
THE METROPOLIS ALGORITHM 
The Metropolis Algorithm has been the most successful and influential of all the members of 
the computational species that used to be called the “Monte Carlo Method. ” Today, topics 
related to this algorithm constitute an entire field of computational science supported by a 
deep theory and having applications ranging from physical simulations to the foundations 
of computational complexity. 

he story goes that Stan Ulam was in 
a Los Angclcs hospital recupcrating 
and, to stavc off horedoni, he tried 
computing the probability of getting 

a “perfect” solitaire hand. Bcfnre long, he hit on 
the idea of using random sampling: Choose a 
solitaire hand a t  random. If it is pcrfect, let count 
= cnzint + 1; if not, let count = count. Aftcr M san-  
ples, takc count/M as the prohahility. ’l‘he hard 
part, of conrse, is deciding how to generatc a 
wz2ifDm raiidoin hand. Wliat’s the probability dis- 
tribution to draw from, and what’s the algorithm 
for drawing a hand? 

Somcwhat latcr, John van Neumann providcd 
part ofthe answer, but in a different context. H e  
introduced the r+xtia?z algoovithm for simulating 
nentriin transport. In bricf, ilyon want to sample 
from some spccific probalility distribution, s in-  
ply sample from any distribution you have 
handy, but keep only the good samples. (Von 
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Neumann discussed his approach in a letter to 
Bob Richtineyer [11 Mar. 19471 and in a later 
letter to Ulam 121 May 19471. Interestingly, thc 
lctter to Richtineyer contains a fairly detailed 
program for the Eniac, while the one to Ulam 
gives an explanation augmented by what we 
would today call pseudocode.) 

Sincc the rejection method’s invention, it has 
heen developed extensively and applied in a wide 
variety of scttings. T h e  Mctropolis Algorithm 
can bc formulated as an instancc of the rejection 
mcthod uscd for generating steps in a Markov 
chain. This is the approach we will take. 

The rejection algorithm 
First, Ict’s look a t  the sehip for the rejection 

algorithm itself. Wc want to sainplc from a pop- 
ulation (for example, solitaire hands or ncutron 
trajectories) according to some prohahility dis- 
tribution hniction, v, that is known in theory but 
hard to sample from in practice. However, we 
can easily samplc from some related probability 
distribution fnnction p. 

So we do this: 

1. Use fi to select a sample, x. 
2.  Evaluate $x). This should he easy, once 

we have x. 
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3. Generate a uniform random p t [0,1) 
if p < cv(x)/p(x) 
then accept x 
else try again with another x 

Here we choiisc c so that cv(x)/p(x) < 1 
for all x. 

First, the probability of selecting and then ac- 
cepting some x is 

Also, if we are collecting samples to estimate the 
weighted mcm1, S(jJ, of some functionflx)-that 
is, S@= Cflx)cv(x)-wc could merely select some 
large number, M ,  of samples by using &), re- 
ject none of them, and then compute the u n ~ r m  
mean: 

’That is, if we don’t reject, the ratios give 11s a 
satlipla whose niean converges to the mean {or 
the limiting pnihability distribution function v. 
This method for estiiuating a snni is an  instance 
of impoportance sampling, because it attempts to 
choose samples according to tbcir importance. 
T h e  itleal importance function is 

’The alert reader will havc noticed that tliis 
p(x) requires luiowlcdge of the answer. However, 
importance sampling works for a less-than- 
perfect p(x). This is because the fraction of the 
samples that equal any particular x will converge 
to p(x), so the sample incan offlx)cv(x)/p(x) will 
converge to the true mean. For thc special case 
of the constant function,f(x) = I ,  the quantity S 
is the probability of a “success” [in any particular 
trial of the rejection inetliod. If we takecfto he 
the hncti(in that is identically equal to one, we 
might know the value of S in advance. In that 
case, we also know the rejection rate US, which 
is the average number of trials before each suc- 
cess. As we shall see, when we use rejection in its 
formulation as thc Metropolis Algorithm, prior 
knowledge of the rejection rate leads to a more 
efficient method called Monte Carlo time.’ 

