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An Overview of Near-Field Antenna Measurements 
ARTHUR D. Y A G H J W ,  SENIOR MEMBER, EEE 

Abstract-After  a brief history  of  near-field  antenna measurements 
with and without probe correction, the  theory of  near-field  antenna 
measurements  is outlined beginning with ideal  probes  scanning on 
arbitrary surfaces and ending  with arbitrary  probes scanning  on planar, 
Cylindrical,  and  spherical surfaces.  Probe  correction is introduced for all 
three  measurement geometries  as  a  slight  modification to the  ideal  probe 
expressions.  Sampling  theorems are applied  to determine  the  required 
data-point  spacing, and efficient  computational  methods  along with  their 
computer run times are discussed.  The major sources  of experimental 
error defining  the accuracy of typical  planar  near-field  measurement 
facilities are reviewed, and  present limitations  of  planar, cylindrical,  and 
spherical  near-field scanning are identified. 

T 
I. BRIEF HISTORY OF NEAR-FIELD SCANNING 

HE DEVELOPMENT OF near-field  scanning as a 
method for measuring  antennas can be divided 

conveniently  into four periods: the early  experimental  period 
with  no probe correction (1950-1961), the period of the first 
probe-corrected theories (1961-1975), the period in  which  the 
first theories were put  into practice (1965-1975),  and  the 
period of technology transfer (1975-1985) in  which 50 or 
more near-field scanners were built  throughout  the  world. 

A .  Early Experimental Period: No Probe Correction 
(1950-1961) 

Probably the first near-field  antenna  scanner  was the 
“automatic antenna  wave front plotter” built  around  1950 by 
Barrett and  Barnes [I] of the Air Force Cambridge Research 
Center. Although  they  made no attempt to compute  far-field 
patterns from their measured  near-field data, Barrett and 
Barnes  obtained full-size maps of the phase and amplitude 
variations in front of microwave antennas. (A plot  of the phase 
and  amplitude contours measured  in front of a  10-wavelength 
reflector antenna  with the Barrett  and  Barnes  wavefront  plotter 
is shown in 12, fig. 17.51.)  Woonton  measured  the  near fields 
of diffracting apertures and  critically  examined in his  1953 
paper [3]  the  assumption  that the voltage  induced in  the  probe 
is  a  measure of the electric field strength. Richmond  and Tice 
[4], [5] in 1955  experimented  with air and dielectric-filled, 
open-ended rectangular waveguide  probes for measuring  the 
near fields of microwave antennas, and  compared  calculated 
far fields with directly measured far fields. For an X-band 
cheese aerial, Kyle  (1958)  [6]  compared the far-field pattern 
obtained  directly  on  a  far-field  range  with  the  far-field  pattern 
computed from the near-field amplitude and  phase as mea- 
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sured by an open-ended circular wave,pide. Gamara  (1960) 
[85] compared directly measured  far-field patterns with 
patterns computed  from  amplitude  and  phase data taken in the 
near  field of three different line sources excited at X-band 
frequencies. Good agreement was  obtained over the main 
beams  and first sidelobes of the line sources. In  1961 Clayton, 
Hollis, and Teegardin [7], 181 computed the principal  far-field 
E-plane pattern for a  14-wavelength  diameter  reflector  an- 
tenna  from the amplitude  and phase of the near-field distribu- 
tion.  They  obtained  good  agreement  with direct far-field 
measurements over the  mainbeam  and first few  sidelobes. 

B. First Probe-Corrected Theories (1961-1975) 
All of the experimental work of the early period  assumed 

basically  that  the probe measured  a rectangular component of 
the electric or magnetic vector in  the  near field. Some early 
theoretical work [9]-[ 111 applied approximate correction 
factors in order to account for the finite size and  near-field 
distance  of the measurement probe. In  1961  Brown  and Jull 
[ 121 gave a rigorous solution to the probe correction problem 
in two  dimensions  using cylindrical wave  functions to expand 
the  field of the  test antenna but plane waves to characterize the 
probe. However, it  wasn’t  until Kerns [13] reported his plane- 
wave  analysis in 1963 that  the first rigorous and  complete 
solution to the probe correction problem in three dimensions 
became available. Kerns’s  National  Bureau of Standards 
(NBS)  monograph [14], which  provides  a  comprehensive 
treatment of the “Plane-wave scattering-matrix theory of 
antennas  and  antenna-antenna interactions,” is the definitive 
work on the theory of planar  near-field  scanning. In fact, 
rigorous three-dimensional probe correction, as pioneered by 
Kerns, distinguishes modem near-field  antenna  measurements 
from less accurate, nonprobe-corrected near-field  measure- 
ments  that  could  have  been  formulated  shortly after Maxwell 
published  his “Treatise on  Electricity  and Magnetism.” 

Probe-compensated cylindrical near-field  scanning  was 
extended to three dimensions  in 1973 by Leach  and Paris [15] 
of the Georgia Institute of  Technology (GIT). Characterizing 
the probe as well as the test antenna by cylindrical  wave 
functions, they  developed  the theory, presented  sampling 
criteria, and performed  measurements  on  a  slotted  waveguide 
array to verify their technique. Later, Borgiotti  [16],  using  a 
plane-wave representation for the probe (as in the original 
paper of Brown  and  Jull  [12]),  and  Yaghjian  [17],  using  a 
uniform  asymptotic  expansion of the Hankel function, derived 
an approximate probe correction directly from the far field of 
the probe for cylindrical scanning that approaches the simplic- 
ity of the planar probe correction. 

The probe-corrected  transmission formula for near-field 
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TABLE I 
REPRESENTATIVE ANTENNAS MEASURED AT NBS (FROM [37]) 

ANTENNA  TYPE 

HORN  LENS 

CONICAL  HORN 

CASSEGRAIN  REFLECTOR 

CONSTRAINED  LENS 
ARRAY 

PHASEDARRAYS 

DIPOLE ARRAY 

FAN-BEAM  RADAR 

KU-BAND  REFLECTOR 

KU-BAND ARRAY 

SHAPED-BEAM  REFLECTOR 

MICROSTRIP ARRAY 

PARABOLIC  REFLECTOR 

COMPACT  RANGE 
REFLECTOR 

FREQUENCY  (GHz) 

48.0 

8.0 

60.0 

9.2 

8.4 

7.5 

1.4 

9.5 

14.5 

17.00 

4.0 

1.5 

1.5-18 

18 & 55 

MAJOR 
DIMENSION 

IN WAVELENGTH: 

90 

6 

91 

23 

17 

15 

5 

58 

60 

50 

20 

27 

15-183 

285 & 870 

GAIN (dB) 

47.0 

22.08 

46.5 

34.0 

21.5 

30.5 

20.3 

30.0 

42.0 

40.0 

27.5 

30.0 

26-47 

- 60.0 

scanning in spherical coordinates  was  derived by Jensen [ 181 
of  the  Technical  University of Denmark (TUD) in 1970. 
However, the  transmission  formula  could  not  be “decon- 
volved” in practice to obtain the required  spherical  mode 
coefficients  of  the  test  antenna  until  Wacker’s  publications 
[20],  [21] of 1974-1975 and Jensen’s publication [19] of 1975. 
These  publications  showed  that  the  use of a  symmetric 
measurement probe allowed  deconvolution  through ortho- 
gonality  of  the spherical rotation  functions  with  respect to (+, 
e). Wacker [20], [21] also proposed the use  of  a  fast Fourier 
transform scheme [22] to compute the  problematic 0 integrals. 
This scheme  was  implemented  and  made  more  efficient by 
Lewis [23] and  Larsen 1241, [25]. An excellent  account  of 
probe-corrected spherical near-field  antenna  measurements  at 
TUD may  be found in Larsen’s thesis [25]. 

