94035-1000

(Received 29 January 1996; accepted 8 April 1996

A number of recently proposed single-reference open-shell perturbation theories based on a
spin-restricted open-shell Hartree-Fock reference function are examined, with an emphasis on a
consistent formalism within which the theories may be compared. In particular, the effect of unitary
transformations among the molecular orbitals on the energy is discussed. Of the seven different
perturbation theories examined here, the restrictédléviePlesset theory, open-shell perturbation
theory method 1, the method of Huband Grsky, Z-averaged perturbation theory, and invariant
open-shell perturbation theory methods are found to be invariant to all types of rotations for which
the reference wave function is unaffected, though all are invariant to transformations of a more
limited nature. Explicit equations for the generalized invariant forms of each perturbation theory are
presented, in order to provide working equations for extension of the theories to local correlation
schemes or coupled-cluster perturbational corrections, among othet89®American Institute of
Physics[S0021-960806)00327-3

I. INTRODUCTION spin open-shell wave functions, spatial orbital rotations are
allowed, provided they are restricted to the doubly occupied
For both practical and aesthetic reasons, a desirablgpace, the virtual space, or the singly occupied space. Rota-
characteristic of the wave function in most methods in elections in the singly occupied space are allowed due to the fact
tronic structure theory is that of invariance of the energy tothat all occupied spin orbitals are associated with alpha spin
certain types of unitary transformations among the referencfinctions, while the unoccupied spin orbitals are associated
molecular orbitals(MOs). For example, it has sometimes with beta spin functions, by conventiofThis statement also
proved more computationally efficient to use a variety ofholds, of course, for the so-called symmetric spin orbitals
definitions of MOs in order to improve the convergence ofpasis!! in which different spin functions are used for the
the self-consistent fieldSCP proceduré (particularly for  open shells. This will be discussed later in this wpfkhese
open-shell systemsthough at convergence each set of MOsproperties of the SCF wave function have been pointed out
gives the same energy. Also, localized orbiteds opposed by Bobrowicz and Goddartf.
to SCF canonical orbitalshave been uséd® to reduce the Correlated wave functions constructed as a sum of de-
magnitude of components contributing to certain types oterminants produced through substitution of occupied mo-
correlated wave functions, such as configuration interactiofecylar orbitals from the SCFreference wave function by
(CI), coupled electron-pair approximatiofCEPA),” and  ynoccupied orbitals may also, in general, be shown to have
second-order Miter—Plesset perturbation theorfMP2®  gimijar invariance propertiesThis includes coupled-cluster
wave functions, among others. Additionally, it is well known (CC) and configuration interactiofCl) wave functions,
that energy invariance can be used to simplify the constructhough it has been recently pointed bithat the use of the
tion of analytic energy gradients. so-called first-order interacting spatén the construction of
Roothaan’s original papers concerning the solution ofc| wave functions for high-spin open-shell systems is neces-
the Hartree—Fock equations for closed-sfeihd high-spin sary in order to maintain the general invariance of the en-
open-shell systems note the invariance characteristics of th"ergy. On the other hand, coupled-pair functiof@PP wave
single-determinant wave function. Specifically, a unitaryfynctions are not invariant with respect to such orbital
transformation among the component molecular spin orbitalgyiations!s In general, wave functions constructed via many-
does not alter the wave function, apart from a trivial phaseoody perturbation theoryMBPT) also exhibit these invari-
factor, and, hence, the energy and all properties remain Uny,ce properties, although it is sometimes necessary to exer-
affected. In terms of spin-restricted Hartree—Fock wavegise some care in identifying an appropriate partitioning of
funct|on§, S|m|I§1r properties hold for transformations amongie electronic Hamiltonian. Such partitioning requir@s-
the spatlf';\l orbitals alone. For closed-ghell wave fUﬂCtlonSpncmy or explicitly) some definition of canonical molecular
any rotations among the doubly occupied orbitals or amongitis16
the virtual orbitals leave the energy unchanged. For high- |, the last fifteen years, and especially since 1991, a

number of methods for the construction of high-spin open-
dE|ectronic mail: crawdad@zopyros.ccqc.uga.edu shell perturbation theory wave functions based on spin-
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restricted open-shell Hartree—Fo@ROHF) reference func- which is diagonal in the basis of molecular spin orbitals cor-
tions have been introduced in the literathife”® These responding to the SCF canonical set. Hence, in second quan-
include: (1) the method of Hubaand Gursky'’ (here referred tization

to as HClIzT, (2) restricted open-shell Mer—Plesset tlr;eory

(ROMP),*® (3) restricted Mder—Plesset theoryRMP)™ or (0)_ T t

(ROHF-MBPT?° (independently developed but identical Hl )_% €ptP p}—% ToplP'P}, @
method$, (4) open-shell perturbation theory method 1

