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Characterization of a thickness-shear mode quartz resonator with multiple 
nonpiezoelectric layers 

Victoria Edwards Granstaff and Stephen J. Martin 
Sandia National Laboratories, Albuquerque, New Mexico 8718.5 

(Received 22 July 1993; accepted for publication 21 October 1993) 

This paper describes a one-dimensional analysis of a piezoelectric resonator with multiple 
nonpiezoelectric layers of arbitrary thickness and complex shear modulus. This analysis shows 
under what conditions the simple Butter-worth-Van Dyke (BVD) lumped-element equivalent 
circuit can be used to extract the properties of these layers, and provides a theoretical basis for 
doing so under these conditions. The method presented here is based on the physics of wave 
propagation, but uses transmission line techniques to transform the equations and boundary 
conditions into a simple string of 2 X 2 matrix multiplications, which easily accommodate any 
number of layers. An analysis of the AT-cut quartz/polymer/liquid composite resonator is 
presented in detail because of its importance in sensor and electrochemical quartz crystal 
microbalance applications. The analysis shows that adding the polymer and liquid impedances 
in the motional arm of a BVD circuit is not valid near the polymer film resonance, but is 
appropriate for a thin, rigid polymer film in contact with a liquid. 

I. INTRODUCTION 

Quartz resonators, such as quartz crystal microbal- 
antes (QCMs), are commonly used to measure mass dep- 
osition rates in vacuum. These devices operate by applying 
an oscillating electric field across the thickness of a piezo- 
electric AT-cut quartz disk that induces a shear-thickness 
mode of mechanical oscillation. At resonance, a standing 
wave is created and the amplitude of the quartz oscillation 
is maximized. Figure 1 illustrates the shear displacement 
profiles of quartz for the fundamental and third-harmonic 
modes of oscillation. At the series resonant frequency, the 
electrical admittance magnitude (inverse of impedance) is 
maximum; at the parallel resonant frequency, the admit- 
tance magnitude is minimum. 

The simplest use of these devices is to measure the 
decrease in resonant frequency induced by mass deposition 
on the surface of a quartz disk. For small mass loadings 
(causing up to a 2% decrease in resonant frequency),’ the 
frequency decrease is proportional to the mass per unit 
active area.’ The “Z-match” technique3 and the two- 
frequency Z-determination method’ extend the usable fre- 
quency range for lossless deposited films. Although Benes’ 
presents a resonance equation for a quartz resonator with a 
single lossy layer, the detailed analysis in the paper is not 
valid for lossy layers, such as rubbery polymer or liquid 
layers. 

Recently, quartz resonators have become popular for 
use in liquids. Applications include sensors based on mass 
or liquid property changes,& and electrochemical quartz 
crystal microbalances ( EQCMs) .‘*’ EQCMs are also used 
to study electrodeposition,‘-” corrosion,‘2*13 batteries,‘“16 
and electroactive polymers.7*8*‘7 Many of these applications 
use a quartz resonator having multiple layers, including a 
contacting fluid. Although we have previously presented a 
convenient analysis technique for the quartz/rigid-mass/ 
liquid system,4 there is a need to understand the behavior 
of a quartz resonator having a nonrigid coating, such as a 

polymer, in contact with a liquid. When polymer losses 
and polymer-liquid interactions are significant, existing 
mass measurement techniques are inaccurate. 

Presented here is a one-dimensional anaIysis that ap- 
plies to a piezoelectric resonator with multiple nonpiezo- 
electric planar layers. There are no restrictions on the layer 
thicknesses or complex shear moduli. Although other in- 
vestigators have demonstrated that mass sensitivity varies 
with radial position, 18,19 electrical admittance data repre- 
sent an average over the active area, and one-dimensional 
models have been used successfully to fit experimental 
data.‘41z@2” These one-dimensional models work espe- 
cially well if the device parameters are first extracted from 
measurements made on the unperturbed device.4 

Although transmission line techniques23*24 are conve- 
nient for modeling one-dimensional, multilayer structures, 
most of the previous modeling of quartz resonators has not 
taken full advantage of these methods. This paper presents 
a technique that is easy to implement numerically, and 
applies to a quartz resonator having any number of layers 
of arbitrary thickness and complex shear modulus. We also 
discuss the range of applicability of simpler modeling 
methods. Readers less interested in the mathematical de- 
tails may wish to skip the theory section. 

Previous models have used either of two methods. The 
first method is to model the composite resonator as an 
electrical equivalent circuit, known as a Butterworth-Van 
Dyke (BVD) circuit,25 as shown in Fig. 2. The element 
denoted 2, in the motional arm of the circuit is propor- 
tional to the acoustical (mechanical) impedance, Z,, at the 
sensing surface of the quartz resonator. This technique, 
described by Martin, Granstaff, and Frye,4 Martin and 
Frye,2o and Martin et al.26 * is very useful when the magni- 
tude of the surface mechanical impedance is much smaller 
than the quartz characteristic impedance, Zq. Thin, rigid 
flhns and low-viscosity liquids satisfy this criterion. 

Another method for modeling composite resonators is 
to solve the wave equations and the piezoelectric constitu- 
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FIG. 1. Side cross-sectional view of AT-cut quartz wafer, showing shear 
displacement protiles for the fundamental and third-harmonic resonances. 

tive equations, subject to the appropriate boundary condi- 
tions at each interface. This set of differential equations 
and boundary conditions reduces to a set of algebraic equa- 
tions to be solved for the boundary-condition integration 
constants.27 Although only one of these constants is nec- 
essary to describe the electrical admittance vs frequency, 
the algebra required to obtain it is quite cumbersome and is 
not readily extendible to more layers. 