Wood [26] has  developed an alternative spherical  scanning 
technique  using  a  Huygens probe that  samples  an  assumed 
locally  plane-wave field. Recently, Yaghjian  and  Wittmann 
[27]-[29] have derived a  simplified probe-corrected spherical 
transmission  formula in terms of  conventional vector spherical 
waves. This alternative transmission formula, which  is free of 
rotational  and  translational  addition functions, can be decon- 
volved  by  means of the familiar orthogonality of the  vector 
spherical  waves.  Yaghjian [27] also suggests  a direct computa- 
tion  scheme for evaluating  the 0 integrations. 

C. Theory  Put into Practice  (1965-1975) 
The first probe-corrected near-field  measurements  were 

conducted at the National  Bureau  of Standards [30] in 1965 
using  a lathe bed to scan on a plane in front of  a 96 wavelength 

pyramidal horn radiating at a  frequency of 47.7 GHz. For 
more  than 10 years following, probe-corrected near-field 
scanning was confined to planar and cylindrical scanning  at 
NBS [31]-[35] and GIT, [36],  [15], [8] where near-field 
measurements  began around 1968. During  that  period  planar 
near-field  scanning  matured  at these two laboratories to a 
fairly routine  measurement procedure for directive antennas 
operating  at frequencies from less than 1 GHz  to over 60 GHz. 
Sampling  theorems were applied to determine data  point 
spacing, efficient  methods  of  computation  were employed, 
automatic computer-controlled transport of the test  antenna 
and probe was installed, lasers were used to accurately 
measure  the  position  of  the probe, and  upper-bound  theoretical 
as  well as experimental and  computer-simulated error analyses 
were performed. Table I lists some representative antennas 
that  have  been  measured at NBS [37]. 

D. Technology  Transfer  (1975-1985) 
The development  of  near-field  measurements  seems to have 

anticipated the advent of specially  designed  antennas not  well 
suited to measurement  on  conventional far-field ranges. 
During  the first ten years of development, near-field  antenna 
measurements were confined to the laboratories of NBS and 
GIT. The  last  ten years have seen a much wider  interest  that 
includes private industry, as the appeal, but more  often the 
necessity of near-field  techniques for measuring certain 
antennas  has  stimulated  the construction of 50 or more near- 
field scanning facilities throughout the world. Fig. 1 lists a few 
of these near-field facilities and their completion dates (second 
generation  dates for NBS and  GIT)  along  with  a chart of their 
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NBS 1972 
GEO. TECH 1972 
TUD 1977 
WPAFB 1978 
RCA 1979 
MARTIN 1980 
JPL 1980 

TRW 1982 
HUGHES 1983 
MBB  1983 

NASA-LEWIS  1982 

= MAXIMUM ELECTRICAL 
SIZE OF ANTENNA 

MAXIMUM FREQUENCY  CAPABILITY (GHZ) APERTURE 

Fig. 1. Some existing near-field facilities (from [38]). 

maximum dimensions and frequency capabilities [38]. All the 
facilities listed  in Fig. 1 use the planar, cylindrical, or 
spherical scanning  methods described above,  except the Jet 
Propulsion Laboratory (JPL), which takes planar  near-field 
data on a polar grid rather than  on  the  usual  rectangular grid. 
Like cylindrical scanning, plane-polar  scanning requires the 
probe to move  only  on  a single linear track [39]-[43]. 

It would be naive to think that  the  interest  in  and 
proliferation of  near-field  measurement facilities has  stemmed 
solely from an objective evaluation of the scientific  merits of 
near-field  techniques. The theory, measurements, and com- 
puter programming required to accurately characterize anten- 
nas by near-field  scanning is considerably  more extensive than 
for conventional  far-field  measurements. Thus there has been 
a natural tendency to avoid  near-field techniques, often in spite 
of their advantages, whenever more familiar far-field  tech- 
niques could be applied. 

The recent interest in  near-field  measurements  has  been 
generated  primarily  by the development of modem, specially 
designed  antennas  that are not  easily  measured  on  conven- 
tional  far-field ranges. These antennas include  electrically 
large antennas  with  Rayleigh distances too large for existing or 
available far-field  ranges;  physically large antennas  which are 
difficult to rotate on conventional  antenna  mounts; array 
antennas  with  many  elements  that  can be conveniently 
interrogated by near-field scanning; reflector antennas  with 
panels that can be accurately aligned  by  measuring  near-field 
phase; millimeter  wave  antennas  that may experience high 
atmospheric  noise  and absorption, especially in inclement 
weather; antennas  with  complex  far-field patterns for which 
extensive far-field amplitude (and  possibly  phase) data are 
required; antennas  with  improved  and  specified polarization 
properties; delicate antennas that experience high stress and 
strain under certain rotations or changes in temperature and 
humidity, and  that  may require counter balancing  and  mea- 
surement in  a controlled environment; nonreciprocal antennas 
that  must be measured  in the transmitting mode  and  thus  may 
be inconvenient for measurement  on  conventional far-field 

ranges;  classified antennas that  must  be  measured in a secure 
environment; antennas for which  on-site  production or field 
testing  is desirable; HF aircraft antennas (3-30 MHz) whose 
image fields interfere with their free-space patterns being 
measured directly in the far field  (cylindrical  scanning has 
been applied to such HF antennas by D. E. Warren of RADC, 
Griffiss AFB) ;  and  finally antennas with  sidelobes too low  to 
be accurately  measured  on  conventional  far-field  ranges. 

The demand  on  far-field ranges to  measure  near-in  side- 
lobes  that are below - 30 dB are severe. For example, as 
Hansen [44] points out, a  far-field distance of at least 6D2/X is 
required to measure a -49 dB first sidelobe in a Taylor 
pattern to within 1 dB accuracy. The possibility of determining 
accurately the patterns of ultralow  sidelobe  antennas from 
planar  near-field  measurements  with  a probe that  has  a  null  in 
its forward direction (thereby filtering the main  beam of the 
test  antenna) has been  proposed by Grimm [45], [46] and 
verified by Newell et ai. [47]. (Grimm credits Huddleston’s 
thesis [48] for the fundamental  ideas  suggesting  the  use of 
“null probes” for ultralow sidelobe measurements.) 

Near-field  measurements  have also been  used  in  a  sophisti- 
cated procedure for aligning the beamformers of large, 
scanning  phased array antennas. Specifically, Patton [49] 
computes the array excitation  coefficients by taking the 
Fourier transform of the complex array factor (far field 
divided by the element pattern), the far field of  which  is 
computed from planar near-field  measurements. The entire 
fundamental  period  of the array factor is obtained by steering 
the array to two or more positions, and  recording the near- 
field data for each  position. The element pattern can also be 
evaluated from the planar  near-field  measurements by steering 
the array during its measurement  and  computing the peak 
values of the steered far-field patterns. 

II. NEAR-FIELD THEORY 

A reasonable  understanding of the theory of near-field 
measurements is a prerequisite to a  successful  near-field 
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Fig. 2. Exterior fields of radiating antenna. 

antenna  measurements program. Although not everyone  in- 
volved  in  near-field  antenna  measurements  needs to be 
proficient in the theory, there should  be at least one  member of 
the  team  who  gains a competent  and versatile knowledge  of  the 
theoretical  formulation on  which  the  near-field  measurements 
are based. 