(OPT:D,Zl (5) open_she" perturbation theory method 2 Whereé'p is the pth Eigenvalue of the Spin orbital Fock ma-
(OPTz,Zl (6) Z_averaged perturbaﬁon theo(’zAPT),zz and trix, fpp' ThrOUghOUt this discussion, we will make use of
(7) invariant open-shell perturbation theoffDPT).?> These  Normal-ordered strings of annihilation and creation opera-
methods demonstrate varying convergence properties, arirs, indicated by} as in Eq.(2).?° A diagonal zeroth-order
careful analyses have been presented to account for the diflamiltonian allows the use of the standard Rayleigh—
ferences among thef?® However, the general invariance Schralinger perturbation theoryRSPT) expressions, which

properties of these approaches have not yet been examined&i{pand thenth-order wave function as a linear combination
detail2® of the zeroth-order eigenstates, i.e. the set of determinants

In this paper we will explicitly examine the effect of constructed from the SCF canonical spin orbitals. This leads

unitary transformations among the SCF reference MOs ofP the well-known expression for the second-order MP2 en-
the energy given by each of the recently presented singleergy

reference open-shell perturbation theories. In section I, we . 9

will present a discussion of the invariance properties of Egz)(MPZ):} > (ij||ab)] | @
closed-shell MP2 energies with respect to such rotations. We 4ijab €te—€a—€p

will then provide generalized perturbation theory equations, . . ) . .
which do not require the zeroth-order Hamiltonian to be di-Vhere(ij |lab) is an antisymmetrized two-electron integral
agonal in theN-electron expansion basis. In section IlI, the IN Pirac’s notation. .

partitioning of the Hamiltonian will be given for each ANy non-trivial unitary transformation among the occu-
method, and iterative equations for the first-order wave funcPi€d orbitals or the virtual orbitaléncluding those that mix
tion and expressions for the second-order energy will be pre

only the alpha spin orbitals while leaving the beta spin orbit-
sented. From these equations, the allowed rotations of thH&'S @lone, thereby destroying any spin restriction which may

reference MOs may be ascertained. The generalized invariaRgVe Peen imposed on the original orbija¥sil result in

forms of the zeroth-order Hamiltonian and perturbation pre-different values for the, in the denominator of Eq3). The

sented here may be used as working equations for, for e)g_eroth—order Hamiltoniad.e., the Fock matrixis no longer

ample, the construction of local correlation schemes, such ddagonal in the expansion basis, and thus the standard RSPT
those developed previously for Mer—Plesset wave ©€XPressions do not apply. This does not imply that the MP2

functions>® or for new perturbational corrections to coupled- €N€rgy is not invariant to such rotations; only that E).is
cluster wave functions, such as the well-knowfT) ( valid only for canonical SCF orbitals. In order to construct a

correction”28 set of equations which do not depend on the orbitals, all
components of the zeroth-order Hamiltonian must be in-
cluded in the derivation of thath-order wave function.
The general zeroth- andth-order “Schralinger equa-
Il. GENERAL THEORY tions” resulting from a many-body perturbation expansion of

Throughout this discussion, we will use a number ofthe wave function and energy may be written

notational conventions. Spin orbitals will be indicated by " (0) [ (0 — =(0)[g,(0)

lowercase letters and spatial orbitals by uppercase letters. HPW ™) =B Wo™) @

Orbital indicesp, g, r, ands will refer to general spin orbit- gnd

als, whilei, j, andk (a, b, andc) will refer to spin orbitals

occupied(unoccupied in the reference wave functiofwvith . . "

no distinction between the doubly occupied and singly occu- H(O)|‘I’E)n)>+v|‘1’8nfl)>:mE_o EGVwE™), 5

pied spaces The indiced, m, andn will refer to spin orbit- -

als in the doubly occupied spaas, e, andf to spin orbitals  respectively, wheré/ is the perturbation ant#{") is the

in the “doubly unoccupied” space, artd u, andv to spin  nth-order wave function. Expansion pF{") in the complete

orbitals in the singly occupied space. The uppercase versiorgt of substituted determinant®,\?), and left projection of

of all of the above will apply to spatial orbitals. Eq. (5) by <\II(OO)| and <\II5-LO)| gives thenth-order energy and
In standard closed-shell second-order/Iie-Plesset \ave function equations

perturbation theory(MP2)2 the zeroth-order Hamiltonian,

H©, is taken to be the spin orbital Fock operator, - _
EQ=2 (P IV[¥ D)ot 6)

quzhpq'f'zi (pi||qi), 1) and

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996



1062 Crawford, Schaefer Ill, and Lee: Open-shell perturbation theory

(O (n) O 51Ot O (M) partitioned Hamiltonian alone will be sufficient to determine
Eoa, :Ey (W, [HOI) o) the orbital invariance properties of the method, provided the
partitioning is written in a sufficiently general form. There-