The method used here is based on a Mason model as 
described in Rosenbaum.25 The Mason model is a trans- 
m ission line representation of the physically based one- 
dimensional equations and boundary conditions, and it 
does not use any approximations other than the one- 
dimensional assumption. The Mason model represents 
each nonpiezoelectric layer by a 2X2 matrix, so that ad- 
ditional layers are included by cascading matrices. Similar 
methods have also been used for calculating the optical 
characteristics of multilayer materials.28 Although manip- 
ulating long products of these matrices by hand can be 
tedious, the matrix multiplication is easily programmed on 
a computer. In addition, these methods demonstrate a the- 
oretical basis for the BVD equivalent-circuit method and 
the conditions under which it applies. Thus, one can de- 
termine whether the convenient BVD equivalent-circuit 

FIG. 2. Butterworth-Van Dyke equivalent circuit model of coated 
quartz, showing element Z, contributed by film(s) on the quartz. C$ is 
the quartz static capacitance, accounting for parasitic capacitance. 

FIG. 3. Two-port Mason model of nonpiezoelectric layer (adapted from 
Rosenbaum, see Ref. 25). 

model is valid, and, if not, apply a simple method for an- 
alyzing multiple layers with arbitrary thicknesses and com- 
plex shear moduli. 

II. THEORY 

Following Rosenbaum,2s we use a two-port Mason 
equivalent circuit (shown in Fig. 3) to represent a linear 
model of an arbitrary nonpiezoelectric layer. Note Fig. 3 
differs from Fig. 6.9 in Rosenbaum25 because the charac- 
teristic impedance Z should not include the surface area A. 
Although this representation is written for a layer of finite 
thickness, it can also represent an inhnitesimally thin or an 
inCnitely thick layer, by taking the appropriate lim its of the 
layer thickness. In Figs. 3-6, the acoustical variables are 
analogous to electrical variables: force or stress (force per 
unit area) corresponds to voltage, particle velocity corre- 
sponds to current, and mechanical impedance (ratio of 
stress to particle velocity) is analogous to electrical imped- 
ance. A Mason model can also represent a piezoelectric 
layer, but the circuit has two acoustical ports and one elec- 
trical port (see Fig. 4). Figure 4 is a representation of the 

v1, 0 I linzta”(q liAm”(q-2 
I I ’ 1 

z 
\ 

FIG. 4. Three-port Mason model of piezoelectric quartz (adapted from 
Rosenbaum, see Ref. 25). 
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FIG. 5. Two-port Mason model of piezoelectric quartz with one stress- 
free interface (adapted from Rosenbaum, see Ref. 25). 

governing force-balance equations for the piezoelectric 
layer. The transformer describes the conversion between 
the electrical and acoustical variables, where the acoustical 
voltage is defined as the force. Benes uses a three-port 
model to describe quartz resonators;l however, in this 
work, we simplify the three-port model to a two-port 
model by connecting an appropriate impedance across the 
acoustical port representing the side of the quartz having 
the uncoated electrode. The convention in this paper is that 
the coated sensing electrode is on the “top” side of the 
quartz. If the bottom electrode has a significant area1 mass 
density, its impedance is jwp,, where pE is the areal mass 
density of the electrode ( kg/m2). For simplicity, however, 
we make the commonly accepted assumption that the bot- 
tom electrode is thin enough to model its impedance as a 
short (zero impedance), corresponding to a stress-free in- 
terface. The transformer in Fig. 4 is then eliminated by 
standard circuit methods29 to yield the two-port 
equivalent-circuit model of the quartz with one stress-free 
interface, as shown in Fig. 5. This circuit model has one 
acoustical port and one electrical port. 

A simple implementation of the two-port Mason 
model, as detailed in Rosenbaum,25 is to write a matrix 
equation to express the output current and voltage as a 
linear function of the input current and voltage and the 
acoustic parameters of the layer, i.e., 

[;I=[;: ;][;]Y (1) 

FIG. 6. Mason model of composite resonator having a stress-free inter- 
face on one side, and two arbitrary films on the other side (adapted from 
Rosenbaum, see Ref. 25). 

J. Appl. Phys., Vol. 75, No. 3, 1 February 1994 

where the voltages Y and the currents I may be either 
electrical or acoustical variables. Note that if the output 
variables are known, the input variables are calculated by 
multiplying both sides of Eq. ( 1) by the inverse of the 
A’B’C’D’ transformation matrix. Because the matrices de- 
rived in Rosenbaum take the quartz electrical port to be 
the input, we use the inverses of the matrices given in 
Rosenbaum to calculate the impedance at the electrical 
POti 

[;I=[: :][;]* (2) 

In addition, we deiine the acoustical voltage to be 
stress (for consistency with the definition of the impedance 
as the ratio of stress to particle velocity). At the stress-free 
top interface of the composite device, the acoustical voltage 
V, is zero, while 1, is unknown. The impedance calcula- 
tions, however, do not depend on I,, because, with the 
linear model of the solid, it cancels out of the numerator 
and denominator. The transformation matrix entries in Eq. 
(2), for a nonpiezoelectric layer, are as follows:25 

A=cos(id), (34 ’ 

B= jZ sin(kd), (3b) 

sin(id) 
C=j,, (3c) 

D=cos(kd), (3d) 

where i and d are the complex propagation constant and 
the layer thickness, respectively. 2 is the characteristic im- 
pedance of the layer material, 

z- JPG, (4) 

where G is the complex shear modulus and pAis the mass 
density. The complex propagation constant, li, is defined 
such that 

y= jk= jo Jp/GG, (5) 

where y is the wave propagation constant and w is the 
angular frequency of oscillation. 

