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Coupled Magnetoelastic Theory of Magnetic and 
Magnetostrictive Hysteresis 

Martin J. Sablik, Member, IEEE, and David C. Jiles, Senior Member, IEEE 

Abstract-A physical model is developed for the coupling be- 
tween magnetic and magnetostrictive hysteresis and for the ef- 
fect of mechanical stress on both types of hysteresis. The Jiles- 
Atherton-Sablik model for magnetomechanical hysteresis is re- 
viewed and interpreted. In that model, under applied stress, 
the magnetization is coupled to magnetostriction through the 
derivative of the magnetostriction with respect to magnetiza- 
tion (dl/dM). The magnetostriction is also a function of the 
magnetization even in the absence of stress. An expression for 
the magnetostriction is derived from minimization of the inter- 
nal energy with respect to strains, which is necessary for me- 
chanical equilibrium. In the case where stress CJ and field Hare 
coaxial and where the material is assumed to be isotropic, the 
resulting strain consists of a mechanical strain m/Y, where Y is 
Young’s modulus, and a magnetostrain which goes to zero at 
saturation (A E effect). From the magnetostrain, the magneto- 
striction is obtained, using the convention that magnetostric- 
tion is zero in the unmagnetized state. By taking into account 
fluctuations in the magnetic energy due to hysteresis, one finds 
that the magnetostriction initially moves to higher values as the 
magnitude of the flux density B decreases from its extremum 
value in l versus B plots. Also, in a quasi-dc variation of the 
external field H, the magnetostriction exhibits a nonzero value 
at the lowest value of its hysteresis loop, although in the un- 
magnetized state, the magnetostriction is zero. Various numer- 
ical cases are evaluated, and the modeling is compared to pre- 
vious measurements in polycrystalline iron and steel and in 
terfenol and Ni-Zn ferrites. 

I. INTRODUCTION 
AGNETIC hysteresis is a phenomenon which has M been known for more than a century [1]-[6]. The 

behavior is characteristic of ferromagnets, e.g., iron, 
nickel, cobalt, steels, laves phase intermetallics, and vari- 
ous rapidly-solidified ribbon materials. In a ferromagnet, 
the magnetic behavior is dependent on the magnetic his- 
tory of the specimens: that is, on the magnetic fields to 
which the sample has been exposed. In a typical situation, 
when the magnetic field is cycled between +H,, and 
- H,,, the magnetization path followed by the specimen 
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will be different when the applied field is taken from 
+ H,, to - H,, than when the field is taken from - H,, 
to +H,,. On an M versus H plot, a loop will be traced 
out known as a hysteresis loop which usually will be sig- 
moidal (slant-S-shaped) in appearance. 

For a long time magnetic hysteresis loops could be 
modeled only by mathematical models which either su- 
perposed various mathematical functions [7]-[ 111 to pro- 
duce the equivalent of a hysteresis loop, or which repro- 
duced hysteresis loops by building the loops out of much 
smaller loops, as ih the Preisach model [12]-[19]. An- 
other model which could produce hysteresis loops suc- 
cessfully was the Rayleigh model [20], but this applied 
only to loops in magnetic fields very small compared with 
the fields which saturate (i.e., fully magnetize) the mag- 
netization. Now, however, a physically based hysteresis 
model has been developed by Jiles et al. [21]-[25] and 
extended by Sablik et al. [26]-[33]. , to the case of a poly- 
crystalline magnetic material under uniaxial stress aligned 
with the applied magnetic field. This extended model is 
able to reproduce magnetic hysteresis loops all the way to 
saturation [24] while providing a framework for describ- 
ing the effects of stress on hysteresis [26]. The extended 
model [30] has been applied to analysis of various mag- 
netomechanical properties (i.e., properties affected by 
both stress and magnetic field). Examples to which the 
extended model has been applied are: (1) the effect of 
stress on higher order harmonics generated by traversal of 
a low frequency hysteresis loop [27]; (2) the effect of 
stress on the initial magnetic susceptibility [30], [34]; (3) 
the effect of stress on hysteresis in the ”reversible” 
permeability [29], [35], the radio frequency (RF) signal 
absorption [29], and the RF surface resistance [30]; and 
(4) the effect of stress on the Barkhausen noise amplitude 
[32] and on the magnetically induced velocity change of 
ultrasonic waves [32]. 

