Journal article Open Access

Analysis of the Marshall Islands Fireball of February 1, 1994

Tagliaferri, E.; Spalding, R.; Jacobs, C.; Ceplecha, Z.

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>Tagliaferri, E.</creatorName>
      <creatorName>Spalding, R.</creatorName>
      <creatorName>Jacobs, C.</creatorName>
      <creatorName>Ceplecha, Z.</creatorName>
    <title>Analysis of the Marshall Islands Fireball of February 1, 1994</title>
    <date dateType="Issued">1995-01-01</date>
  <resourceType resourceTypeGeneral="JournalArticle"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/bf00671553</relatedIdentifier>
    <rights rightsURI="">Creative Commons Zero v1.0 Universal</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">On February 1, 1994, a large meteoroid impacted over the Pacific Ocean at 2.6° N, 164.1° E. The impact was observed by space based IR sensors operated by the US Department of Defense and by visible wavelength sensors operated by the US Department of Energy. During entry the object broke into several pieces, one of which detonated at 34 km and another at 21 km altitude. The entry velocity of the object is estimated to be 24–25 km/sec. Based on the visible wavelength data, the integrated intensity of the radiated energy of the fireball was approximately 1.3 × 1013 joules. Assuming a 6000 K black body and a 30% efficiency for the conversion of the kinetic energy of the body into visible light, we estimate the mass of the body to be between 1.6×105 kg and 4.4×106 kg, and to have a diameter of between 4.4 and 13.5 meters. The object entered at a 45° angle, traveling on a heading of approximately 300°, i.e. from the southeast to the northwest. Calculations using a gross-fragmentation model indicate that the body was most likely a stony object larger than 10 m with an Apollo orbit prior to impact.</description>
Views 295
Downloads 119
Data volume 46.3 MB
Unique views 285
Unique downloads 116


Cite as