For a piezoelectric layer, the matrix entries relating the 
electrical voltage and current to the acoustical voltage 
(stress) and current (particle velocity) are as follows: 

A = 4 EfA(a+b) 
@CO I/ 9a9 

Bq= 
2j42a 
x+A(a2+2ab) 

0 

c 
9 
=.bGNa+b) 

4a ’ 

Dq= 
jwC&(a2-l-2a&) 

#a ’ 

where 

V. E. Granstaff and S. J. Martin 

(64 

(6b) 

(6~) 

(6d) 
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(74 

and 

U’b) 

gq is the complex wave propagation constant for quartz, 
and dq is the quartz thickness. Co, the capacitance of the 
AT-cut quartz, is 

(8) 

where e22 is the quartz permittivity, and A is the active 
electrode area. Zq, the characteristic impedance of the 
quartz, is analogous to Eq. (4) : 

zq= lb&, (9) 
where FGs is the piezoelectrically stiffened complex shear 
modulus of the lossy quartz. Note that in contrast to the 

e expressions given in Rosenbaum,25 the electrode area must 
appear in Eqs. (6a)-( 6d) to be consistent with the deflni- 
tion of the quartz characteristic impedance, Zq [see Eq. 
(9)]. The turns ratio, (p, of the transformer in Fig. 4, is 

4=hC0= (e2de22)C0, (10) 

where e26 is the piezoelectric stress constant. Recall that 
these transformation matrices are used to calculate the 
electrical quantities from known acoustical quantities. 

For fitting data, it is convenient to reduce the number 
of adjustable parameters. From Eq. (2), 

and 

~rt=GVn+,+Wn+~, (lib) 
where the layer index, n, starts at zero for the quartz and 
ends with N for the top layer. Therefore, 

Defining 

JWn 
Qn=A,Dn -= -tan2(R&J =tanh2(y~J; 

Eq. (12) is rewritten as 

Since 

4 Z, 1 -= =- 
C, ta~(y,d,,) G/D, 

(12) 

(13) 

(14) 

(15) 

for a nonpiezoelectric layer, the evaluation of Rq. (14) 
requires only the two complex parameters An/C,, and Q,. 
The calculations begin by setting Z,,, =0 (zero stress at 

the top of the composite resonator), where N is the num- 
ber of layers’on the sensing side of the quartz; the remain- 
ing Zn’s are calculated recursively. 

Note that, in agreement with electrical engineering 
textbooks,23 if a load impedance, Z,, is imposed at the 
output port, so that ZL= Ve/Io, the resulting input imped- 
ance is, from Rqs. (lla) and (llb), 

&LL V. cos(kd) +ldZsin(Ld) 
Ii V,,[sin(Ld)/Z] +I0 cos(kdj 

=z 
ZL cosh(yd) +Z sinh(yd) 
Z cosh(yd) +Z, sinh(yd) ’ (16) 

where Z is the characteristic impedance of the layer. If the 
top of the layer is stress free (Z,=O), the impedance at the 
bottom of the layer is Z tanh( ‘yd) . 

The procedure for modeling a quartz resonator with 
multiple layers is to stack the layers (represented by con- 
catenating the 2x2 matrices for each layer), starting with 
the knowledge that the top of the composite resonator is 
stress free, and working toward calculating the variables at 
the electrical port. Figure 6 is an example of a Mason 
model of a composite system having two nonpiezoelectric 
layers on a quartz resonator. Applying the matrix multi- 
plication principle embodied in Rqs. (2) and ( 11) to the 
example in Fig. 6 gives 

[ 
A,(Ad%+ BlW2) +B,GW,+ WV,> 

= C,MWz+ BlDzId + D,(Cd%+ DlDzIz) 1 
(17) 

with V,=O for the stress-free interface on top of layer 2. 
The impedance at the electrical port can then be calculated 
from V/I, noting that the unknown I2 cancels out. The 
impedance is, therefore, 

(18) 

where, for two layers, 

and 

I,=C~B~+DIDZ 

(19) 

=- sin(r&dl)sin(&d2) +co&dl)cos(k2d2). 

(20) 
Note that, for any number of layers, Vdl, is the acoustic 
impedance, Z,, seen at the quartz surface because V,/Iq is 
the impedance calculated by multiplying the transforma- 
tion matrices for the nonpiezoelectric layers only. 
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It will be shown that, under certain conditions, it is 
valid to use an element proportional to this surface imped- 
ance, Z,, in the motional arm of a BVD equivalent circuit. 
To convert Eq. ( 18) into a BVD circuit representation, the 
electrical admittance is rewritten as 

y- %Vd- Wq Cc&+ Dq 
-A,V,+ BJ~=A,&+B~=~WCO 

where Y, is the admittance of the motional arm of the 
circuit (see Fig. 2). From this expression, the impedance 
of the motional arm can be calculated as 

z,= A&G+ Bq 
Dq--j~Wq+Zs(Cq- jd’d,) ’ (22) 

Although this expression is complicated, it simplifies when 
Z, is small, such that the motional impedance is propor- 
tional to the surface mechanical impedance. 