A B fore, if the rotation
+ 2 (PO[(V-EG) v P)alr

n—1 |¢p>22 Upp’|¢p’> (11
p

_ 2 g(m ,,(n—m) (7)

0 a/.l, ! . . . .

m=2 is carried out, the zeroth-order Hamiltonian becomes
respectively, where thas,“) are thenth-order expansion co- )

efficients. It should be noted that théh-order wave function HO=> > > UTq,U;p,,op/q/Upp/quu{p”Tq”}

must be determined from E¢/) via an iterative procedure if T

off-diagonal elements dfl® are present. (12)
These generalized perturbation theory equations will b&ince O is assumed to be Hermitian. Because the transfor-

used in the next section as a framework for analyzing thenation is unitary,

open-shell formalisms mentioned in section I. Specifically,

we examine the partitioning of the Hamiltonian and the it- 1(0) _ wt

erative expressions for the first-order wave functions in order H®= Z// ,E// %p'p3qqOp 1P A"}

p'p" a’q
to determine the invariance properties associated with each
method. = Z/ Opq{p’Ta'}. (13

p'q
IIl. INVARIANCE OF OPEN-SHELL PERTURBATION Hence, the spectrum and trace of the zeroth-order Hamil-
THEORIES tonian remain unchanged so long as the rotation occurs only

within the subspace for which the operator has been defined.

As discussed in section Il, the generalized perturbation.. . ~
. imilar arguments may be used for the componentg.df,
theory of Eqs(6) and(7) may be used in order to correctly . . . ! .
) : : . on the other hand, this rotation mixes orbitals in separate
determine the invariance properties of the perturbed wave

functions given a particular partitioning of the Hamiltonian, subspaces, e.g., the rotation
|:|r\1:'A:r\1+\7Vr\1:2 qu{pTQ}+% > (pdllrs){p'q'sr}. |¢p>:§4 Upp’|¢p’>+; Uprrlrr), (14
Pq pars

®) wherep andr lie in different subspaces, such a rotation will
The subscriptN here refers to the normal-ordered form of move components from the perturbation into the zeroth-order
this second-quantized operator. For many perturbation theddamiltonian and vice versa. Explicitly, the above rotation
ries, the MBPT expansion is carried out by first definifly  affects the first term on the right hand side of E9). as
as a sum of certain diagonal blocks of some one-electron
operator’ which provides a convenient definition of molecu- S 0, fp' =S OuefpTal+ S O, fr' s}
lar orbitals, g p'q’ P T

AO=3 Oplp'a}+ 3 Ours) © + 3, Ope[{p T} P} a9
rs p'r’

whereQ is some one-electron operator gndndq (r ands)  Hence, components of the perturbation appear in the zeroth-
span a subspace of the total orbital space that does not cogrder Hamiltonian, thereby altering the partitioning, and the
tainr ands (p andq), i.e., the orbital subspaces are disjoint. spectrum and trace of the operator. Therefore, the perturbed
For examplep andq might be within the doubly occupied energies will not be invariant to rotations of this type.

space and ands might be within the singly occupied space.  These general concepts will be useful in the following
The partitioning is defined, then, by subtracting the diagonakections as we examine each of the open-shell perturbation
blocks of the operator out of the Hamiltonian, theories in detail. The order in which each method will be

R : : presented has been chosen strictly for pedagogical reasons.
V= foa— + frs—
% (foa=Opg){p a} % (frs=Or){r's} A. Restricted Mo/ ller—Plesset theory (RMP)

. RMP theory®?°is perhaps the most straightforward of
+2 ol {pTrH+{r p}+Wy. (10 the open-shell theories investigated here. The zeroth-order
pr Hamiltonian is defined to be the occupied/occupied and
The fundamental concept here is that a perturbatiowirtual/virtual blocks of the spin orbital Fock operator
theory based on this partitioning will be invariant to a rota-
tion of the orbitals within a certain subspace if that rotation SO0 _F LF — it +
leaves the partitioning unchanged. Hence, examination of the Hiwe=Toot fuy ; it J}+% Fata '} (18

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996
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According to this definition, the perturbation consists of theB. Restricted open-shell Mo /ller—Plesset theory
remaining terms in the HamiltonidiEq. (8)] (ROMP)