The references above form a substantial  bibliography  from 
which planar, cylindrical, or spherical near-field  theory  can be 
studied. A few  additional references may prove helpful. 
Kerns’s “translation” [SO] of  the  plane-wave scattering matrix 
theory of antennas for the measurement of acoustic  transduc- 
ers comprises a streamlined, pedagogical  development of 
planar  near-field  scanning and extrapolation [5 11 techniques. 
The short papers by Kerns et al. in Electronics Letters [52]- 
[54],  [31] should also be consulted  for a brief  description  of 
planar  near-field analysis. The  review paper [55] from GIT 
applies  the Lorentz reciprocity  theorem rather than a scatter- 
ing-matrix  approach to derive the  probe-compensated  planar 
transmission formula. Appel-Hansen [56] has  recently  given a 
useful  review  of  the  theory  of probe-corrected planar, cylin- 
drical, and spherical near-field  measurements.  He provides a 
unified vector  wave  notation  and  adopts  the source scattering- 
matrix  approach of Yaghjian [ 171. 

Yaghjian [57] can also be referenced for methods to 
efficiently  compute  the  mutual  near-field  coupling of two 
antennas arbitrarily oriented and  separated in free space. 
Given  the  complex far fields of  the two antennas, [57] 
develops the theory  and describes two computer programs for 
calculating their mutual  coupling (or fields) on transverse and 
radial axes, respectively, in a computer time proportional to 
the square of  the electrical size of  the antennas. This  rapid 
evaluation  of  antenna  coupling  along  radial  axes  spanning  the 
entire Fresnel region  results from the  mutual  coupling  function 
satisfying  the  homogeneous scalar wave  equation [57]. 

A .  Exterior Fields of Radiating Antennas 

Fig. 2 depicts the regions into which  the exterior fields of a 
radiating  antenna are commonly divided. The antenna  radiates 
into free space as a linear system  with  the  single-frequency 
time  dependence  of exp ( - i d ) .  The antenna  is  assumed 
ordinary in the sense of  not  being an extraordinarily highly 
reactive radiator such as a highly  supergain  antenna.  Another 
example of a “super-reactive” antenna  would be one formed 
by a number  of  multipoles  located at a single point in space. 

The far-field region extends to infinity, and  is  that  region 
of space where the  radial  dependence  of electric and  magnetic 
fields  varies  approximately as exp (ikr)/r . The inner radius of 
the far field  can  be  estimated  from  the  general  free-space 
integral for the  vector  potential  and  is  usually  set at 2 D 2 / X  + 
X for nonsuper-reactive antennas. (The added X covers the 
possibility  of  the  maximum  dimension D of  the  antenna  being 
smaller than a wavelength.  In other words, the  Rayleigh 
distance  should  actually  be  measured  from  the outer boundary 
of  the reactive near field  of  the antenna.) For the  main  beam 
direction  the  Rayleigh  distance  can  sometimes be reduced. 
However, in the directions of  nulls or low  sidelobes  near  the 
main  beam  the far field may  not accurately  form  until 
considerably larger distances are reached [MI. 

The free-space  region  from  the surface of the  antenna  to  the 
far field  is referred to as the near-field region. It  is  divided 
into two subregions, the reactive and radiating  near  field.  The 
reactive near-field  region  is  commonly  taken to extend  about 
h/2a from the surface of the antenna, although  experience 
with  near-field  measurements  indicates  that a distance of a 
wavelength (X) or so would  form a more reasonable outer 
boundary to the reactive near field. 

The reactive near  field  can be defined in terms of planar, 
cylindrical, or spherical modes.  Unfortunately,  the reactive 
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fields of spherical (or cylindrical) multipoles are not identical 
to the plane-wave  evanescent fields of the multipoles. Thus, a 
less ambiguous, simpler, and  physically  appealing  method of 
defining the reactive region of antennas relies directly on 
Poynting’s theorem and  the vector potential.  One  can  show 
that the contribution to the reactive part of the input  impedance 
of an antenna from the fields outside  a surface surrounding the 
antenna  is proportional to the imaginary part of the complex 
Poynting  vector integrated over the surface. Thus, wherever 
the  phase of the electric and  magnetic  field  vectors are near 
quadrature, the  Poynting vector will contribute mainly to the 
reactive part of the input  impedance.  Taking the curl of  the 
vector potential integral once  to get the magnetic field, and 
twice  to get the electric field shows that the phase  of the 
electric and  magnetic fields may be (but are not  necessarily) 
near quadrature in regions within  a  wavelength (X) or so of the 
antenna.  Consequently the region  within  a  wavelength or so of 
the  physical  antenna is referred to as the reactive near field. 

Beyond  a distance of  about  a  wavelength from nonsuper- 
reactive antennas, the electric and  magnetic  fields  tend to 
propagate  predominantly  in phase, but, of course, do not 
exhibit exp (ikr)/r dependence  until the far field is  reached. 
This propagating  region  between the reactive  near  field  and 
the far field  is called the radiating near field. 

Finally, the optical terms, “Fresnel region” and “Fraunho- 
fer region,” are sometimes  used to characterize the fields of 
antennas. The term Fraunhofer  region can  be  used  synony- 
mously  with the far-field region, or to refer to the  focal  region 
of an antenna  focused at a finite distance. The Fresnel region, 
which extends from about (D/2X) 1’3D/2 + A to the far field, 
is the  region up to the far field  in  which  a  quadratic  phase 
approximation can be  used in the vector potential integral. The 
Fresnel region is a  subregion of the  radiating  near-field  region. 

B. Scanning with Ideal Probes on Arbitrary Surfaces 
Assume  we  had  ideal probes that  measured the electric and 

magnetic fields tangential to an arbitrary surface S enclosing 
the test antenna, as shown  in Fig. 3. Then the Kottler-Franz 
formulas [58] determine  the  fields  outside S in terms of the E- 
and H-fields tangential  to S .  In particular, the far electric field 
is given by a “vector Kirckhoff integral” of the measured 
equivalent electric and  magnetic currents (see Fig. 3). Al- 
though the vector Kirckhoff  integral for the far field  is fairly 
simple  in form, it requires not  only calibrated, ideal  probes, 
but also the measurement of both the tangential electric and 
magnetic fields over the surface S .  In addition, the  integral 
generally takes a  relatively large computer time (proportional 
to ( / ~ a ) ~ )  compared to planar or cylindrical scanning to obtain 
one cut in  the  far-field pattern, where “a” is the  radius of the 
sphere circumscribing the  test antenna. 

One can derive a  modified vector Kirchhoff  integral  for the 
electric or magnetic  field  outside S in terms of the  measured 
tangential electric field alone or the measured  tangential 
magnetic  field alone. Fig. 4 gives the formal expression for the 
electric field outside S in terms of the measured electric field 
tangential  to S and the dyadic Green’s function G. However, 

is impractical to find unless S supports  orthogonal A?€ and m 
vector  wave functions, in which case 6 is given in terms of &I 

VECTOR KIRCHHOFF INTEGRAL 

I 
i I e = i i x H  

- 
K,=-fi X E 

Fig. 3. Scanning  with  ideal probes on arbitrary surfaces. 

TEST  ANTENNA 

E IS IMPRACTICAL  TO  FIND  UNLESS S SUPPORTS 
ORTHOGONAL id AND w EIGENFUNCTIONS:  THEN 
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PLANE 
CIRCULAR 
CYLINDER SPHERE 

ORTHOGONALITY OF AND w YIELDS: 

T&= -$[N&(f) X E(?)]*i? dS: TK = $[M&,(f) x E(fll*fidS 
S S 

Fig. 5. Scanning with  ideal  dipole  on  plane,  cylinder,  and  sphere.  (The symbol X’ denotes  integration as well as summation.) 

and Nby the expression at the bottom of Fig. 4. (Note that  the 
G at the  bottom  of Fig. 4 is neither  the  Dirichlet nor the 
Neumm dyadic Green’s function.) There are six coordinate 
systems  that support &I and I? vector wave  solutions [59], but 
just three of  these-the planar, cylindrical, and  spherical- 
offer mechanically  convenient  scanning surfaces with  simple 
orthogonal  functions. The three other coordinate systems 
would require scanning on  an elliptic cylinder, on a parabolic 
cylinder, or on a sphere in conical surface coordinates. 