When using the present model to calculate admittance 
versus frequency data over a large frequency range, the 
frequency mesh size should be allowed to vary according to 
how fast the admittance values are changing relative to the 
admittance maximum that occurs at resonance. This will 
prevent the calculation from overlooking a sharp reso- 
nance without creating unmanageably large data files. Be- 
cause the resonances must be found numerically, for arbi- 
trary layers, the criterion for choosing the mesh size must 
reflect the desired relative precision in the calculated ad- 
mittance versus frequency data. When fitting experimental 
data, the mesh spacing would match that used in the ex- 
periment, and, after fitting data for the uncoated resonator, 
the two complex parameters, A,/C, and Q,, would be fit 
using a nonlinear optimization technique. This fitting is 
easier if the properties of the 
determined individually, either 
or by measuring the properties 
single crystal. 

111. LIMITING CASES 

A. Unloaded quartz (Z,=O) 

quartz and each film are 
by using separate crystals 
before and after coating a 

For unloaded quartz, Z,=O because the top quartz 
interface is stress free. Substituting into Eq. (22)) and us- 
ing Bq and Dq from E!qs. (6b) and (6d) gives the motional 
impedance, 

* Ma+%) z,=$+ 
0 w2 * 

(23) 

Equations (7)-( 10) and trigonometric identities3’ are 
used with the following resonance conditions and 
de8nitions:4 

4&dq 

(Nd2- (@q)2 ’ 

K2 p=---!- 
1+X’ 

(24) 

(2W 

(25b) 

to give 

Z,=j 
(Nrj2 . Wr12 Wd2r1q 

8wC&-’ 80X&+ 8C&;F66 

1 
=job+-+Rl, 

&Cl (26) 

where N is the harmonic number, Ki is the electromechan- 
ical coupling factor, and the circuit elements L1, Cl, and 
R1 are 

%I R,=F--- 
C66Cl. 

(274 

(27b) 

(27~) 

These expressions, which describe bare quartz as a 
BVD equivalent circuit model, are in agreement with Mar- 
tin, Granstaff, and Frye4 at resonance. 

6. Small IZ.J[Z, tanh(y&/2)] 1 

If 1 ZJ[Z, tanh(y&/2)] 1 is small (low surface im- 
pedance), the small-x approximation l/( 1 +x) z 1 --x can 
be used to approximate Eq. (22) as 

Z,Y Bfl 4 
Dq- Bq joCo +zs Dq- Bq joCo 

(28) 

where 

Z,= JpG tanh( yd) (29) 
for a single layer, or Z, is calculated from equations anal- 
ogous to Eqs. (19) and (20) for multiple layers. Even if 
IZAZ, tanh(y&&)l I is as large as 0.6, the error in the 
motional impedance is, at most, 9%. This translates to a 
maximum error of 8% in the overall admittance of the 
loaded quartz. The result of this approximation is [from 
Eqs. (6)~( 10) and (28)] 

(30) 

where 
A ~22A id 

@=m=4K2&,Zq (31) 

and Zq,m is the impedance of the motional arm for un- 
loaded quartz. The second term in Eq. ( 30) is the electrical 
impedance, Z, , associated with the nonpiezoelectric layers. 
This impedance, Z,, is proportional to Z,, in agreement 
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with Martin and Frye,2o and, near resonance, the expres- 
sion for Z, agrees with that used by Martin and Frye. In 
summary, this analysis has shown that it is valid to de- 
scribe lightly loaded quartz with a BVD equivalent circuit 
model. 

I. Single layer 

For any single layer, Eqs. (4) and (16) give the im- 
pedance at the quartz/layer interface 

Z,= m tanUy&, (32) 
where y is deflned in Eq. (5). This equation agrees with 
that given in Martin and Frye2’ for the polymer case, and 
can be reduced to a thin mass layer or an inflnite liquid by 
taking the appropriate limits. For a thin mass layer, yd+0 
and tanh(yd) -+yd, so that Z,=jwpd= jwp,; for an infr- 
nite Newtonian liquid, G= jwq and tanh(yd) --) 1, so that 
zs= G-G-7. 

2. Two layers 
a. Small I (Z~/Z3tanh(y,ddtanh(y~~ I. If 1 (Z&) 

xtanh(yldl)t=Ny& I is much less than unity (where 
the subscript “2” denotes the top layer), some simplifica- 
tions result, because, from Eqs. ( 19) and (20), 

z,= 
jZ2 cos(&dl)sin(i2d2) + jZl sin(&dl)cos(&d2) 

- (Z2/Zl)sin(&dl)sin(i2d2) +cos(&dl)cos(i2d2) ’ 

(33) 
which reduces to the sum of the impedances at the bottom 
of each layer: 

Z,=jZ2tan(~2d2)+jZ1tan(&dl) 

=Z2 tanh(y,dz) +Z1 tanh(ytdi). (34) 
For I (Z2/Zl)tanh( yldl)tanh( y2d2) I =O.l, the error 

in Eq. (34) is, at most, 11%. Note that the term 
[ (Z,/Z,)tanh( yldl) tanh( y2d2) ] represents the interac- 
tion between the two layers because it contains the ratio of 
the intrinsic layer impedances multiplied by the two terms 
representing phase shift and attenuation in each of the two 
layers. If one of the three components of this term is small, 
the interaction between the two layers can be neglected. 
For example, this low-interaction assumption applies to a 
thin (small-d), rigid (large-G) mass layer in contact with 
a liquid because 

GGGL 
=-7x jw &%4 -0 (35) 

at small dl/G1. This assumption does not apply to a thick 
or rubbery polymer in contact with a liquid, however, as 
we show in the next section. 