The extended model has also been applied to hysteresis 
in magnetostriction, i.e., hysteresis in the fractional 
change in length of a magnetic material under an applied 
magnetic field. An early implementation of the model was 
able to produce the characteristic butterfly shape of mag- 
netostriction hysteresis, but was lacking in certain details 
[28]. An energy minimization formulation to obtain an 
expression for the magnetostriction is used. Prior versions 
of this formulation have already been discussed [3 11, [32]. 
The formulation is modified to make the results consistent 
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with the conventional understanding of the A E effect [33], 

The published magnetomechanical hysteresis model 
[26]-[33] builds on the formulation of Jiles et al. [21]- 
[25]. Thus, three basic inputs enter the model-equilib- 
rium thermodynamics, domain wall translation, and do- 
main wall bowing. 

The thermodynamic or anhysteretic expression for the 
magnetization M, is derived for a multi-domain system by 
considering the material to be composed of an array of 
pseudodomains with fixed domain walls. This considera- 
tion is necessary since domain wall translation is an irre- 
versible change and any changes along the anhysteretic 
curve (which is a locus of thermodynamic equilibrium 
states) should be reversible. Thus, the net magnetization 
of each pseudodomain changes by reversible domain mo- 
ment rotation, as modeled by the anhysteretic magneti- 
zation curve. Furthermore, the distribution of domain mo- 
ments are taken as a canonical ensemble of moments [22], 
interacting through an effective field. An expression is 
found for the anhysteretic magnetization in terms of the 
effective field, the expression for which can be derived 
from equilibrium thermodynamics [27]. 

The effective field has a contribution H ,  from the ap- 
plied stress u, which causes an adjustment to the magnet- 
ization resulting from magnetoelastic coupling. This ef- 
fect is represented in the expression for H,, by the factor 
d X/dM, where magnetostriction X is a nonlinear function 
of the magnetization. The expression for the anhysteretic 
magnetization contains two material parameters. The first 
parameter is a (which is proportional to temperature, do- 
main density, and the inverse of the saturation magneti- 
zation). The second parameter is CY, the domain coupling 
parameter. The revised model of the magnetostriction re- 
sults in an expression for CY in terms of Young’s modulus, 
saturation magnetostriction, saturation magnetization, and 
the elastic constants of the polycrystalline material. 

In the hysteresis part of the model, domain wall trans- 
lation is included as an irreversible contribution to the 
magnetization. The irreversible magnetization takes the 
form 

[361. 

where parameter 6 = + 1 or - 1 depending on whether H 
is increasing or decreasing, and where Be = pL,He. The 
constant k is the pinning parameter and is proportional to 
the domain wall pinning site density and the pinning 
strength [22], [24]. Since the second term on the right 
hand side of this equation changes its sign depending on 
whether H increases or decreases, it acts in opposition to 
the change in H ,  analogously to a mechanical friction 
term. Hence it is seen that irreversibility and hence hys- 
teresis is introduced in a dissipative manner analogous to 
mechanical friction. The expression (1)  can be simplified, 
resulting in a differential equation that can be solved for 
the irreversible magnetization. It will be shown that the 
differential change in the irreversible magnetization will 

be a function both of the deviation (Ma-Mirr) from the 
anhysteretic magnetization and of the factor k6, which in- 
troduces irreversibility. 

In the third part of the model, a term is added to ac- 
count for the effect of domain wall bowing before unpin- 
ning and after repinning of domain walls. Thus, the total 
magnetization consists of the sum of the irreversible mag- 
netization and the domain wall bowing contribution. The 
domain wall bowing contribution is also a function of the 
deviation (Ma-Mirr) from the anhysteretic magnetization. 
The parameter c appearing in the domain wall bowing 
contribution can be shown to be equal to the ratio of the 
initial normal susceptibility to the initial anhysteretic sus- 
ceptibility [24] (where “initial” refers to the unmagne- 
tized state). 