A o A ROMP'® theory is closely related to RMP? theory.
Vewe= fop + Wy= 2 fia[{iTa}+{a"}]+Wy. (17)  The zeroth-order Hamiltonian here is defined as the doubly
2 occupied/doubly occupied, singly occupied/singly occupied,
Examination of Eqs(16) and(11)—(13) shows that a unitary and virtual/virtual blocks of the spin orbital Fock operator
transformation of the occupied spin orbitals among them-.
selves or of the unoccupied spin orbitals among themselvedromp™ Faat Fsst o
will change neitherf ,, nor f,, . Similar statements may be
made for V. Thus, such rotations leave the energy un-  _ + + +
changed. On the other hand, rotations which mix occupied =2 finll m}+% Fudt u}+§ faeld'e}. @D
and virtual spaces shift components frominto H© and
vice versa, as is clear from Eq44) to (15). Thus, the par- The perturbation therefore contains the remaining terms of
titioning changes, and subsequently, the calculated energipe Hamiltonian
changes. Rotations of this type, however, do not leave the
reference wave function itself unchanged. Therefore, RMF\/ROMp—de+de+fSU+WN
theory is invariant to all rotations allowed for the ROHF
reference wave fungtioq. ' o = figl{Itd}+{d} ]+ > f [{1ft+{tT1]
In the usual application of this method, a diagoH&! is id It
obtained by diagonalizing the spin orbital Fock matrix in the .
occupied and virtual subspaces, separately. The resulting or- +> ol {tTd}+{d"t} ]+ Wy. (22
bitals are referred to as “semi-canonical.” If such orbitals td

are not used, Eqs6) and (7) must be used to construct In this case, more limited rotations leave the perturbed wave
iterative expressions for theh-order energy and wave func- . ' ) € pertu ;
functions unaffected. A unitary transformation which mixes

tion. For example, the first-order RMP wave function is con- h bitals of the doubl d, | d. and
structed iteratively from single and double substitutions via € spin orbitals of the doubly occupied, singly occupied, an
the two identities virtual spaces independently will not change the partitioning.
However, unitary transformations which mix spin orbitals in
the doubly occupied space together with spin orbitals in the
Ozfia+2b fabaF“)—E fiia?(l) (18) singly occupied spacéa rotation of thea spin orbitals,
. which does not change the reference wave fungtiwil
and alter the partitioning of the Hamiltonian via the coupling
componenf 4. This result follows directly from the analysis
0=<ij||ab)+2 (fkjaﬁlbl fkaab(l) given z_it the_begi_nning of section III_. Therefore, ROMP
K theory is not invariant to general rotations among the occu-
pied spin orbitals. This lack of invariance will not generally
+z (facac b(1) ¢, aca(1>) (190  affect the calculated perturbed energies, since the ROHF or-
bitals are constructed with spin-restriction imposed prior to

wherea?® andaab(l) are coefficients of the first-order wave the limited diagonalization of the spin-orbital Fock matrix.

function. The second order energy may then be determme'&'owever this can affect the construction of a local correla-
from tion scheme for ROMP theory, for example, if the local or-

bital definition used were based on a spin-dependent
(DODS) representation.
Z f.aaa(l)Jr E (ij|labyai™™. (20) Implementation of ROMP theory usually requires first
that H pe diagonalized in the three subspaces separately.
These equations are the same as those presented by LaudEis diagonalization results in DODS, just as in RMP theory.
dale et al.,®! who derived them from the coupled-cluster Additionally, because thed© is spin-dependent, the per-
singles and double€€CSD equations. Lauderdaks al.also  turbed wave functions are not eigenfunctions 2425
make note of the invariance properties of this method. though the perturbed energies are spin projetted.
Diagonalization ofH© results in a shift of the spatial If HO is not diagonalized, then iterative expressions
orbitals, such that different orbitals are associated with difbased on Eqs(6) and (7) must be solved. For ROMP, the
ferent spingDODS). This orbital set more closely resembles equations for the single and double substitution contributions
a spin-unrestricted Hartree—Fock wave functiddHF) in  to the first-order wave function are
structure, though the SCF energy is unchanged. Additionally,
HO s spin dependent, resulting in spin contaminated per-