C. Scanning  with Ideal Probes on Planar, Cylindrical, 
and Spherical Surfaces 

The planar, cylindrical, and  spherical  scanning surfaces are 
pictured in Fig. 5 along  with  the electric field  represented by 
the complete set  of &if and Z? eigenfunctions.  After  the 
amplitude and phase of  the  tangential electric field  is  measured 
over the  scanning surface S,  one  finds  the  unknown  transmit- 
ting  modal  coefficients ( T i ,  T 2  of  the  antenna  under  test by 
means  of  the  orthogonality  integration  given  in Fig. 5. For 
simplicity, assume  the linear test  antenna operates in a single 
mode  of excitation, and that  the  input  coefficient  of  this  feed 
mode  has  unity amplitude. 

The specific  eigenfunction  expansions for planar, cylindri- 
cal, and spherical scanning, along  with their inverse ortho- 
gonality integrations for the  transmission  coefficients are 
given  in Fig. 6. Again  note  that for each coordinate system, 
the desired transmission  coefficients are determined by a 
straight-forward double integration of  the  measured  tangential 
electric field over the  scan surface. Similar expressions  hold in 
terms of the  tangential  magnetic  field or in terms of  any two 
independent  components  of  the fields; e.g. James  and 
Longdon [60] formulate spherical scanning  in  terms of the 
radial  near-field  components of the electric and  magnetic 
fields. Explicit expressions for these cylindrical and spherical 

functions  of  Fig. 6 in terms of  Hankel  functions  and  associated 
Legendre polynomials, respectively, can  be  deduced  by 
comparison  with similar expressions in [I71 and [29]. (The 6- 
integration of the  +component of El in Fig. 6, and 6, in Fig, 
8, for cylindrical  scanning  is  done  with the unit  vector d held 
fixed .) 

The ideal-probe planar formulas in Fig. 6 as well as the 
probe-corrected  planar formulas in Fig. 8 apply to scanning  in 
rectangular coordinates. Transmission formulas for plane- 
polar scanning may be  found in [39]-[43]. 

D. Probe Correction for Planar, Cylindrical, and 
Spherical  Scanning 

The nonprobe-corrected  transmission formulas and their 
inversions  shown in Fig. 6 merely  involve  the familiar planar, 
cylindrical, and spherical wave  functions of traditional electro- 
magnetic  theory [61]. Unfortunately, ideal probes that  mea- 
sure the electric or magnetic  field at a point in the near field do 
not exist in practice. For example, open-ended  rectangular 
waveguide probes commonly used  in near-field  measurements 
are less  than a wavelength across and  yet  have far fields that 
differ appreciably  (in  the front as  well as back  hemisphere) 
from the far fields of elementary  magnetic or electric dipoles 
[62]. Thus, for  the accurate determination of electric and 
magnetic  fields  from  measurements in the  near  field one must 
usually correct for the  nonideal  receiving  response  of  the 
probe. For planar scanning, probe correction is generally 
necessary to obtain accurate values  of the far field of  the  test 
antenna  outside  the  main  beam region, regardless of  how far 
the probe is separated from the  test antenna. With  planar 
scanning  the probe remains  oriented in the  same direction 
(usually  parallel to the boresight direction  of  the  test antenna), 
and  thus  samples the sidelobe  field  at  an angle off the  boresight 
direction  of  the probe. Planar probe correction simply 
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Fig. 6. Specific  expressions for scanning  with  ideal dipole on plane,  cylinder, and sphere. 

compensates for this off-boresight  sampling by the nonideal 
probe of the plane  waves  radiated by the test antenna. For 
cylindrical scanning, the same argument  can be applied in  the 
axial  scanning direction to explain why probe correction is 
generally necessary for cylindrical near-field  measurements, 
regardless of the separation distance  between the test and 
probe antennas. 

For spherical scanning, the probe always  points  toward the 
test antenna, and thus probe correction becomes  unnecessary if 
the  scan  radius  becomes large enough. However, for spherical 
near-field  measurements  within  a  few diameters of the test 
antenna, probe correction is generally required to obtain 
accurate far-field patterns. Fig. 7  shows  the  far-field  pattern 

- computed from nonprobe-corrected spherical near-field data 
taken at two  scan radii from a 25 wavelength,  X-band array 
[63]. Comparison  with the solid pattern obtained from probe- 
corrected planar near-field  measurements shows that failure to 
correct for the effect of the probe on spherical  near-field  data 
broadens the  main  beam  and  smooths  out the sidelobes. The 
broadening  of  the far-field main  beam is caused by the 
effective narrowing of the near-field  beam as the nonideal 
probe receives  from further off its boresight direction the 

further it gets from the center of the near-field  beam. A similar 
broadening  of the far-field pattern from effective  near-field 
narrowing occurs in the azimuthal patterns computed from 
uncorrected cylindrical near-field  data as well [HI. 

The probe-corrected  transmission formulas for planar, 
cylindrical, and spherical scanning can be found  in  the 
relevant references given herein. The probecorrected trans- 
mission formulas for all three scanning  geometries are 
summarized in [56]. Recently,  a way has  been  found to 
express the probecorrected transmission  formulas for planar, 
cylindrical, and spherical scanning as a simple modification of 
the nonprobe-corrected formulas [65], [27]-[29].  By defining 
the  vector  output  of  a probe as its response  in  the two 
orthogonal orientations required for complete planar, cylindri- 
cal, or spherical near-field measurements, the probe-corrected 
formulas become similar in form to the uncorrected formulas 
of Fig. 6 .  Specifically, these vector probe-corrected formulas 
shown in Fig. 8 can  be  obtained from the ideal-probe formulas 
of Fig. 6 by first replacing the measured  tangential  E-field 
with bl, the vector response of the arbitrary probe, then vector 
multiplying the unknown  transmission  coefficients of the test 
antenna by the receiving coefficients of the probe. Once the 
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Fig. 8. Probe-corrected formulas. (The vector response of the probe is denoted by 5,.) 
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Fig. 9. Far electric field. 

receiving  coefficients  of  the probe are obtained  from the far 
fields of the probe, the probecorrected near-field formulas 
reduce to the simplicity  and familiarity of the uncorrected 
electric or magnetic field formulas in planar, cylindrical, and 
spherical coordinate systems. (The mismatch factor involving 
the reflection  coefficients  of the probe and its termination are 
absorbed into the receiving  coefficients of Fig. 8.) 

The only restrictive assumption in the theory  leading to the 
probe-corrected formulas of Fig. 8 is that  multiple  reflections 
between  the probe and test antennas are negligible. For the 
spherical scanning formulas of Fig. 8, the receiving  pattern of 
the probe is assumed to have first-order azimuthal  dependence 
only. 