One basic premise of this model is that through the 
thermodynamics, magnetization and magnetostriction are 
inextricably coupled. Our original models have been gen- 
eralized here because the expressions that we have used 
for the magnetostriction in the past [26]-[30], [34] were 
ad hoc. 

An expression for the magnetostriction is derived from 
magnetoelastic considerations, using a multi-domain 
model is shown. Derivation of magnetostriction as a func- 
tion of stress and magnetization results from considering 
the system in mechanical equilibrium. In our derivation, 
the internal energy-consisting of elastic terms, magne- 
toelastic terms and magnetic terms-is minimized with re- 
spect to the strains. Under the simplifying assumption that 
the polycrystalline system is isotropic, and after appro- 
priate integration, the equilibrium magnetostriction is ex- 
tracted by formulating the equilibrium mechanical strain. 
Some of the magnetic terms in the internal energy are hys- 
teretic terms because they are functions of the deviation 
of the magnetization from the anhysteretic magnetization. 
The multi-domain nature of the model arises because the 
formulation is in terms of macroscopic magnetization and 
magnetostriction which takes into account the multi-do- 
main nature of the material. The theory is applied specif- 
ically to polycrystalline steels. 

Details of the mathematics of the theory are presented 
in Sections I1 and 111. Section I1 describes the existing 
theory of magnetomechanical hysteresis [2 11-[30]. We 
present the original restricted theory for the sake of com- 
pleteness, and also for the purpose of clarification of cer- 
tain points. Section I11 describes the extended theory, in 
which an expression for magnetostriction is developed as 
a function of stress and magnetization. In Section IV, ge- 
neric results are presented for polycrystalline steel and 
compared to experimental behavior in polycrystalline steel 
published previously. 

11. MATHEMATICAL DESCRIPTIONS OF EXISTING 
MAGNETOMECHANICAL HYSTERESIS MODEL 

In the anhysteretic state, which describes thermody- 
namic equilibrium, the polycrystalline ferromagnet is 
treated [21], [22] as a canonical ensemble of interacting 
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magnetic domains each carrying a magnetic moment G. 
The distribution ocdomains at temperature T cames a to- 
tal magnetization M in the field direction given by 

P T  

M, cos 8e-Ed(e)’kBT sin 0 d e  
0 

(2) = 1: e - E d ( @ / k s T  sin ,g d e  

where 8 is ;he angle between domain moment G and ap- 
plied field H ,  and where M, = N m  is the saturation mag- 
netization of N domains per unit volume. Ed(@ is the do- 
main energy in the presence of the other domains and in 
the presence of an external field H .  The effect of inter- 
action between domains can be represented as an effective 
contribution to the magnetic field, and so 

(3) Ed(@ = -pomH, COS 8. 

H, = H + a M  + H,. 

where the effective field H, is [26] 

(4) 
The contribution a M  to the effective field arises from 
magnetic interaction between domains [24] and the con- 
tribution H ,  from the presence of stress u arises from 
magnetoelastic interaction between domains. An expres- 
sion for coupling parameter a will be derived later in Sec- 
tion I11 in terms of the saturation magnetostriction, elastic 
constants, and saturation magnetization. From thermo- 
dynamics [27] it follows that in the case of coaxial stress 
and field, 

G = U - TS + ( 3 / 2 ) ~ X ,  

U = ( 1 / 2 ) a p 0 M 2 ,  (5b) 

A = G + poHM. 

