Journal article Open Access
Cartagena, Casandra M.; Phillips, Katie L.; Williams, Garry L.; Konopko, Melissa; Tortella, Frank C.; Dave, Jitendra R.; Schmid, Kara E.
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Cartagena, Casandra M.</dc:creator> <dc:creator>Phillips, Katie L.</dc:creator> <dc:creator>Williams, Garry L.</dc:creator> <dc:creator>Konopko, Melissa</dc:creator> <dc:creator>Tortella, Frank C.</dc:creator> <dc:creator>Dave, Jitendra R.</dc:creator> <dc:creator>Schmid, Kara E.</dc:creator> <dc:date>2013-06-14</dc:date> <dc:description>The tripeptide glycine–proline–glutamate analogue NNZ-2566 (Neuren Pharmaceuticals) demonstrates neuroprotective efficacy in models of traumatic brain injury. In penetrating ballistic-like brain injury (PBBI), it significantly decreases injury-induced upregulation of inflammatory cytokines including TNF-α, IFN-γ, and IL-6. However, the mechanism by which NNZ-2566 acts has yet to be determined. The activating transcription factor-3 (ATF3) is known to repress expression of these inflammatory cytokines and was increased at the mRNA and protein level 24-h post-PBBI. This study investigated whether 12 h of NNZ-2566 treatment following PBBI alters atf3 expression. PBBI alone significantly increased atf3 mRNA levels by 13-fold at 12 h and these levels were increased by an additional fourfold with NNZ-2566 treatment. To confirm that changes in mRNA translated to changes in protein expression, ATF3 expression levels were determined in vivo in microglia/macrophages, T cells, natural killer cells (NKCs), astrocytes, and neurons. PBBI alone significantly increased ATF3 in microglia/macrophages (820 %), NKCs (58 %), and astrocytes (51 %), but decreased levels in T cells (48 %). NNZ-2566 treatment further increased ATF3 protein expression in microglia/macrophages (102 %), NKCs (308 %), and astrocytes (13 %), while reversing ATF3 decreases in T cells. Finally, PBBI increased ATF3 levels by 55 % in neurons and NNZ-2566 treatment further increased these levels an additional 33 %. Since increased ATF3 may be an innate protective mechanism to limit inflammation following injury, these results demonstrating that the anti-inflammatory and neuroprotective drug NNZ-2566 increase both mRNA and protein levels of ATF3 in multiple cell types provide a cellular mechanism for NNZ-2566 modulation of neuroinflammation following PBBI.</dc:description> <dc:identifier>https://zenodo.org/record/1232878</dc:identifier> <dc:identifier>10.1007/s12017-013-8236-z</dc:identifier> <dc:identifier>oai:zenodo.org:1232878</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/publicdomain/zero/1.0/legalcode</dc:rights> <dc:title>Mechanism of Action for NNZ-2566 Anti-inflammatory Effects Following PBBI Involves Upregulation of Immunomodulator ATF3</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Views | 3,642 |
Downloads | 316 |
Data volume | 191.9 MB |
Unique views | 3,284 |
Unique downloads | 309 |