E. Expressions for the Far Field 
After the transmission coefficients of the test  antenna are 

computed from the double  orthogonality integrals of  the 
measured data (and probe correction is applied, if necessary), 
the amplitude  and phase of the electric field  outside the test 
antenna can be computed from its modal expansions given  in 
Fig. 6 .  Usually, the far fields of the test antenna are of primary 
concern. They are obtained  through  asymptotic  evaluation of 
the modal expansions, and are shown explicitly in Fig. 9 for 
each of the three scanning geometries. The far fields are 
determined from the transmission  coefficients of the  test 

antenna directly for planar scanning, by  a single summation 
for cylindrical scanning, and  by  a double summation for 
spherical scanning. And, of course, the far-field patterns (co- 
polar  and cross-polar), polarization (axial ratio, tilt angle, and 
sense), directivity and gain of the test antenna derive directly 
from the electric or magnetic far field. Integration of the 
difference between the gain  and  directivity  functions  obtained 
from  near-field  measurements determines the “ohmic” losses 
of  antennas. 

The receiving characteristics of  reciprocal  antennas can be 
determined from the radiating characteristics through the 
reciprocity  relations. For nonreciprocal antennas the receiving 
properties can be obtained from near-field  measurements by 
transmitting with the probe antenna, or, if possible, by 
converting the test  antenna to its  adjoint  antenna [ 141, [ 171, 
~ 5 1 ,  ~ 1 .  

III. SAMPLING THEOREMS AND EFFICIENT METHODS OF 
COMPUTATION 

Richmond  and Tice, [4], [5] in the earliest papers (of  which 
I am aware) that  computed the far-field pattern from near-field 
measurements (nonprobe-corrected), assumed separable near 
fields because as Richmond [5] states, “while the  solution may 
be  simple  in principle, in practice the numerical  computation 
is tedious and  may require the use of large computers.” Kyle 
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[6] also mentioned  that  computing the far field  from  the  near- 
field  data  of electrically large antennas  would  be “difficult” 
on the  computers available in 1958. These early statements  of 
Richmond  and  Kyle  emphasize  the  important  role  that  high 
speed computers, fast Fourier transforms, and rigorous 
sampling  theorems  have  played in the  development of near- 
field  techniques. 

A .  Sampling Theorems 
Before  the far fields  can  be  determined  from  the  expressions 

in Figure 9, the  transmission  coefficients  must  be  evaluated 
from  the double integrals in Fig. 8 (or Fig. 6 for no probe 
correction) of  the  measured  near-field data. Probably  the 
simplest way to evaluate the integrals is to replace  them by 
summations over constant  increments  in A x A y ,   A ~ A z ,  and 
A4A8 for planar, cylindrical, and spherical measurements. 
Ordinarily  this  use  of the elementary  rectangular  rule  of 
integration would  be  an approximation  that  introduced  compu- 
tational errors unless the sample increments  approached zero. 
Fortunately, the  transmission  coefficients  can  be  shown to be 
bandlimited,  and  thus  modern  sampling  theorems  [67]  can be 
applied to prove that the conversion  of  the integrals to 
summations  introduces no error (or negligible error since  real 
antennas are not quite perfectly  bandlimited)  if the sample 
increments are chosen  less  than a given fiiite value.  Specifi- 
cally, for planar scanning  the ?@x, ky)eiTzo becomes  negligi- 
ble  beyond k i  + k: = k2 (for separation  distances greater 
than a few  wavelengths)  and  thus  the  sampling  theorem  yields 
the  maximum  data  point  spacing  of Ax = Ay = X/2. For 
cylindrical scanning  the T,(-y) are bandlimited by f k in y and 
+- k(a + X) in rn to  allow  the  sample  spacings  of Az = h/2 and 
A4 = [ A/2(a + A)]. The brackets  indicate  the  largest 
number,  equal to or smaller than  the  bracketed  number,  that 
divides 2n into an integer  number  of divisions. For spherical 
scanning, the T,, are bandlimited by k(a + X) in  both m and 
fn, to  give  identical angular sample  increments  of A$ = 
AB = [X/2(a + X)]. Actually  the  sampling  theorem  applies 
only  approximately to the direct 0-integration of spherical 
scanning  because  the limits of integration  span 7r rather than 
27r [27]. An alternative Fourier transform method  [22]  has 
been developed by Wacker [20], [21], Lewis [23], and Larsen 
[24], [25] that avoids this extra, albeit slight, approximation. 

Fig. 10 summarizes  the  sampling criteria for the three 
conventional  scanning surfaces as well  as for plane-polar 
scanning. A question  mark  attends  the  sample  spacing of M2 
for  the  radial  direction  because no rigorous  sampling  theorem 
with uniform  spacing  has  been  derived for the  radial  functions 
of plane-polar scanning. The sampling  theorem  and Fourier 
transform  have  been  applied  indirectly to the  radial  integration 
but only for the  nonuniform  sample  spacing [42] required by 
the “quasifast Hankel transform” [68]. Also, the linear 
distance  between  the plane-polar angular sampling  points for p 
< a can  probably be increased to XI2 for most  antennas 
without  introducing serious aliasing errors. 

One of the attractive features  of spherical scanning is  that 
the angular sampling increments remain  the  same for all  scan 
radii. Thus, as one scans further from  the  antenna  the linear 
distance  between  data  points  becomes larger to keep  the  total 

PLANE-RECTANGULAR  PLANE-POLAR 

CYLINDRICAL  SPHERICAL 
Fig. 10. Sampling spacing. (“a” is the circumscribing radius of the antenna 

measured from the center of rotation.) 

required  sample  points for each  polarization at a fixed  number 
of about 2(ka + 2 ~ ) ~ .  Similarly, the angular sampling 
increments of cylindrical and  plane-polar  scanning are inde- 
pendent  of  the  scan radius. However, for the  axial  sampling of 
cylindrical scanning, the  radial  sampling of plane-polar 
scanning, and the xy rectangular sampling, the  data  point 
spacing  must approach M2, as the  scan  distance approaches 
infinity, regardless of  how large a separation  distance  is 
chosen  between  the probe and test antenna, in order to sample 
the  rapid  phase  variation  the probe encounters in the far-out 
sidelobe  region. Of course, if the far field  is  required  only  near 
the  main  beam direction, the  sampling  increments for all of the 
scan  techniques  can  usually be increased  without  introducing 
serious aliasing errors. 
The  sampling criteria shown in Fig. 10  assumes  that  the 

separation  distance  between  the  probe and test  antennas is 
large enough to prevent  significant  coupling of their reactive 
fields. For nonsuper-reactive antennas, a few wavelengths  of 
separation  is  usually sufficient. However, if the probe scans 
within  the  reactive  fields  of  the  test antenna, the  sampling 
increments  must  be decreased to assure accurately  computed 
far fields. The decreased  sample  spacing (As) required for 
planar, cylindrical, or spherical near-field  measurements at a 
separation  distance (d) of a few  wavelengths or less between 
nonsuper-reactive probe and test  antennas  can be estimated 
from  the  simple formula, 

which  can  be  obtained  by  setting ami,, to 54.6 dB  in Joy  and 
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Paris [36, eq. (ll)]. For example, at  a  separation  distance of 
about  half  a wavelength, the  distance  between  data  points 
should  generally be less than X/4 to compute accurate far fields 
(assuming  negligible  multiple reflections which, if present, 
can decrease appreciably  the required sample  spacing As). 

The reactive fields of the test antenna  inside the scan surface 
on  which the near-field  data  was  taken cannot, in general, be 
computed  with  high  accuracy  because  the probe will not have 
been  sufficiently  excited by the rapidly  decaying  reactive 
fields that  can  dominate close to the  test antenna. Although 
useful  rough  approximations to the fields inside the reactive 
zone can often be computed from the limited  spectrum  used to 
represent the fields outside the reactive zone [@I. 