Applications: The Metropolis Algorithm 
We first look at two iinp(irta1it applications of 

the Metropolis Algoritlin-the king inodcl and 

siniulated annealing-and then we examine the 
problem of counting. 

The king model 
’l‘his model is one of thc most cxtensivcly 

snidicd systems in statistical physics. It was de- 
vcloped early in the 20th century as a model 
of magnetization and related phenomena. The  
model is a 2D or 3D regular array of spins 0; G 

[-1, I) and an associatcd energy n(u) for cach 
configuration. A configuration is any particular 
choice for the spins, and cach configuration has 
the associated energy 

k 

T h e  suni is over those (ti] pairs that interact 
(usually nearest neiglihors).3id is the interaction 
coefficient (often constant), and B is another 
constant related to the external niagtictic field. 

In most applications, we want to estimate a 
mean of some functioiiflu) bccaiise such quanti- 
ties give us a first-principles estimate of some fun- 
damental physical quantity. In the king model, 
the inem T i s  taken over all configurations: 

But here, the weights come from the expression 
for the configuration’s energy l‘he normalizing 
factor Z(7) is tlicpartitionfinction: 

Z(T)  = xexp(-L‘(U)/KT). 
lJ 

Tis the tempcraturc and IC is the Uolrzinanii 
constant. 

A natural importance-sampling approach 
might he to select configurations from the dis- 
tribution: 

exp( -R(U) /KT)  
40)  = Z(T)  

so that the sample mean of M samplcs, 

will converge rapidly to the true mean, p. 
T h e  problem, of course, is finding a way to 

sample froin p .  In this case, sampling from the 
proposed “easy” distribution p is not so simple. 
NickMetropolis and his colleagues made the fol- 
lowing brilliant If we change only 
one spin, the change in energy, AE, is easy to eval- 
uate, hecause only a few t e r m  of the suin change. 
This observation gives a way of constnicting an 
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aperiodic symmetric Markov chain converging to 
the limit distribution b. T h e  transition probahil- 

set is that of possible tours. One approach is hill 
clim6ing. That is, given a set ofpossible changes to 

ities,pg,, are such that for each configuration, cr, 

’The sum is over all configmations 5 that differ 
from 0 by one spin, and 

= e x p ( - A E ( c ) / ~ T )  

when A ( Q  > 0, andpgo= 1 when A(@ < 0. 
In other words, if the move lowers the energy, 

do it, and if it raises the energy, do it with some 
probabilityp, meaning reject it with some prob- 
ability I -p.  But how to choose the site for the 
attempted inovc? We iisc rejectiou yet again. If 
therc are n sites, we use a probability distribu- 
tion that looks like 

iuin(1, e x p ( - ~ ( c r ) / x ~ ) )  

n 
so that we take l /n as the “easy” probability That 
is, we select a site unifonnly and accept it accord- 
ing to the Metropolis criterion we just dcscrihed. 

For this case, the expression for the success 
rate is 

,v(cr) = 

min(l, cxp-AR(o,),/x‘7’)) s = N(UJ = c 
So, the probability of exactly k rejections followed 
hy a success is the same as the prohability that a 
random p satisfies (I - Q‘+’ < p < (I - $, giving 
this stochastic expression for the waiting time: 

k = -  l%(P) , 

log(1-S) 

We can use this to avoid the rejection steps while 
still “counting” how many rejections would have 
occurred.‘ 

In principle, this Monte Carlo-time method 
works with any rcjectioii formulation. However, 
each stage requires explicit knowledge of all pos- 
sible next steps. In othcr words, w e  need tlic val- 
ues for the “difficult” distribution v(x). In the 
Metropolis king case, the Markov chain formu- 
lation makes this feasible. 