+

turbed wave functions. However, it has been shitWmthat 0=fiq 2 faeal™" E fimain (23
the perturbed energies are spin projected, eliminating direct

but not indirect spin contaminatiofi. and

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996



1064 Crawford, Schaefer Ill, and Lee: Open-shell perturbation theory

spaces results in a DODS spin orbital set. OPT1 was intro-

0=(ij ||ab>+2 (@3 My a—ap e, 0) duced as an open-shell perturbation theory that maintains
spin restriction on the spatial orbitefsin OPT1, the zeroth-
+2 (aat(l)f _abug E an(1)g order Hamiltonian is constructed based on an averaged Fock
bes aest tjes operator, which is defined in terms of spatial orbitals to be
ab(l)ftles) 2 aj*™ fl,jed_a?lb(l)fl,ied)- Fav—=h+2Jc— k°+j°—% KO, (26)
(29)

whereh is the usual one-electron Hamiltonia}?, andK® are

Thle notz;\]tlo_nge X indicates tdhat the terrg_w:ll_ nort] conttr)lbute the Coulomb and exchange operators, respectively, including
unless the index corresponds to an orbital in the SUbSpace |y the closed-shell orbitals, add andK® are these opera-
of orbitals x, wherex represents the doubly occupied)(

tors including only the singly occupied orbitals. Spin orbital
singly occupied €), or virtual (v) subspaces. The second- forms of F2 allow direct comparison to the original spin
order energy is then calculated from orbital Fock operator and subsequent partitioning of the
Hamiltonian.
2 1 b(1
= |2 flga™ + E (ij|lab)ai™™. (25 In OPT1, the zeroth-order Hamiltonian is then con-
structed by writingF®" in the spin orbital representation in

Note first that no single substitutions involving singly the doubly occupied, singly occupied, and virtual subspaces,
occupied spin orbitals contribute to the second-order energy

for ROMP. As a result, the first-order single substitutions in

Eq. (23) look very similar to those of RMP theory, though £y av Lot

the summations in ROMP theory involve only doubly occu- Hopri= 2 FEIHLL Mo} {Lp Mgl
pied and virtual orbitals. Note that the subspace restrictions

|_nd|cated in Eq.(24) always ehmmate two of the summa- +2 F%[{TT a}+{-|-; Ugtl
tions, depending on the spacesipf, a, andb. As a result, TU

the first-order double substitution equations are also similar
to those of RMP theory. +2 Fa (D! a}+{DE Egl. (27)
C. Open-shell perturbation theory method 1 (OPT1)

In both RMP and ROMP theory, diagonalization of the The perturbation then consists of the remaining terms from
spin orbital Fock operator fragments in restricted orbital subthe Hamiltonian

Vorri=3 2 [{LaTallMaTo) ~(LTAM TR HLIM A3 2 [(LAToMgTa) —(LaT4lIMsT o) HLEM g}

-

T2 2 [(TaVallUaVa) TVl UV HTUak+3 20 [(TValUpVa) —(TpV4llU gV HTRU 5}

T2 2 [(DuTullEaTo) ~(DaTplEaTp) DBk +3 2 [(DpTalBgTa) ~(D4T4llEST D SE S}

v+’fsv+WN' (28)

Based on the arguments given in section Il earlier, it iSOPT1 from a practical perspective, since the spin free imple-
clear that this perturbation theory is invariant to rotationsmentation prevents loss of spin restriction. Therefore, OPT1
which mix the doubly occupied orbitals, the singly occupiedis invariant to all spatial orbital rotations which are allowed
orbitals, or the virtual orbitals independently, even if thosefor the ROHF reference wave function.
rotations fail to maintain spin restriction. However, because  Implementation of OPT1 usually requires diagonaliza-
the zeroth-order Hamiltonian is independent of spin,ritte  tion of F? in the three standard subspaces to obtain orbital
order wave function and energy may be written in terms ofenergies. These energies in the singly occupied space have
spatial orbitals alone. Indeed, one of the goals of OPTL1 is thheen described as averages of electron affinities and ioniza-
construct perturbed wave functions which are eigenfunctionsion energie$?! If this diagonalization is not performed, it-
of spin. Hence, spin orbital rotations are not an issue foerative expressions based on Ef. for the nth-order wave

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996



Crawford, Schaefer Ill, and Lee: Open-shell perturbation theory 1065

function must be solved to obtain the correct energy. FoD. Perturbation theory of Hubac ~ and éérsky (HCPT)
OPT1, the equations for the single and double substitution

A . ) HCPT was the first of the open-shell perturbation theo-
contributions to the first-order wave function are

ries based on a spin restricted reference wave funéfiand
is closely related to OPTL1 in that orbitals are defined in such

_ (1) _ d(1) L I~
O_fld+§ Fdear ; Fimam (29 4 way as to maintain this spin restriction. However, HCPT
uses different operators from those of OPT1 to define the
and doubly occupied and virtual orbitals, namely
—D_ rav_ 1o
0=(ijlab)+ 3 (@ FEL, o-ai VRl ) PR 82
and
+ 3 (@R —ab YR, ) FY=Fo 3K (33
- : :

whereF®’ and K° are the same as defined earlier in section
2 ab(1)av ab(1)av IIl C. The F operator is used to define the singly occupied
< (@ “Fjes—aj Fics) orbitals, as in OPT1. The orbitals constructed from these
operators are the same as those originally proposed by
Roothaan for high-spin open-shell SCF calculatibns.
Spin orbital forms of the three operators allow compari-