B. Efficient Methods of Computation 
Sampling theorems have converted the deconvolution  inte- 

grals (shown  in Fig. 8 or 6)  for the  transmission coefficients to 
double summations  and  have  provided  convenient criteria for 
the data-point  spacing. (In practice, the infinite limits of 
integration in the planar and  cylindrical cases are replaced by 
the finite limits of  the scan surface.) For large antennas the 
plane-rectangular  summations take a  computer  time propor- 
tional to ( k ~ ? ) ~  for one cut (one k, or k,,) in the far field 
.whether or not the fast Fourier transform (FFT) is  used.  With 
the FFT the entire planar far field  can be computed in a  time 
proportional to log, ku. Similarly, the cylindrical 
summations take a computer time  proportional to for one 
azimuthal  cut in the far field, and proportional to ( k ~ ) ~  log2 ka 
for the entire far field using the FFT. ’ 

As Fig.  9 shows, with spherical scanning all the transmis- 
sion coefficients are required, in general, for just one cut in the 
far field. In addition, the double  summations in Fig. 9 and  in 
Fig. 8 for the transmission  coefficients take a  computer  time 
proportional to whether  summed  directly [27] or using 
the FFT [20],  [21],  [23]-[25]. Similarly, the plane-polar 
computation of the transmission  coefficients  takes  a  computer 
time proportional to ( k ~ ) ~  for direct evaluation of either the 
Fourier integral or  orthogonal-function  coefficients  [39]-[42], 
and  proportional to (ka)2 log, ka using  the “quasifast Hankel 
transform” (FHT) [42], [68] for one or more  far-field cuts. 
However, the FHT requires nonuniform  data  spacing in  the 
radial direction, it  still takes 20-30  times longer than  the FFT 

. applied to uniform xy sampling, and it has not  yet  been  utilized 
for near-field  measurements  [42]. 

The computation  times  on  a Cyber 750 for planar, cylindri- 
cal, and spherical scanning are displayed  in Fig. 11. All the 
computer  times  remain quite manageable  even for electrically 
large antennas, except for spherical  scanning and plane-polar 
scanning.  Computer  times for these  two  techniques  quickly 
grow  into  the hours for antennas larger than 100 wavelengths 
in diameter. And, of course, on many minicomputers, the 

‘ We are assuming the computer  times  using  the FFT are minimized by 
choosing (or padding) the number of near-field data points to equal 2”, where 
N is a positive  integer. 

ONE CUT IN FAR FIELD 
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ANTENNA DIAMETER IN WAVELENGTHS 

Fig. 11 .  CPU time for NF to FF transformation on Cyber 750. 

computations for any of the  techniques  would take considera- 
bly longer than  on  the Cyber 750. However, if  only the main 
beam  and  near-in  sidelobes  of the antenna are required, or if 
the near fields of the antenna  display  a  suitable symmetry, 
sampling increments can usually  be increased, and  computer 
times may decrease substantially. 

In  applying the FFT to- conventional  plane-rectangular 
measurements, one must consider the resolution one wants  in 
the  far-field pattern. A straightforward application of the FFT 
to near-field data taken at the usual EJ2 data point  spacing 
specified by the  sampling  theorem generates output at points 
too  widely  spaced to smoothly resolve the  far-field pattern. 
For single  cuts in the far-field  only  a  one-dimensional FFT is 
required, and one can increase the resolution (i.e., decrease 
the angular  separation  between far-field points)  merely by 
“zero-filling” the  near-field  data.  Unfortunately,  sufficient 
zero-filling of a  two-dimensional FFT that generates the entire 
far field of an electrically large antenna may require  more  on- 
line central memory  than  some  computers  provide. To obtain 
the  complete  highly  resolved pattern with  such computers, one 
can  resort to computing  the discrete double Fourier transform 
directly in a  time proportional to or if this  computer 
time is prohibitive, one  can  use an off-line  version of the two- 
dimensional FFT. Off-line (mass-storage) versions  of  the FFT 
are readily  available or can be programmed  straightforwardly 
starting with  a  one-dimensional FFT algorithm [70]. For the 
Cyber 750 at NBS, mass-storage  versions of the FFT take an 
input/output  time  typically equal to the central processing  time 
[71]. Of course, a larger core storage or virtual memory 
capability may eliminate  the  need for mass-storage versions of 
the  two-dimensional FFT. 
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N. EXPEMENTAL  ERRORS 
The theory of near-field  antenna  measurements  applies 

rigorously  to linear antennas  radiating or receiving in a single 
mode  at a fixed frequency, and  satisfying  Maxwell’s  equations 
in free space. The  antennas may  be nonreciprocal, lossy, 
lossless, or “gainy.” The only restrictive assumption  involved 
in the  theory of probe-corrected near-field  measurements  is 
that  multiple  reflections  between  the probe and test  antennas 
are negligible. However, in practice experimental errors limit 
the  accuracy of near-field  techniques. In addition to the 
multiple reflections, the  experimental  measurements  will 
introduce probe positioning errors, instrumentation errors, 
and  for  the  planar  and cylindrical (or truncated spherical) 
scanning geometries, finite  scan errors. Errors are also 
introduced by room reflections, uncertainties in the far field  of 
the probe, and  in  the  measurement  of  the  insertion  loss 
between  the  test  antenna  and probe when absolute  gain is 
required. (If sample spacing  and  computer  accuracy are 
adequate, aliasing  and  computational errors will  be  negligible 
compared to the  experimental errors.) 

Upper-bound error analyses [34], [35], as well as computer 
simulations [35], [72], [73],  have  been  performed for deter- 
mining  the  accuracy of the far field  obtained  from  planar near- 
field  measurements.  Computer  simulations  have also been 
performed for cylindrical [74], [75]  and  spherical [ 181, [76] 
near-field scanning, but an analytical  treatment of upper- 
bound errors for near-field  measurements  on a cylinder or 
sphere remains  outstanding. 

The relative  importance of the  various  near-field  measure- 
ment errors upon  the far field depends, of course, on the 
antenna  under test, the  frequency  of operation, the  measure- 
ment facility, and  the probe. However, the  results  of  the 
planar  upper-bound error analyses [34],  [35]  show  that for 
typical  microwave  antennas and planar  near-field  testing 
facilities, three or four sources of error dominate:  finite  scan 
area, z-position of the probe, receiver nonlinearities in 
measuring  the  near-field amplitude, and  sometimes,  multiple 
reflections. 

The effects on the far field of limiting  the  planar  measure- 
ments to a finite  scan area are small for highly directive 
antennas  well  within  the “solid angle” formed by the edges of 
the  test  antenna and the edges of the finite scan area. Outside 
this  solid angle, the far fields cannot  be  relied upon  with  any 
confidence. Although for very  highly  tapered  near  fields  this 
solid  angle  can be extended  somewhat [75], since  the  effective 
radiating aperture of a highly  tapered  illumination is somewhat 
smaller  than  the  physical aperture. 

The  z-position inaccuracies, i.e., the  deviation  from planar- 
ity of the probe transport over the  scan area, can  produce 
relatively large errors in the  sidelobe  levels  of  the far field. 
Variations in the  z-position  of  the probe produce correspond- 
ing  variations in the  near-field phase. Thus, large errors in  the 
sidelobes occur in the far-field directions corresponding to the 
predominant  spacial frequencies of the variation in 2-position 
across the  scan area. In the  main  beam direction, the  effect  of 
2-positioning  of  the probe is  much less critical-the  reduction 
in gain  being  given by  A2/2,  the familiar Ruze  relation [77], 
[34]. The errors in the  sidelobes caused by inaccurate z- 

positioning  can  be  reduced by measuring  the  deviation  of the 
probe from the  scan  plane  and correcting the  near-field  phase 
proportionately [78], [79], [33]. Alternatively, the position of 
the probe may be corrected mechanically by a servomecha- 
nism.  It  should also be  mentioned  that receiver phase errors 
generally  have a much smaller effect on the far field  than 
phase errors caused by inaccurate z-positioning, because 
typical receiver phase errors are negligible at the  maximum 
near-field  amplitude and increase monotonically  with  decreas- 
ing  amplitude  [35]. 