Simulated annealing 
Suppose we wish to maximize or minimize sonic 

real-valued function defined on a finite (hut large) 
set. The  classic example is the traveling salesman’s 
prohlem. The fimction is the tour’s length, and the 

- 
a tour, such as pcrmuting the order of souic visits, 
clioosc die change that decreases thc tour leu& as 
much as possible. This approach’s drawback is that 
it can get shick a t  a local minimum, if all moves 
from a tour increase that tour’s total length. 

T h e  Mctropolis Algorithm offers a possible 
method for junipiug out ofa local miuitnuni. Let 
the tour’s length play the same role that energy 
plays in the Ising model, and assign a formal 
“temperature,” T, to the system. Then, as long 
as T > 0, thcrc is always a nonzero probability 
for increasing the tour length so that you ncedn’t 
get trapped in local minima. 

Three questions occur: 

1. Does it work? 
2.  How long docs it take? 
3 .  Is it better than merely using hill climbing 

with inany different random starts? 

T h e  answers seem to be 

I.  Yes. A large litcrahlrc covers hoth the theory 
and applications in many different scttings. 
TIowever, if T> 0, the limit probability dis- 
tribution will he noiizero for nonoptimal 
tours. ’rhe way around this is to decrease Tas 
the computation proceeds. Usually, T de- 
creases like I(ig(4 for some positive, de- 
creasing sequence of “cooling schedule” val- 
ues sk, so that the acceptance probability 
decreases linearly until only the true min-  
iniim is accepted. 

2. It depends. Designing cooling schedules to 
optimize the solution time is an active ’ ’ re- 
search topic. 

3. Someone should invcstigatc this carefully 

Counting 
Let’s reconsider Ulam’s original question in  a 

slightly more general form: IIow many m e n -  
hers of a population Phave some specific prop- 
erty U? We could do the counting by designing 
a Markov chain that walks through P and has a 
limit prohability distribution v that  is soinehow 
related to our interesting property U. To be 
more concrete, P might be the sct of partial 
matchings of a bipartite graph G, and Umight 
he the set of matchings that arc “perfect,” mean- 
ing they include every graph ntide. 

To have our Markov chain do what we want, 
we define a partition function: 



T h e  partition function is associated with the 
probability distribution 

Here, mk is thc number of k-matchings, and Ak 
plays a role similar to that played by cxp(- 
~ ( c s ) / ( K ~ ) )  in the king problem. O n  each stcp, 
if the niovc selected is from a k-matching tu a ( k  
+ 1)-matching, the probability of doing so is 1. 
MarkJerrurn and Alistair Sinclair show that the 
fraction of the samples that are k-matchings can 
be used to estimate the rnk to whatever accuracy 
is desired and that, for fixed accuracy, the time 
for doing so  is a polynoinial in the problem’s 
~ i 7 e . ~  Physicists call estimating tlic mi the 
wmwomer-dimer problem becausc having a k-  
matching iiieaiis that k pairs havc been matched 
as dimers and the unmatched are inonoiiiers. 

The limit distribution 
T h e  Metropolis Algorithm defines a coiiver- 

gcnt Markov chain whose limit is the desired 
prohability distribution. llut what is the conver- 
gence rate? Put differently, docs a hound exist 
on the nninber oPMetropolis steps, z, rcquircd 
before the sample is closc enough to the limit 
distribution? In some cases, zcan be hounded by 
a polynomial in the prohlem size; in other cases, 
we can show that no such hound exists. 