(5a) 

(5c) 
where G is the Gibbs free energy density, U is the internal 
energy density, and A is the Helmholtz free energy den- 
sity. It then follows that the effective field H, is [27] 

1 aA 
P O  

H, = - (z), = H + a M  + 

Comparing with (4), it is found that 

where X is the bulk magnetostriction under applied field 
H .  If one carries out the integration in (2), then defining 
a = NkBT/poM, ,  one obtains [21]-[24] 

(7) 
where d: (x )  = coth ( x )  - 1 / x  is the Langevin function. 
The assumption is made here that domain density N re- 
mains constant. In other words, domain wall motion is not 
considered. This is consistent because we are considering 
here only reversible changes along the thermodynamic 
(anhysteretic) path. Such changes can only involve rota- 
tion of domain moments because domain wall motion is 

M = M,d: (H, /a )  = Ma, 

dissipative. Hence domain density should be effectively 
constant in the processes under consideration. 

It was mentioned in the introduction that the domains 
discussed in this part of the development should be con- 
sidered pseudodomains. One reason is the restriction that 
the domain walls are not allowed to move. A second rea- 
son is that the average volume, l / N ,  of these pseudodo- 
mains is smaller than that of real domains. The average 
pseudodomain diameter computed for a = 3000 (a typical 
value used for a) is about 9 nm at 300 K. For real domains 
in iron, the domain walls are 40 nm thick [37], and the 
domains of course are much larger in extent. Neverthe- 
less, using the concept of pseudodomains, it is found that 
(7) gives a good description of the experimentally deter- 
mined anhysteretic magnetization curve [2 11-[25]. 

The parameter a should be treated as a constant of the 
material dependent in part on microstructure. Equation (7) 
is the expression used for the anhysteretic magnetization 
Ma,  since it was derived under the assumption of thermal 
equilibrium. 

Next to be considered is the irreversible contribution to 
the magnetization which arises because of domain wall 
motion. The motion of domain walls is impeded by the 
presence of pinning sites. Energy is lost to the lattice as 
the domain walls pin and unpin in the increasing field. As 
shown by Jiles et al. [21]-[25] the energy dissipation can 
be characterized by energy density. 

M 

Epi,(M) = k 1 dM. (8) 

where k is known as the pinning constant and is a mi- 
crostructural parameter proportional to the pinning site 
density and pinning site energy. The reversible increase 
in energy density that would occur if no energy were dis- 
sipated is 1: Ma(H,) dB,, (where B, = pLoHe), and the 
total energy density increase is 

M M 1 M dB, = io Ma dB, - k (g) dB,. (9) 
0 

Differentiating with respect to B, then yields 

M = Ma - 6k (E), 
which has been previously written as (1). The parameter 
6 takes the value + 1 when H increases and - 1 when H 
decreases, since pinning always impedes the effect of 
whatever is the change in the external field. Equation (9a) 
may be manipulated to a more convenient form as [24], 
1271 

dM 

(10) 
The M written here is the irreversible expression for the 
magnetization, and is to be henceforth denoted as Mirr. 
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Hysteresis is built into the model via the parameters 6 and 
k, and thus the magnetization Mi,, behaves differently 
when H is increasing than when H is decreasing. Thus, 
as H increases from zero to H,,, the magnetization M,,  
follows an initial magnetization curve to M,,,,; when H 
decreases to -H,,, the magnetization M,,, follows the 
top part of the magnetic hysteresis loop; when H then in- 
creases to H,,, the magnetization M follows the bottom 
part of the hysteresis loop; and as H continues to vary 
between H,, and - H,,, the magnetization M,,  contin- 
ues to follow the hysteresis loop already traced. The hys- 
teresis loop changes to a new loop when H increases be- 
yond H,,,, to H -  and -H- .  In fact, all of the 
quantitative hysteretic behavior usually seen in ferro- 
magnets can be seen in the hysteresis loop followed by 
Mi,, . Note that, mathematically, MI,, is computed via in- 
tegration over an expression which is a function of the 
deviation (Ma - Mlrr)  from the anhysteretic magnetiza- 
tion. 

The integration is also carried out in such a way that 
dM is set to zero whenever the sign of the derivative 
dMirr/dH is negative. Because of this last constraint, the 
history of the hysteresis enters in a “globally” dependent 
way rather than in a “local” way. This means that the 
solution is not mathematically unique for each local hys- 
teretic reversal, but rather depends on the global history 
of the sample before the hysteretic reversal. 