If a quartz resonator has a thin, rigid polymer film in 
contact with a liquid, it is valid to use the simple lumped- 
element equivalent circuit methods presented in Martin, 
Granstaff, and Frye.’ These techniques may be used to 
extract the mass of the iihn and the viscosity-density prod- 

uct of the contacting liquid. These methods assume that 
the mass layer is thin and rigid enough to obey the Sauer- 
brey approximation, which predicts that the quartz reso- 
nant frequency is shifted lower by an amount proportional 
to the added mass2 and that the amplitude of the resonance 
peak is unaffected by the mass loading. Another assump- 
tion inherent in the lumped-element circuit model is that 
the mechanical impedance of a thin mass layer is propor- 
tional to the mass of the layer and the interaction term, 
1 (Z,/z,)tanh( yidi)tanh( y2d2) I, is small, so that the total 
surface mechanical impedance is the sum of the mass 
and liquid mechanical impedances, as described in 
Eq. (34). Equation (34), combined with the 
small- 1 ZJ[Z, tanh( y&/2)] I approximation, states that 
the impedance in the motional arm of a BVD equivalent 
circuit is the sum of the quartz motional impedance, Zq,m, 
and an electrical impedance, Z,, that is proportional to the 
sum of the mechanical impedance of each nonpiezoelectric 
layer [see Eq. (30)]. 

The present analysis can be used to determine criteria 
for whether a given polymer is thin and rigid enough to use 
the lumped-element BVD equivalent circuit and, if not, 
provides an alternative data fitting method. If the BVD 
approximation holds, a single coated resonator in liquid is 
sufficient to extract the film mass and the liquid viscosity- 
density product simultaneously. The method for doing so 
is based on the fact that, while the frequency shift resulting 
from loading the crystal with mass and liquid depends on 
both the mass and the liquid, the damping (inverse of the 
maximum amplitude) of the quartz resonance peak 
[l/( Y- jwCo)] depends only on the liquid.4 Observe that 
jwCo is subtracted from the admittance to eliminate the 
effect of the quartz on the resonance peak amplitude. 
Therefore, the damping gives the liquid viscosity-density 
product, and the frequency shift gives the mass (after cor- 
recting for the effect of the liquid on resonant frequency). 

Instead of using a single crystal, an uncoated reference 
crystal may be placed in the same liquid as the polymer- 
coated sensing crystal. Clearly, the resonant frequency of 
the reference crystal depends only on the liquid. If the 
BVD approximation holds, the dz%rence in resonant fre- 
quency between the sensing and reference crystals is pro- 
portional to the coating mass, and independent of the liq- 
uid. Also, the difference in the resonance peak amplitudes 
between the two crystals is zero because the resonance 
peak damping (inverse of amplitude) is equal to the resis- 
tance in the motional arm of the equivalent circuit.Since 
this resistance depends only on the contacting liquid; 
which is the same for both crystals, the maximum damping 
(and amplitude) of the resonance peak is identical for the 
two crystals. Although it is unnecessary to use a reference 
crystal to measure the mass of a thin layer, it is useful to 
understand this limiting case before proceeding to the 
thick-polymer case, which requires a reference crystal to 
extract the polymer fllm mass and viscoelastic properties. 

b. Polymer in contact with liquid. If a quartz resonator 
has a thick coating, the BVD approximation does not hold, 
and it is difficult to extract the mass loading and the liquid 
viscosity-density product simultaneously from a single 
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FIG. 7. Calculated effect of polymer stillness (values in N m-*) for 
lpssless polymers in contact with water at fundamental quartz resonance. 
Thin or stiff polymers follow the linear Sauerbrey approximation, shown 
by the dashed line. (Divide pd values by 10 to obtain g cm-“, and mul- 
tiply G  values by 10 to obtain dyn cm-‘). 

crystal, because the frequency shift and the resonance peak 
amplitude both depend nonlinearly on the liquid and the 
polymer film properties. Therefore, an unloaded reference 
crystal should be immersed in the same liquid and used to 
determine pq separately (using the methods presented in 
Kanazawa and Gordon), a3i the present analysis can then be 
used to extract the polymer fllm parameters, accounting 
for the polymer/liquid interaction. 

The breakdown of the BVD approximation occurs 
with thick polymers because the upper film surface no 
longer moves synchronously with the lower tilm surface. 
As described in Martin and Frye,*’ the upper fllm surface 
can oscillate in phase or out of phase with the lower film 
surface. At polymer resonance, a transition between these 
two modes occurs [at the discontinuity where tan(&) 
changes sign]. The transition from m-phase motion to out- 
of-phase motion is accompanied by a sudden increase in 
the overall quartz resonant frequency, and a sharp increase 
in the damping of the resonance peak. 