Receiver  nonlinearities in the  measurement of near-field 
amplitude, however, can  cause  significant errors in the main 
beam  and  sidelobes  of  the far fields. For example, a receiver 
nonlinearity of f 0.02 dB/dB  can produce several tenths of a 
dB error in gain, and a several dB error in a 35 dB sidelobe  of 
a typical  microwave reflector. Fortunately, these receiver 
amplitude errors can  be greatly reduced by calibrating the 
receiver, e.g. with a precision attenuator: and  applying the 
calibration curve to the near-field  data  [33]. 

The contribution to the output of the probe from  the  multiple 
reflections can  be  estimated  by  changing  the  separation 
distance  between  the probe and  test  antenna and recording the 
amplitude  variations  that occur in the  received  signal  with a 
period of about X/2. If multiple reflections prove significant, 
they  may be  reduced by the judicious use of absorbing 
material, by decreasing the size of  the probe, by increasing  the 
probe separation distance, by averaging the far fields  com- 
puted  from  the  near-field data taken on  scan  planes  that are 
separated by a small fraction of a wavelength  (say X/4 or less), 
or by using  specially  designed probes that filter the  main  beam 
and  accentuate  the sidelobes [45]-[47]. 

Finally, the  upper-bound error formulas  [34],  [35]  should 
be applied  with discretion. They are dependent upon underly- 
ing  (usually  explicitly stated) assumptions  that are satisfied by 
most  antennas  and  near-field  measurement conditions, but 
which  may  be either violated or relaxed in certain  circum- 
stances. For example, it  is  well-known  that  phase errors 
introduced  into the main  near-field  beam  of directive antennas 
cause a reduction in the computed on axis  gain  [77],  [34]. 
However, this  gain  reduction strictly applies  to  near-field 
beams of uniform  phase  and  will not  hold for antennas  with 
variations in their phase if the phase errors occur  in just the 
right  places  and with just the  right  values to eliminate  the 
original  phase variations. Although  this  conjunction  of  phase 
variations is highly unlikely, its possibility of occurrence is 
revealed from an  examination of the error analyses [34], [35]. 

When the  underlying  assumptions  can be relaxed, lower 
upper-bounds  can  usually be obtained. For example, an 
estimate  of  the specific 2-position errors for a particular 
measurement  facility  allows  one to estimate their effect  upon 
far-field sidelobes more accurately than  with  the  general 
upper-bound expressions [35]. 

V. LIMITATIONS OF NEAR-FIELD SCANNING 

We conclude  this  overview  pointing out some of the  present 
limitations  of  measuring  antennas by scanning in the near 
field. 

Planar, cylindrical, and spherical near-field  scanning  can  be 
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formulated  to  include all the multiple interactions between  the 
probe and test  antennas [ 141, [ 171, [25]. However, deconvolu- 
tion to solve for the transmitting or receiving properties of the 
test antenna can  be accomplished, in general, with  the  existing 
formulations only  when  multiple  interactions are neglected. 
The scattering properties of both  the probe and  test  antenna 
would  be  required  in  a general deconvolution  scheme  that 
included  multiple interactions. It may be possible to estimate 
the scattering from certain antennas, or to calculate  the 
scattering from canonical  antennas  such as the  perfectly 
conducting or dielectric sphere [ 141. However, the  complete 
scattering characteristics of antennas are not generally  availa- 
ble nor is  the determination of scattering  along  with  transmit- 
tingheceiving properties presently  feasible  using  near-field 
techniques. Moreover at frequencies below  a  few  hundred 
megahertz, absorbing materials that reduce multiple interac- 
tions and  room reflections to acceptable  levels may  be difficult 
or expensive to obtain. 

Of course, scattering from passive objects can be deter- 
mined from scanning in the  near  field  simply by viewing  the 
scattered fields as the  transmitted fields of a  radiating  test 
antenna, and, as usual, neglecting  multiple jnteractions. 
Recently Dinallo [SO]  has formulated  a  planar-scan  method of 
measuring  passive scatterers that  involves  moving an illumi- 
nating “probe” in the near field, as well as the  measuring 
probe, in order to synthesize  an  incident  plane  wave. The 
method requires that  the  usual  two-dimensional Fourier 
transforms of planar  near-field  deconvolution be applied to the 
output  of  the  measuring probe for each  position of the 
illuminating probe. 

All three near-field  scanning  techniques-planar, cylindri- 
cal, and  spherical-require  that the output of the probe be 
measured in amplitude  and phase2 over the  scan surface. This 
requirement obviously restricts near-field  techniques to anten- 
nas  that are limited in physical  size  and frequency. The test 
antenna  cannot be appreciably larger in linear dimensions  than 
the extent of the probe transport on planar  and cylindrical 
near-field ranges (although  the effective scan  area  can  some- 
times be increased by shifting  the  position of the  test  antenna) 
nor larger than the model  mount  will  handle  on spherical 
ranges  where the probe is  fixed and the  test  antenna  rotates 
through  the two spherical angles. (Of course, this latter 
restriction limits far-field  ranges as well.) In addition,  since 
the near-field  phase  must  generally  be  measured to within  a 
small fraction of a  wavelength to obtain accurate far fields, 
most  existing  near-field scanners are limited to antennas  that 
operate at frequencies below  40-100 GHz. 

Measurement  and  computation  times may  make  near-field 
scanning unattractive for antennas  that are extremely large 
electrically. Since  amplitude  and  phase data must  usually be 
recorded  at  roughly 2 ( / ~ a ) ~  points  in the near field for each 

* In principle, phase  can be obtained indirectly from an  additional  amplitude 
scan performed after a known reference signal is added to the  original  signal 
from the  test antenna. This “microwave holographic” technique for detennin- 
ing  phase from two amplitude scans has  been further simplified to require just 
one amplitude  scan if the  phase of the reference signal is shifted  linearly  with 
the position of the probe, and the near-field is oversampled [SI]. 

I 

polarization at each frequency of operation, it will take many 
hours to scan  an  antenna one hundred  wavelengths across if 
the scan rate, for example, is  on  the order of one data point  per 
second. Long  scan  times  not  only limit frequent and repeated 
experimentation  but also demand  a  more stable measurement 
system. 

Fortunately, the  computer  time required to process  plane- 
rectangular and cylindrical near-field  scan data amounts 
typically to a  few  minutes for antennas  hundreds of wave- 
lengths across (see Fig. l l ) ,  and  thus  plane-rectangular  and 
cylindrical  near-field  scanning  is  presently  measurement-time 
limited rather than  computer-time limited. Conversely, spheri- 
cal  near-field  scanning  and  plane-polar  scanning  with  uniform 
sample  spacing  in  the  radial  direction requires computing 
times proportional to ( k ~ ) ~  (see [24], 1251, and [42]), and  thus 
these  two  techniques are presently  computer-time  limited 
because, as mentioned above, measurement time grows as 
(ka) 2. 