A better quantitative fit is obtained if one includes in 
the physical description the property of the bending (bow- 
ing) of domain walls before their becoming unpinned. 
Jiles and Atherton [24] discuss this feature and amve at 
an expression for the total hysteretic magnetization as 

(1 1) 

where Mb is the bowing contribution derived from a mi- 
crostructural argument which takes into account changes 
in magnetization as domain walls bow out from an un- 
bowed shape. In past work, [21]-[25] k f b  has also been 
described by the symbol M,,, because bowing occurs 
without energy dissipation. The resultant expression for 

Mb = c(Ma - Mi,), (1 la) 
where c is the ratio of the initial magnetic susceptibility 
(determined from the slope of the initial normal mag- 
netization curve of M extrapolated to H = 0) to the initial 
anhysteretic susceptibility (determined from the slope of 
the anhysteretic magnetization M, curve extrapolated to 
H = 0). Note that Mb is also in terms of the deviation 
(Ma-Mjrr) from the anhysteretic magnetization. 

Some of the characteristics of this model are that pin- 
ning parameter k primarily determines the coercivity H, 
of the hysteresis loop and that parameters Q and a pri- 
marily affect the slope of the hysteresis curve. The pres- 
ence of stress u shifts the slope of the hysteresis curve 
because of the additional contribution to the effective field. 
For a material with positive d h / d M ,  the slope increases 
under positive stress (tenhion); under negative stress 

M = k f b  + Mirr 

M b  is [24] 

(compression), the slope decreases [26]. Change in u has 
an opposite effect however on the coercivity [32], with 
coercivity decreasing with increasing tension, and vice- 
versa with compression. The shift in slope comes about 
because the term H, to first order can be written as EM 
and thus the stress adds an additional contribution to a, 
which as we have noted, affects the slope of the hysteresis 
curve [26], [27]. 

The magnetostriction h is a function of M [26]-[28], 
and in Section 111, a derivation is proposed for h in terms 
of energy minimization arguments. In the past, several 
different ad hoc functions were used for X [26]-[28]. Pre- 
cise variation of the slope of the magnetic hysteresis curve 
with stress is determined by X(M). Since M exhibits hys- 
teresis, so also does h ( M ) ,  which depends on M. The 
hysteresis in A (M) versus H, characterized by a butterfly- 
shaped loop, generally displays reflection symmetry about 
the ordinate h axis [28], [34], [38]. A somewhat similarly 
shaped (butterfly-like) loop is also seen in h versus B loops 

From (4), (6), and (7), it is seen that when u # 0, the 
magnetostriction and magnetic hysteresis are mutually 
coupled. These features have been previously noted by 
Sablik et al. [28], [32]. 

[281* 

111. DERIVATION OF THE MAGNETOSTRICTION FROM 
THE INTERNAL ENERGY 

The internal energy density of a ferromagnetic poly 

(12 

crystalline material is expressed as 

E = E,/ + E m ,  + 4 m q ,  

where if the field and stress are in the z direction. 

E,/ = ;cll(e: + e;y + e:) + ;c4(e:,, + e;z + e;) 

+ ~12(e~,,e, + e,e, + e,e,) - e , ~ ,  (1W 

E,, = b c ei i (a ;  - i) = ;beu - fb(e, + eyy) 
I 

(1 3b) 

+mag = umq + 4 h y s  = ;QpoM2 +f(M - Ma). ( 1 3 ~ )  

The term E,/ is the elastic energy density expressed in 
terms of strains eij. The polycrystalline system is assumed 
to be isotropic and not grain-oriented, so that a constraint 
relationship exist among the elastic constants, namely 

c44 = @ I 1  - c12)/2. (14) 

The term Em, is the magnetoelastic energy density, ex- 
pressed in terms of isotropic magnetoelastic coupling con- 
stant b. In (13b) for E,,, it is taken that the direction co- 
sines of the magnetization are al  = 0, a2 = 0, a3 = 1, 
since in an isotropic system the magnetization is aligned 
with the field. The magnetic energy density consists 
of two terms: (a) the thermodynamic internal energy den- 
sity Umag arising from internal coupling between the do- 
mains and is given as (1/2)apoM2, and (b) a separate 
hysteretic energy density term rPhYs which is a function of 

1 
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the deviation of the magnetization from the anhysteretic 
magnetization. 