Figure 7 shows the polymer resonance calculated for a 
low-modulus, lossless polymer (the curve for G= lo6 
N me2). Figure 7 shows Af, the difference between the 
sensing crystal frequency and the constant reference crys- 
tal frequency (both immersed in the same liquid), vs the 
mass ( pd) of the polymer film on the sensing crystal. Note 
that if the thin, rigid polymer approximation held, the plot 
would be linear (as indicated by the dashed lines in Figs. 7 
and 8). Indeed, at low pd (thin tilms) or high G  (stiff 
films), the plot follows the linear Sauerbrey approxima- 
tion. However, at higher mass loadings, it deviates from 
linearity and demonstrates the polymer resonance de- 
scribed above. Recall that stiffer polymers (higher G)  re- 
quire a greater film mass to induce deviation from the 
linear Sauerbrey approximation, as shown by Eq. (35). 
Stiff polymers also resonate, but these resonances have 
larger frequency shifts and more damping of the resonance 
peak (proportional to G). The high-G polymer resonances 
are not shown because the purpose of Fig. 7 .is to allow 

-0.1 

-0.15 

pd (kdm3 

FIG. 8. Calculated effect of polymer stiffness (values in Nme2) for 
lossless polymers in contact with water at third-harmonic quartz reso- 
nance. Thin or stitf polymers follow the linear Sauerbrey approximation 
(dashed lime). 

experimenters to determine whether the linear Sauerbrey 
approximation should hold for their particular polymers in 
water [or any fluid with pq~ 1 (kg rnm3) (N s mm2)]. By 
estimating the expected p, d, and G , and plotting the pd on 
the appropriate G  curve of Fig. 7, one can determine 
whether the linear approximation is valid by noting how 
closely the plotted point matches the linear approximation. 
If the linear approximation holds, the analysis methods 
presented in Martin, Granstaff, and Frye4 apply, and a 
reference crystal is unnecessary. While Fig. 7 illustrates the 
range of applicability of the BVD circuit methods at the 
fundamental quartz resonance, Fig. 8 is for the third har- 
monic. Observe that at the third harmonic, the deviation 
from linearity occurs at film masses three times lower than 
at the fundamental, as expected from the definition of id 
[see Eq. (5)]. While Figs. 7 and 8 describe coated resona- 
tors in water, plots analogous to Figs. 7 and 8 could be 
constructed for a liquid with a viscosity-density product 
greater or less than that of water. 

Another representation of the polymer resonance is a 
parametric plot. This array of three cross plots shows the 
relationships among three variables-the resonance peak 
damping, resonant frequency, and phase shift across the 
polymer film. Each of the three plots shows the relation 
between two of the variables; all three are plotted on the 
same scale and aligned for ease of comparison. 

Figures 9-l 1 show parametric plots illustrating the ef- 
fects of contacting liquid and Maxwell polymer film 
parameters32 at the fundamental quartz resonance. For a 
Maxwell polymer film G f=pclJ+joqf. In these figures, the 
upper-left-hand plot shows the difference in the resonance 
peak damping between the coated (sensing) and uncoated 
(reference) resonators in the liquid [Al/( Y-j&‘,)] v$- 
sus the phase shift of the polymer tllm [the real part of kd 
from Eq. (5)]. Because the reference crystal is uncoated, 
its damping versus any polymer properties is a constant. 
This constant offset is subtracted from the coated resonator 
response in each of the parametric plots. The phase shift is 
a dimensionless representation of the tilm thickness, e.g., at 
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FIG. 9. Parametric plot showing resonance of a rubbery polymer 
(G=106 N mM2) in contact with water (solid line, pn= 1 
kg m-’ Ns ms2) and a more viscous liquid (dot-dashed line, pg=9 
kg my3 Ns me*). Note that the more viscous liquid reduces the 
polymer-induced damping. 

Re(&d) =r, the lilm thickness equals half the acoustic 
wavelength. Recall that if the thin, rigid film approxima- 
tion held, there would be no difference in damping between 
the coated and uncoated resonators because they are im- 
mersed in the same liquid; therefore A(‘l/( Y-jwCo) 
would be zero. The upper-left-hand plots show the dra- 
matic increase inAdamping that accompanies the polymer 
resonance at Re( kd) ~s-/2, the film thickness correspond- 
ing to a quarter acoustic wavelength. 

The lower-right-hand plot shows the phase shift, 
Re(&d), versus the frequency difference between the 
coated and uncoated resonators in liquid. At small kd, 
where the Sayerbrey approximation holds, Af decreases 
linearly with kd. This lower-right-hand plot (viewed side- 
ways) shows the frequency*diEerence versus the dimen- 
sionless tilm thickness, Re( kd), while Figs. 7 and 8 show 
the frequency difference versus the tilm mass, pd. 
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FIG. 10. Parametric plot showin! effect of elasticity on resonance of a 
lossless polymer (q,=O N s m- ) in contact with water [pn=l (kg 
m -3) (N s mm2)]. Solid line: II/= lo6 N mb2; dot-dashed lime: 
pf= 1.5 x lo6 N m-‘. 
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FIG. 11. Parametric pIot showing effect of polymer viscosity on reso- 
nance of polymer (p/=106 N m-‘) in contact with water [pn= 1 
(kgmm3) (N s mm2)]. Solid line: qf=O Ns mW2; dot-dashed line: 
~p3.2~ lo-’ N s m-*. 