Rapid mixing 
Jcrrum and Sinclair havc providcd conver- 

gence results and applications t~ important coni- 
binatorial problems, such as the monomer-dimer 
problcin.’To obtain their results, they look for a 
property they call m p i d  mixing for Markov 
chains. Jerriiin has also proved sonic “slow con- 
vergence” rcsults showing that, i n  some sitoa- 
tions, Metropolis sampling docs not mix rapidly 
and so converges too slowly to be practical.“ 

Coupling from the past 
T h c  Metropolis Algorithm and its generaliza- 

tions have coine to he lcnown as tlic Monte Cklo 
Markov Chain technique (MCMC) because they 
siinnlate a Markov chain in the hope of sampling 
from the limit distribution. For thc king model, 
this limit distribution is 

exp(-E(a)/kT) 

Z(T)  
.(U) = 

The big question is, n~hcn are we at the limit dis- 
tribution? That is, what is the convergence rate? 

In some cases, we can sample directly from the 
limit distribution.Jim Propp and David Wilson 
developed a method for this called coupliizgfiom 
the past (CITP).’ 

Think of a single Metropolis move as a map:fi 
: S + S. For example, in the king modcl, choose 
some site k ,  and generate a random pi for the re- 
jection test. Depending on the particular statc o, 
eitherJ,(o) = oorf;(o) = o’, where o’differs 
from o a t  one site. 

Generally, thc image of the set of all states 
does not cover all states-that is,.fi[a c S. And, 
ifwe now choose a second tnapf;, we g.etj;f;[.q 
c/;[q c S. Continuing in this way gives 

F k [ q  =f&; ...fi[ S] cf&J .... fk-~[sj c ... cS .  

T h e  functions arc cntnposcd from the insidc 
out; to add later maps, we must save earlier ones. 
Because the iinagc is getting smaller, it might be- 
come a singlcton; that is, Fk is constant. Propp and 
Wilson show that such a singleton will havc heen 
selected froin the limit distsibiitkin. So, we have a 
method to sample from thc trne limit distribu- 
tion, provided that we are willing to savc all the 
maps and that we can tell when we have enough 
ofthcin. One ofscveral methods for telling when 
we have convcrged is to look for monotonicity. 
For some systems, there is an order, <, for states, 
there are h(ittoin and top states (I i TI, and the 
maps arc ordcr-preserving. In this case, we can 
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apply the iteration to both I and T and wait for the 
two ends to mcct. This work?, for cxample, for 
some instances of rhe Ising model. 

This incthod's obvious advantage is that, when 
such a sample can be obtaincd, it is "perfect." T h e  
disadvantages arc that not all systems arc 
amenable to  this approach and that, when it docs 
apply, the waiting tinic can be long. 

rogrcss in MCMC has heeii iniprcssive 
and scenis to hc accelerating. Problerns 
that appeared impossible have been solved. 
For c~~mhinatorial counting prohlems, re- 

cent advances have becn rcmarkablc. IIowever, two 
things should bc borne in mind. 

T h e  tirst i s  a famous reinark attrihuted to von 
Ncntnann: Aiiyone zisizg Mu?& Carlo i.r in n stdte of 
sin. We might add that anyone using M C M C  is 
coinniitting an especially grievous offense. Monte 
Carlo is a last resort, to bc used only when no exact 
analytic method or cven linitc iiiniierical algorithm 
is availablc. h i d ,  except for CPTP, t h e  prescription 
lor i ise always contains the phrasc "siinulate for a 
while," nicaning until yon feel as if you're at  the 
liniit distribution. As wc mentioticd, lor the Mc- 
tropolis method, thcrc are evcii systcms for which 
coiivergeiice is provably slow. *lbe antifcrromag- 
netic Iring model is one such casc. In soii ie sitna- 
tiiins, 110 randomized incthod, inchiding MCMC, 
will converge rapidly. 

T h e  second thing to bear in mind is that MCMC 
is on& one ofmany possible impo?t~iic~-samt)li72g. tcch- 
nips. For several cascs, including tlic dimer cover 
problem, the ahility to approximate thc litnit distri- 
bittion directly rcsults in extrctncly eSficient and ac- 
curate importance-sampling methods that are quite 
different from MCMC6 Howcver, a solid theory 
for these approaches is still almost nonexistent. % 
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