Minimizing with respect to the strains for mechanical 
equilibrium, following a procedure similar to that of 
Spano et al. [39], one finds that [31]-[33] 

aE/ae, = clle, + cI2(e,,,, + e,) 

+ a+,/ae, - b/3 = 0, 

+ a4mg/ae,,,, - b/3 = 0, 

( 15a) 

w a e , , , ,  = c11 eyy + c12(e, + e,) 

( 15b) 

aE/ae, = c l l  e, + c12(e, + e,,,,) 
+ a+,/ae, - (T + (2/3)b = 0. (1%) 

(154 

(15e) 

(150 
In an isotropic system, exy = eyz = ezy = 0 and hence 
from (15d)-(15f), it follows that 

aE/ae, = cue, + a4,,JaeXy = 0, 

aE/aexz = cue, + a4mg/ae, = 0, 

aE/ae, = c4e, + &pmg/aeY, = 0. 

a4,,,&kY = a4,/aexz = a4,/aeyz = 0. (16) 
One may now apply the result for an isotropic system that 

e, = e,,,, = e, = -ve=, (17) 

(18) 
where v is Poisson's ratio, given by 

Equations (15a) and (15b) then lead to the relationships 
that 

and 

which, after integration, sum to 

v = C12/(Cll + c12). 

a4,/ae, = b/3  

a+,/ae,,,, = b/3, 

Omg = (b/3)(e, + e,,,,) + f. (e,), (194 
where fi (e,) is a function which is determined after in- 
tegrating (15c). Integration of (1%) with respect to e, 
yields 

~ ( C I I  - 2c12v)e; - (a - (2/3)b)e, + 
+ &<e,, en) + c, = 0. ( 19b) 

Equations (19a) and (19b) reduce to one equation after 
appropriate replacements for fi and f,. This single equa- 
tion is 

i(cll - 2~12v)e i  - (a - (2/3)b(l + v ) ) e ,  

+ tpmg + c, = 0. (20) 
In arriving at (20), we have used (17). 

that Young's modulus for the isotropic case is [38] 
To solve for the magnetostriction, one uses the result 

so that (20) becomes 

)7 a 2b(1  + v, * [[+(. - - b ( l  2 + u) 3 e , = - - -  Y 3  Y 

The term a /Y is the mechanical strain and the rest is the 
magnetostrain erne. To evaluate constant of integration c,, 
one recalls from Cullity [36] that the A E  effect is under- 
stood by postulating that at saturation, ezz = a /Y and the 
magnetostrain is zero. Thus, one solves for c, by setting 
eme = 0 at saturation, where both M and Ma equal M,. 
Thus, at saturation, 

2 b(1 + v) 1 
3 Y  f y ( (0  - (2/3)b(l + u ) ) ~  o =  -- 

- 2Y(C, + 4mag(Ms))11'2 

c, = (1/2Y)[(a - (2b(l + v)/3))2 

or 

- (2b(l + v)/3l2I - 4mgWs). 

2 b(1 + v) 

(23) 

Thus, the magnetostrain is 

2 b(1 + v) + -  (1 - 3 Y  
eme = -- 

3 Y  

(9Y/2b2(l + u)2) (4mg(w - 4mag(Ms))11/2. 
(24) 

The plus sign is chosen to have eme = 0 when M = Ms. 
The conventionally defined magnetostriction X varies 

differently than the magnetostrain itself. In particular, X 
is usually defined as zero in the unmagnetized state and 
is A,, the saturation magnetostriction, at saturation. Thus, 
we write 