There is another limitation (besides the neglect of multiple 
reflections)  within the basic  theory  of  planar  near-field 
scanning  that limits the application  of  planar  scanning to 
directive antennas. The output of the probe behaves  asymptoti- 
cally as exp (ikr)/r as the probe scans  on  a  near-field plane 
away from the test antenna. Inserting this asymptotic  behavior 
into  the  two-dimensional Fourier transform of  the  near-field 
data  shows  that the computed  plane-wave  spectrum for K = 0, 
i.e., the  computed  on-axis  far-field of the  test antenna, will 
retain  an  oscillating contribution whose  amplitude  remains 
finite  even as the  dimensions of the scan area approach  infinity 
[34], [57]. In other words, the computed far field  of  the  test 
antenna  will  be  in error by  an amount  that  does  not approach 
zero as the  planar scan area approaches infinity. In practice, 
this  planar-scan error can  be  shown to be negligible for 
directive antennas [34]. However, for broad-beam  antennas it 
can  prevent the accurate determination of the far field using 
planar  near-field  scanning [82]. And, of course, planar 
scanning  is  limited in general to determining the fields within 
the forward solid angular region  subtended by the edges of the 
test  antenna  and the finite scan area [34].  (Spherical  scanning 
gives  full  pattern coverage and cylindrical scanning  omits  only 
the  biconical  angular  region formed by the  outer edges of the 
test  antenna  and the cylindrical scan area of finite  height.) 

Although  plane-polar scanning, like cylindrical  scanning, 
has  the  mechanical advantage of requiring the probe to  move 
along  a  single linear track, it has several disadvantages  that  do 
not accompany  plane-rectangular scanning. In order to apply 
probe-correction to plane-polar  near-field  measurements, the 
probe must be  rotated  along  with the test antenna  [39]-[42]. 
To avoid  this extra complicating  mechanical rotation, plane- 
polar  measurements to date have  not  included  probe correction 
and  thus  have  been  limited to using  small probes and to 
computing far fields within  a  small  angle  of the forward 
direction [39], [40]. As mentioned in Section m-A, there 
exists  no rigorous sampling theorem for equal  radial incre- 
ments in plane-polar scanning; thus one cannot be assured  that 
negligible error will be introduced by sampling at M2 
increments in the radial direction. Computation  times, as 
shown in Fig. 11, for plane-polar  scanning grows as ( k ~ 7 ) ~  for 
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either direct summation  of the near-field Fourier integral 
converted to polar coordinates, or straightforward evaluation 
of orthogonal-function  expansions like the  Jacobi-Bessel 
series [39]-[43]. This implies  many hours of computer  time on 
commonly available main frames to obtain  the  complete 
patterns of antennas a hundred  wavelengths or more in 
diameter. Computer  times on slower  minicomputers would 
increase proportionally. Reduced  computer  times for plane- 
polar scanning may be attained  with  the “fast Hankel 
transform. ” However, the FHT method  of  computation 
requires unequal  sampling  increments in the  radial direction, 
and evidently  has  not  been  implemented [42]. Plane-polar 
systems could, in principle, be devised to sample data on a 
rectangular grid, or data in polar coordinates  could  be 
interpolated to obtain  data on a rectangular grid, thereby 
allowing one to compute  the far field by means  of  the  fast 
Fourier transform. The former modification, however, re- 
quires an appreciably more  sophisticated control system for 
the  near-field scanner, and  the latter introduces errors into the 
near-field data. 

Use  of  the  Jacobi-Bessel series [39]-[41] to  expand  the 
near-field data of plane-polar  scanning  has a couple of further 
limitations  that  should  be  recognized.  Although  the  Jacobi- 
Bessel  functions are orthogonal on a plane, they do not form 
part of a separable solution to Maxwell’s  equations. Thus, the 
Jacobi-Bessel coefficients can  be  used to compute  the far field 
of  the  test antenna, but  unlike  the cylindrical, spherical, or 
plane-rectangular coefficients, they  cannot  be  used to compute 
directly the fields between  the  test  antenna  and  the far field 
[41]. One  has to resort to indirect methods to compute 
efficiently  the near fields from the  Jacobi-Bessel coefficients, 
such as converting the polar far field  to a plane-wave  spectrum 
in rectangular coordinates and integrating the  spectrum  in k- 
space to obtain  the near fields. Secondly, the large computer 
time proportional to ( k ~ ) ~  required for plane-polar  data 
processing  with the Jacobi-Bessel series is not directly 
reducible  using  the  fast  Hankel transform as is  the  computation 
time  using  the  orthogonal Hankel transform series that  form 
the  naturally separable solutions in plane-polar  coordinates 

There are also limitations and  disadvantages  accompanying 
cylindrical and spherical scanning. Most directive antennas 
display  approximately planar wavefronts over their main  near- 
field beams. Thus one can  often learn a great deal  about  the 
operation of the  test  antenna  merely by plotting  the  amplitude 
and phase of the  measured  near-field data taken on  planes 
parallel  to  these  wave fronts. For instance, Repjar and  Kremer 
[83] were  able to align  the  panels  of a millimeter-wave 
reflector by plotting  the phase contours of near-field  data  taken 
on a plane in front of the reflector. Similarly, faulty array 
elements or banks  of elements are often  revealed directly in 
plots of planar  near-field data. It  is  considerably  more  difficult 
to take near-field  data on planes in front of  the  test  antenna 
with cylindrical and spherical near-field  ranges  where  the 
probe is incapable of  direct  two  dimensional  scanning  in a 
plane. (Granted, the far field  obtained  from  cylindrical or 
spherical near-field  data  could be converted to a plane-wave 
spectrum  and  the near fields on  planes in front of  the  test 
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antenna  could be computed as the Fourier transform of this 
plane-wave spectrum.) Secondly, some antennas may be too 
heavy, too fragile, or too deformable to rotate precisely 
through  two spherical angles or even one cylindrical angle. 
(For  such  antennas spherical or cylindrical scanning  could still 
be applied, in principle, by fixing the antenna and moving the 
probe on a sphere or cylinder surrounding the antenna.) 
Thirdly, although  much progress has been  made  in  simplifying 
the probe correction for cylindrical [ 161, [ 171 and spherical 
[20], [21],  [27]-[29] near-field scanning, it remains more 
difficult to formulate, understand, and  apply  than for planar 
scanning. Fourthly, convenient upper-bound expressions for 
far-field parameters determined from errors in near-field 
measurements  have not  been  obtained for cylindrical and 
spherical  scanning as they  have  been for planar  scanning [34], 
[35]. A great deal  of  information  on  far-field  accuracy  can  be 
obtained  from computer simulations applied to hypothetical 
and measured cylindrical and spherical near-field  data [74]- 
[76]. In addition, some  of  the results from  the planar error 
analyses can be reinterpreted to estimate the effect  of errors in 
cylindrical  and spherical scanning. (For example, the  simple 
solid-angle criterion [34] for the  validity  of far fields  computed 
from  near-field  data on truncated  planes  can be applied to 
truncated cylinders and spheres as well.) Nevertheless, gen- 
eral, convenient, analytic estimates of  accuracy for cylindrical 
and spherical near-field scanning remain  undetermined. 

Finally, by ending a paper with a discussion of the 
limitations  of  near-field scanning techniques, one risks dis- 
couraging the  use of near-field  scanning as an alternative to 
more direct antenna  measurement methods, which, of course, 
have their own  problems  and  limitations. Therefore, let us end 
with a quote from  the paper by Kummer  and Gillespie [84] 
who  surveyed the major near, intermediate, and  far-field 
methods  available in 1978 for measuring antennas, and 
concluded  that “the near-field  (scanning)  technique may  well 
become  accepted as the  most accurate technique for the 
measurement of power  gain and of patterns for antennas  that 
can be accommodated by the measuring apparatus.” The 
evidence  of  the intervening years supports their conclusion. 
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