The upper-right-hand plots show the damping differ- 
ence versus the resonant frequency difference, which traces 
a loop in the clockwise direction, starting at the origin, as 
Re(kd) increases fr0.m zero to Z-. At the film thickness 
corresponding to the maximum damping, the impedance 
match at the quartz/film interface results in no reflection 
of the acoustic.wave at the quartz/liquid interface. How- 
ever,nthe plot returns to the origin at kd=v because the 
tan( kd) term in the polymer impedance express@ is zero, 
making Z,=Z, for both crystals. Physically, at kd=r, the 
acoustic wave is reflected at the polymer/liquid interface; 
therefore the power dissipation into the liquid is mini- 
mized. If the equivalent circuit model applied and the poly- 
mer did not affect the damping of the resonance peak 
[Al/( Y-j&s) =O], then the frequency change versus the 
uncoated resonator in liquid would be directly propor- 
tional to the film mass. These conditions would correspond 
to a horizontal line along the negative portion of the bf 
axis (on the upper-right-hand plot). Note that at small kd, 
the loop in the upper-right-hand Al/( Y--joCo)-vs-Af 
plot is tangent to the negative portion of the Af axis 
[Al/( Y-j&,) ~01. 

Figure 9 shows the effect of the liquid viscosity-density 
product on the resonator response. Because the effect of the 
liquid on the rubbery polymer film differs from the effect of 
the same liquid on the bare quartz reference crystal, there 
is an interaction between the polymer and liquid. It is not 
surprising, then, that the damping of the quartz resonator 
(versus that of an uncoated resonator in the liquid) de- 
pends on the density-viscosity product, pq, of the liquid. 
Recall that the damping of the quartz resonator versus the 
reference crystal is significant only near polymer reso- 
nance, where the polymer cannot be regarded as thin and 
rigid. As Fig. 9 shows, the maximum damping difference 
between the coated and uncoated resonator is inversely 
proportional to fi. The reason that the damping in- 
creases, with lower fi, is that the impedance matching 
between the quartz and the liquid is improving. As the 
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figure shows, the maximum damping occurs at approxi- 
mately the quarter-wavelength film thickness. At this film 
thickness, perfect impedance matching occurs if the imped- 
ance of the polymer film is the geometric mean of the 
quartz and liquid impedances.23 If this impedance match- 
ing condition is exactly met, there is no reflection of the 
acoustic wave at the quartz/polymer or the polymer/liquid 
interface; therefore all of the power from the oscillating 
quartz is radiated into the liquid (and the resonance peak 
is completely damped). Clearly, one should design exper- 
iments to avoid this condition, because a highly damped 
resonance peak is difficult to measure accurately. On the 
other hand, if the liquid is too viscous, both the sensing and 
reference crystals will have heavily damped resonance 
peaks, and the subtraction of two small, inaccurate num- 
bers is likely to give inaccurate results. 

Another interesting feature of Fig. 9 is that the film 
thickness at which maximum damping occurs decreases 
with liquid viscosity. Again, the impedance-matching ar- 
gument explains this phenomenon. Equation (33) shows 
that as Z2 (the liquid impedance) is increased, the 
tanh(&t) term must decrease to maintain the Zs=Zq 
impedance-matching condition. 

Figures 10 and 11 illustrate the effects of polymer tihn 
parameters for a Maxwell polymer32 (Gf=pf+jwq,> in 
contact with water. The effect of stiffness, yf, is shown in 
Fig. 10, and the effect of viscosity, qf, is shown in Fig. 11. 
As Fig. 10 shows, for stiffer polymers (larger pf), the loop 
is larger in diameter, and it stays tangent to the Af axis for 
larger A j’s (and pd’s), corresponding to adherence to the 
Sauerbrey approximation. Also, the damping of the quartz 
resonance by the polymer is more severe for stiffer poly- 
mers, as seen by the larger Al/( Y-j&‘,) maximum. 
Again, this increase in damping results because the poly- 
mer impedance is closer to the geometric mean of the 

I quartz and liquid impedances. 
As shown in Fig. 11, the effect of increasing the poly- 

mer viscosity, vf, is to shift the loop toward more negative 
A j’s (lower resonant frequencies), even when the polymer 
is oscillating out of phase with the quartz. Note that, in 
contrast to the liquid density-viscosity product and the 
polymer stiffness, the polymer viscosity, qf, affects the po- 
sition of the, Al ( Y-j&,> versus Af loop along the Af 
axis, but not the damping. 

To summarize the quartz/polymer/liquid system, for 
low mass loading (pd), as shown in Figs. 7 and 8, the 
BVD equivalent circuit method4 is valid, and a reference 
crystal is unnecessary to extract the fihn mass and liquid 
properties. At larger thicknesses, the polymer and liquid 
impedances can no longer be added in the motional arm of 
a BVD equivalent circuit. If a coated sensing crystal and an 
uncoated reference crystal are used together in the same 
liquid, one can plot the sensing versus reference frequency, 
Af, against the sensing versus reference damping, 
Al/( Y-j&-J. Ideally, the data should encompass a 
complete polymer lilm resonance by varying the film thick- 
ness, e.g., by electrochemically growing the polymer film. 
With a plot of the A f vs Al/( Y - joCs) loop, the data can 
be fit to determine pf, which affects the size of the loop 

(see Fig. 10) and Tf, which affects the position of the loop 
(see Fig. 11). The location of a dtta point along a given 
loop determines the real part of kd. With the extracted 
G=yf + jwvf, d can be obtained if p is known a priori. If 
both p and d are unknown, \Ipd can be extracted from id 
using Eq. (5). 

Another method for inducing a polymer resonance is 
to vary the temperature as in Martin and Frye.2o Analyz- 
ing these data would be more complex because the real and 
imaginary parts of G depend on temperature. 