(25) 3 
= e m e ( M )  - eL7 

where the incorporation of the 3 /2  factor follows Chi- 
kazumi and Charap [40] and where e:e is the magneto- 
strain in the unmagnetized state. It should be clear that 
(25) leads to X = 0 when M = M a ( H  = 0) = 0 and X = 
A, = - (2/3) eie when M = Ms. For polycrystalline steel 
with b negative [41], it is seen that X, is positive, accord- 
ing to (25). Using (24), one finds that 

2 X  = - ( i b ( l ;  "))[[I + (2b2(1 9Y + u)2) 

2 

1/2 

* [4mg(M,) - 4,(M)lj 1. (26) 

Equation (26) for the magnetostriction can be used to 
evaluate magnetic coupling parameter a!, first introduced 
in (6) for effective field He. In particular, at saturation, M 
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= Ma = Ms and 

dm, = (1 I2)CLoffMS. 
Substituting into (26), it is found that at saturation, 

3 3  - X = - X, = - [(2b(1 + u)/3Y] 
2 2  [[’ + (2b(:y u))2  

M:l’/2 - 1 1  = -(2b(1 + u)/3Y)y. 

If one also writes [41] 

X, = X - 2b/(3(~l l  - ~ 1 2 ) )  

= -3(2b(l 2 + ~ ) / 3 Y ) y ,  

then from (21), 

3 1  + V ) Y  = Y/(ClI  - c12) 

= (CII + 2Cl2)/(CI1 + c12). 

Also, from (27), 

(a) (b) (C) 
Fig. 1. Magnetization hysteresis curves computed for stresses of (a) -275 
MPa, (b) 0 MPa, and (c) +275 MPa, where negative stress is compressive 
and positive stress is tensile. Magnetization is normalized by saturation 
magnetization M,. Note that, as stress CJ goes from negative to positive, the 
loop narrows, the slope increases, and the interior loops increase in size. 
For this calculation, M, = 1.61 x IO6 A/m., a = 4500 A/m. ,  k/p,, = 
3000 A/m.,  c = 0.1, c , ,  = 1.26 x lo8 kN/m2, cIZ = 4 . 8  x lo7 kN/m2, 
b = -0.242 X IO4 kN/m2, a’ = 7 .5  x 
This yields A,? = 20.7 X 

(28) 

(29) and a’’ = 3.5 x 
and a = 6.87 x 

the magnetostriction has expressed the magnetostriction 
as a function of effective field H,. This was able to pro- 
duce hysteresis in A versus B, but when B reached its 
maximum, the magnetostriction did not at first continue 
to increase as B started decreasing, which is a character- (30) 

Thus, in this extended version of the model, a is not a 
free parameter, but is completely determined experimen- 
tally through (29) and (30). Note that (30) results from 
considering the material at saturation. 

The model to be used for the hysteretic energy density 
d h y s  is 

dhys  = i/.bo(Y”(MU - M)* - Po(Y’(Ma - M ) H .  (31) 

where the two terms are obtained by insertion of AM = 
Mu-M in place of M in the internal energy density term 
and in the external energy density term dependent on H. 
This is in effect a magnetic fluctuation energy density ow- 
ing to hysteresis. Just as in earlier hysteretic expression, 
this term is expressed in terms of a deviation of the form 
Mu-M. The two parameters, a” and a’, can be obtained 
experimentally. 

The hysteretic term involving a” is needed in order to 
reproduce the “lift-off’ phenomenon, i.e., it is found ex- 
perimentally [28], [38] that after the magnetostriction 
varies from zero as the system initially magnetizes, the 
magnetostriction does not return to zero at any time when 
the field cycles through the ensuing magnetostrictive hys- 
teresis loop [28], [32], [33]. The value X m i n  of the mag- 
netostriction at the minimum point of the magnetostric- 
tion loop has been addressed as the “lift-off’ value of the 
magnetostriction loop. The term involving a” in (31) pri- 
marily produces this behavior. 