) , son to the original spin orbital Fock matrix. Thus, the zeroth-
respectively. The second-order energy is then calculateg,qer Hamiltonian is defined as

from

b b
-2 @R - R ), (30

Hiepr= % Foml{L,"™ a}+{LBTM gt

Eg”:% f|da|d(1)+%ij§) (ijllabyag™™®. (3D)
Equations (29)—(31) show strong similarities to the + 2 FAUTUMHTS U
TU

analogous equations for ROMPEgs. (23)-(25)). The

second-order energy expression is in fact identical for the

two approaches, though the first-order coefficients are de- +E F\SE[{DQTEQ}Jr{DBTEB}]. (39
fined differently. This is reasonable since both methods par- DE

tition the orbital space similarly. The primary difference lies The perturbation then consists of the remaining terms from
in the use ofF®in OPT1. the Hamiltonian

Vicpr= 3 o [(LaTalM Ty (L ToM T L, M} +3 s [(LaTalMgT o) —(LgTpIMgT5) = 2(L g T4l TsM )]

X{Lg'M g} + 12 TEU:V [(TaVallUaVa) = (T VUV T, U+ 3 T%V [(TEValUgVe) —(TV4llUgVe)]

X{TBTU,B}J’_% 2 [<DaT0z|EaTa>_2<DaTa|TaEa>_<DaT,B|EaT,8>]{DaTEa}_% 2 [<DBTa|E,BTa>
DET DET

—(DyTHlERT) HD R Egh+ Tust Fa, + To, + Wy (35)

Similarly to OPT1, HCPT is invariant only to indepen- sions based on E¢7) must be solved to obtain the perturbed
dent rotations of the doubly occupied spin orbitals, singlyenergy. For HCPT, the equations for the single and double
occupied spin orbitals, or the virtual spin orbitals. However,substitution components of the first-order wave function are
the fact thatH© is spin independent means that a spin free
implementation of the method is possible. Hence, by the
same arguments as for OPT1, HCPT is invariant to all spatial
orbital rotations which are allowed for the ROHF reference  0=f)q+ >, Fy.aft— > FP ad® (36)
wave function. © m

Orbital energies are obtained in HCPT by diagonaliza-
tion of F°, F®, andF" in the three standard subspaces. If
this diagonalization is not carried out, the iterative expres-and
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E. Z-averaged perturbation theory (ZAPT)

0=(ijllab)+ >, (af" Fy DEY
(iillab) 2 o0 8 Facuo) Lee and Jayatilaka introduced ZAPTas an attempt to

producenth-order coefficients with higher symmetry than
+2 (aat(l)F bt(l),:av ) those of RMP and ROMP, and hence, to reduce the compu-
bes,t aes;t . . .
tational cost of those approaches. ZAPT requires the redefi-
nition of the spin orbital basis: for each doubly occupied
—E (a Ff“l’es— aJt F?\IIES) spatial orbital and each unoccupied spatial orbital, the usual
a and B spin functions are used, but for the singly occupied
orbitals, new spin functions,

_El (ai"Fp jed aab<1)FI,ied)’ (37 1
: : o' =— (a+tp) (39
respectively. The second-order energy is then calculated V2
from
and
E¢’ 2 figaf ™+ 2 ('l”ab>aab(1) (38 1
0’=5(a—,8) (40)

Equations(36)—(38) are nearly identical to the analo-
gous expressions for OPTEQs. (29—(31)]. The only dif- are usedos’ functions are, by convention, associated with
ferences between the two come from the us&dfand FY occupied spin orbitals, and~ functions with unoccupied
for the doubly occupied and virtual orbital subspaces, respecpin orbitals. This spin basis is referred to as the symmetric
tively, in HCPT. As a result, the two methods are identical inspin basis. In this basis the spin orbital Fock operator is

terms of computational expense. reconstructed. In schematic form, the matrix is
|

a, [Flo BB oo o ED
d, | Fly Rl Fo o F¥ 0

. s. | Fr Fro PP o 0 0

FZAPT_ o o ” ” _ (41
s, | 0o o o F{m Rl R
| 0 BY o B B R
v, |FP 0o 0o -Fpn R P

This form illustrates some of the symmetry of the Fock matrix in the symmetric spin basis. Certain elements of this matrix
have been set to zero due to the ROHF convergence conditions or to the orthogonality of the component spin%ihctions.