IV. CONCLUSIONS 

A complete one-dimensional model of a composite res- 
onator shows that, for a lightly loaded quartz crystal, e.g,, 
1 Zs/[Zq tanh( y,&/2)]<0.6, a lumped-element equivalent 

circuit approximation is valid. The equivalent circuit has, in 
the motional arm, an impedance element, whose value is 
proportional to the mechanical impedance evaluated 
at the top quartz interface. If the quantity represent- 
ing the interaction of the two layers is small 
[ 1 (Z2/&)tanh(y1d1)tanh(y2d2) 1 ~0.11, where layer 2 is 
above layer 1, the mechanical impedances of these two lay- 
ers may be added to obtain the,mechanical impedance at 
the top quartz surface. An example that meets this crite- 
rion is a thin, rigid mass layer in contact with a liquid. If 
either of these two conditions is not satisfied, multiple lay- 
ers are still easily analyzed by the matrix methods pre- 
sented here. 

The viscoelastic properties (pf and vf) of a polymer 
layer in contact with a liquid can be obtained by using an 
uncoated reference crystal in the same liquid as the coated 
sensing crystal and fitting the loop obtained by plotting the 
damping difference versus the frequency difference 
[Al/(Y-jwCo) vs AA near polymer resonance. The lo- 
cation of a given resonant frequency and resonance peak 
amplitude along this loop determines the film thickness or 
density. 

Many applications, such as chemical sensors and ad- 
vanced battery development, can benefit from the ability to 
extract the thickness and viscoelastic properties of polymer 
films in liquids. We have presented methods for analyzing 
admittance versus frequency data taken from a polymer- 
coated quartz resonator immersed in a liquid. We have also 
presented general methods that apply to a piezoelectric 
resonator having any number of arbitrarily thick nonpiezo- 
electric layers. 
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impedances involved in A,- Dq [Eqs. (7a) and 
(7b)] (kg s-l mS2) 
2X2 matrix entries for obtaining the outputs 
from the inputs 
2X2 matrix entries for obtaining the inputs from 
the outputs [Eqs. (3a)-( 3d)] 
2X2 matrix entries for obtaining the inputs 
from the outputs for the nth layer 
2x2 matrix entries for the quartz piezoelectric 
layer [Eqs. (6a)-( 6d)] 
active electrode area (m2) 
static capacitance of AT-cut quartz resonator 
(4.029~ lo-t2 A2 s4 kg-’ mw2) 
electrical motional impedance elements associated 
with uncoated resonator 
piezoelectrically stiffened elastic constant for loss- 
less quartz (2.947 x 10” N mm2) 
piezoelectrically stiffened elastic constant for lossy 
quartz (N mM2) 
layer thickness (m) 
quartz thickness (m) 
thickness of nth layer (m) 
piezoelectric stress constant for quartz (9.53 X lo3 
A s mm2) 
excitation frequency (Hz) 
resonant frequency difference between sensing and 
reference crystals (Hz) 
complex shear modulus of tihn (N mm2) 
piezoelectric term EEq. (lo)] 
current (representing acoustical particle velocity) 
input current 
acoustical current at top of nth layer (m s-‘) 
output current 
acoustical current at top of quartz (m s-l) 
( - 1) *‘2 
complex shear propagation constant (m-l) 
complex shear propagation constant for nth layer 
Cm-‘) 
complex shear propagation constant for quartz 
Cm-‘> 
electromechanical coupling factor for lossy quartz 
B-i. (2541 
electromechanical coupling factor for lossless 
quartz CEq. (25b)] (7.74X 10m3) 
harmonic number or number of layers on quartz 
complex parameter for nth layer [Eq.- ( 13)] 
voltage (representing acoustical shear stress) 
input voltage 
acoustical voltage at top of nth layer 
output voltage 
acoustical voltage at top of quartz (kg m-l se2) 
electrical admittance (inverse of impedance) of 
composite resonator (A2 s3 kg-’ mS2) 
electrical motional admittance (A2 s3 kg-’ rnm2) 
characteristic impedance of a transmission line 
complex electrical impedance re resenting the 
load on the quartz (kg m2 sM3 A- P ) 
load impedance terminating a transmission line 

J. Appl. Phys., Vol. 75, No. 3, 1 February 1994 

znl 
zn 
Zq 
Z q1m 
ZS 

Y2Yn 

622 

%rlf 

% 

Pf 
h 
c 
P 
pq 
PS 
# 
w 
0s 

electrical motional impedance (kg m2 sm3 AB2) 
impedance V/In 
quartz characteristic impedance (kg s-l mW2) 
quartz motional impedance (kg m2 se3 Ae2) 
surface (shear) mechanical impedance 
(kg s-l mW2) 
shear wave propagation constant for nth layer 
Cm-‘) 
quartz permittivity (3.982X 10-l’ 
A2 s4 kg-‘mW3) 
film viscosity (N s mW2) 
effective viscosity of quartz (3.5 X 10m4 
kg m-t s-t) 
film shear stiffness (N rnm2) 
quartz shear stiffness (N rnm2) 
loss parameter for quartz CEq. (25d)] 
mass density of film (kg mm3) 
quartz mass density (2.651 X lo3 kg rns3) 
iilm area1 mass density (kg mm2) 
transformer turns ratio (A s m-‘) 
angular frequency (2?rf > (s-l) 
angular series resonant frequency (s-t) 
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