is interesting to note that elements such%/é’ are not zero, in general, since theand B spin functions are not orthogonal
to thes™ ando™ spin functions. Addltlonally, the block diagonal components in the doubly occupied and virtual $pares
“) are identical t&=?" after spin integration of the former. For this reason, Lee and Jayatilaka chose to use the same orbital

deflnltlon as that of the OPT1 methad? is thus defined to include only the block diagonal elements of the spin orbital Fock
operator in the doubly occupied and virtual subspaces. In the singly occupied space, however, only the diagonal elements of
FZAPT are included in zeroth-order. Therefore,

H Rpr= LE F C“{L "M} + 2 FMﬁ{LBTMB}+E er, {To+'T +}+E er, {To- Ty} + 2 F “{D =

a/a aa/

cE
- FP{D,'E 42
22 Fo{De'Es) (42
and the perturbation is, therefore,

(/ZAPT:LZM ﬁ[”ﬁa{Lﬁ*Ma}JrLEM ﬁ[”aﬂ{LaTMB}+TZL Fro (T, L b+ 2 FLriLa T+ Z Fre AT, "L}
BV'a a'V'B otlha 7

LaTot Lg
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=Tt ~D —L U+
+LZ Fuo {LBTT(,+}+LZD FL;{LﬂTDa}+D§E FRD L+ 2 (1=6r, ., )F 7 (T Uy}
pla* B «a a-p yt +

[¢ o

~U, - ~D L AT, -
+ 2 (=87, .y IF (T, T+ 2 FPALDg+ 2 FoefDg'L b+ X FLo {D,'T,-}
Te-Ug o L,Dg @ Dpla B DoTym @

o T

£D T £Torp t £D T FE T
+ S By D+ S ETerp,tT, 1+ Foe (T D+ S EEefD,'E
5D 7, {To Dal DT, o 1Ps T} TUZD T, 1T~ Dl DBEE o, {08 Ee]

a B a
+ > 'EEB{DaTEB}+WN- (43
D.Eg a
|
In Eq. (42), er . is the diagonal element cff;’”: ander _ Jayatilaka, in many practical applications, such mixings can-

that oflA:?‘T_, and these same terms have been remov;d frorﬂOt oceur since Fhe singly occupieq orbitals are of different
o Spatial symmetries. Hence, the singly occupied block of
Eq. (43). FZAPT will be diagonal regardless of the chosen canonical-
Based on our previous analyses and, in particular, COmation conditions. Therefore, it is reasonable to say that
parison to Eq(15), ZAPT is not invariant to rotations which - from a practical perspective, ZAPT is invariant to all spatial
mix doubly occupied spin orbitals and singly occupied spingrpital rotations which are allowed for the ROHF reference
orbitals together, similarly to ROMP theory. However, theseyaye function, though this is not true for all conceivable
rotations do not, in general, have practical implications forggges.
ZAPT, due to the orbital canonicalization chosen by Lee and  The jterative expressions for the single and double sub-
Jayatilake’? Specifically, since thé=*" operator is used to gtitution contributions to the first-order wave function for
define orbitals in all three spacemist as for OPTJ, spin  zAPT, which must be solved in the case that Ef¥ operator

stricted implementation of the method, then, rotations of

doubly occupied and singly occupied spatial orbitals are not i~ “E, En(1) ~L D)
. —Fle BatsY) _ @ qPs
allowed to occur since they alter the ROHF reference wave 0 FDB“L% FDBaLa % FMaaMa ' (44)
function itself.
Additionally, ZAPT is not generally invariant to rota- . ~EE (1) ~L. D1
tions which mix singly occupied spin orbitals together, since  0=Fp’+ Ez Foray — Mzﬁ FMBBaM‘; : (45

only the diagonal elements &“"T in this block have been
used to defineH®. However, as pointed out by Lee and and

0=(ijllab)+ X (@ VFpz, —ai Rz )+ (afPr R
@ B

bev, aev, bevB

bD4(1) D aT, ~(1)ET,-
- B B T 4
a; Faevﬁ)+; (a; Fpls T,

BT (D) ET,— _ ab(l)Fjesy+ . _ qab(l)giesg+ : . ab(l)gjed,  ab(l)gied
a; 7 Fa‘;sa_‘sa,T(,—) TE# (aT . FTUf 8 St FTUf oit,.) LE (ai FLa Tay FLa )
a (23

—% (@R - aF ). (46)
|
The second-order energy is then calculated from (31)]. However, the complication here is primarily nota-
tional, as we have illustrated the necessary spin combination-
EE,Z)= E EPsaPs(L) 4 E EPagDal(D) sin order tq _make the relationship tq the symmetrig spin basis
LB, bt e 1B, e ts clear. Additionally, Lee and Jayatilaka have pointed?dut
that first-order interacting-space argumefitsyhen applied
+1 Zb (i ||ab>aﬁb(l). (47)  to the symmetric spin basis, sug(%est that spin-flip substitu-
ija

tions such as that indicated ka;(Dﬁ should be considered

Equations(44)—(47) appear to be significantly different double substitutions since their matrix element with the ref-
from both ROMP[Egs. (23)—(25)] and OPT1[Egs. (29)- erence wave function through the Hamiltonian contains no
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one-electron contribution's. Hence, the symmetric spin or- R - L 1.
bitals obey a form of Brillouin’s theorem and the second- HSp o= HSpr+ 2 Air(Air—2) > A (48)
order ZAPT energy contains no contributions from singly T
substituted determinants, similar to the MP2 energy. A
whereK$+ is the Tth diagonal spatial orbital component of
F. Open-shell perturbation theory method 2 (OPT2) the usual exchange operator defined over the singly occupied

OPT2 was introduced by Murray and Davidébas an  ©Orbitals only, anchp is the operator

improvement to the OPT1 method,; it is designed to have

petter convergence. OPTZ choosgs the same orpital defini- Ap=P, P, + pﬁtpﬁ_ (49)

tion as OPT1, i.e., the eigenfunctions B6fY. The primary

distinction between OPT1 and OPT2 comes in the addition

of a two-electron component to the zeroth-order HamiltonianThus, in normal-ordered operator notation, the OPT2 zeroth-
of OPT1: order Hamiltonian becomes,

HQ = FEGHLLIM I H{L M1+ > FAL{D,EL +H{D s Egl ]+ 2 FAUTLU+{Ts U4
LM DE TU

=3 2 KRU{T T = {T6 a4 3 20 K{Ta TuT o T (T TaT o T+ {Ta TaTp T+ {T T T T ).

(50

The purpose of this correction term is to shift the singlybital energies could be shifted by a rotation-independent
occupied orbital energies by a factor of K& depending on term, unlike that in OPT2. The zeroth-order Hamiltonian of
whether an excitation is occurring into or out of the orbital. IOPT is
That is, if the excitation occurs into the orbital, the orbital
. . S - ~ 0
energy will resemble an eleqtron affinity, while if the.exu HOb =, LM+ {Lg Mg}
tation occurs out of the orbital the orbital energy will re- LM
semble an ionization potential. .
The inclusion of individual components @ in the last + > FAL{D,E ) +{D 4 Eg}]
four terms in the above equation differentiates OPT2 from alll DE
of the other perturbation theories examined so far. It is clear
from the structure oH b+, that the energy will be invariant + %[{TQTUQ}wL{TﬁTUB}]
to orbital rotations within the doubly occupied and virtual i
spaces separately, just as for OPT1. However, an analysis ) R ;
similar to that presented earlier for one-electron operators + 3K Z H{To Taf +{T5 Tgt] =Ny, (51)
indicates that rotations of orbitals in the singly occupied
space will alter the partitioning of the Hamiltonian, and, whereNy is the number of open-shell electrons in the refer-
therefore, the energy. A practical implication is that differentence wave function ankl is a constant given by
geometric representatiorfsuch as rotation of the molecule
relatlv_e to a space-fixed axis syst)an_an result in dlffergnt k=>, K2,/Ns. (52)
energies; the OPT2 energy expression can be a multivalued TU
fun_ct!o_n of nuclear g_eome?ry even though the m.athematlca+herefore, as the molecular orbitals are rotated in the singly
definition of the spatial orbitals is maintained. This has been . S )
o : . occupied space, the number operators occurring in the final
shown to occur in triplet twisted ethyleAgwhere rotations

o . . . . rm of the zeroth-order Hamiltonian remain unaffected, as
within the degenerate pair of singly occupied orbitals cause L .
s does the value ok. As a result, IOPT is invariant to all
energy variations on the order of 9 kcal/mol.

spatial orbital rotations allowed for the reference wave func-
tion, just as OPTL1 is. The IOPT perturbation is simply the
OPT1 perturbation, Eq28), less the last term shown in the
equation above. The iterative equations for IOPT will there-
IOPT was introduced by Kozlowski and David$dms fore be exactly those presented in equatit®® and (30),
an adjustment to OPT2 to ensure invariance with respect twith orbital-independent correction terms used to shift the
rotations among the singly occupied orbitals. This involveddiagonal elements dﬁ;“,’1 Because of their similarity to the
altering the correction function such that singly occupied or-terative expressions for OPT1 already presented, we will

G. Invariant open-shell perturbation theory (IOPT)
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