The hysteretic term involving a’ results in the correct 
sequence of cycling around the A versus B loop. Without 
this term, the modeling of X versus B does not exhibit 
hysteresis. Another approach [28] that has been tried for 

istic of the experimentally observed X versus B loops [28]. 
With the CY’ term in (13c) and (31), the magnetostriction 
as expressed by (26) shows the experimentally observed 
[28], [32] cycling behavior around the loop. The fact that 
X continues to increase as B and H decrease is a reflection 
of magnetostrictive hysteresis being subsidiary to mag- 
netic hysteresis. 

Note that in (7) for the anhysteretic magnetization, the 
hysteretic terms in X do not contribute to (dX/dM),, since 
M-Mu is zero in the thermodynamic expression for A. 
Neither do the hysteretic terms in X contribute to 
(d2 X/dM2) ,  in (10) because this derivative originates 
from the derivative dB,/dM and Be, from above, depends 
only on Mu, not M. Thus, the hysteretic terms in X are 
important only for correctly obtaining the total magneto- 
striction after correctly obtaining the total magnetization. 

It is possible to measure parameters a’ and a“ experi- 
mentally. Parameter a” is obtained from magnetostriction 
retentivity A,  at H = 0 in the saturation loop. Parameter 
a’ is obtained from the coercivity H, and the values X (Hc,  
M = 0) and Mu(H,, M = 0) for the saturation loop. 

IV. MODELING RESULTS AND COMPARISON WITH 
EXPERIMENTAL RESULTS 

Fig. 1 shows a magnetic hysteresis curve calculated 
from the model for the constant stress conditions of u = 
-275, 0, + 275 MPa (i.e., -40, 0, +40 ksi) for poly- 
crystalline steel. Negative stress means compression and 
positive stress means tension. Fig. 2 shows X versus H 
hysteresis curves; Fig. 3 shows X versus B hysteresis 
curves. Both sets of magnetostriction hysteresis curves are 

1 
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1 . l I  10 

H ( k A l m )  

Fig. 2. Magnetostriction hysteresis curves ( X  versus H) computed for 
stresses of (a) -275 MPa, (b) 0 MPa, and (c) +275 MPa. Magnetostric- 
tion is normalized in each case by its maximum value of 5.40 x 8.67 
X respectively, for the three cases of stress. Note 
that liftoff is largest for tension. In going from compression to tension, the 
loops narrow and the interior loops increase in amplitude. Parameter values 
here are the same as in Fig. 1 .  

and 11.56 X 

1 t 1 

\ 

0 

m i x  w 
/ 

.IO 20 

H ( k l l m )  

Fig. 4 .  Magnetostriction hysteresis for X versus Hcomputed for a‘ = 1.25 
X where a” and the other parameters are the same as in previous 
figures. Magnetostriction is normalized in each case by its maximum value 
of 5.12 x 8.52 x and 11.48 X for (a) -275 MPa, (b) 
0 MPa, and (c) +275 MPa, respectively, Increasing a’ here widens the 
loops and reduces liftoff. 

1 1 

t 1 

I t 1 

818 mix 

Fig. 3. Magnetostriction X versus flux density E computed for stresses of 
(a) -275 MPa, (b) 0 MPa, and (c) +275 MPa, with parameter values 
unchanged. Flux density is normalized by its maximum value E,,, in each 
case. Again, a’ = 0.75 X lo-’, a” = 3.5 X lo-’. 

I t 1 

818 m i x  

Fig. 5. Magnetostriction hysteresis for X versus B computed for (a) -275 
MPa, (b) 0 MPa, and (c) +275 MPa and for a’ = 1.25 X as in 
Fig. 4 .  

for stress o = -275,0, and +275 MPa. For these curves, 
a’ = 0.00075 and a” = 0.000035 were used. A complete 
listing of other parameters used may be found in the figure 
captions. Note that the application of uniaxial tensile 
stress coaxial with the field increases liftoff and narrows 
the hysteresis in polycrystalline steel; compression does 
the opposite. In the case of magnetic hysteresis, tension 
primarily increases the slope (susceptibility) of the hys- 
teresis; compression does the opposite. Note that cou- 
pling parameter a is smaller than in the early models [21]- 
[30]: this means that the slope of the hysteresis curve is 

determined primarily by parameter a, which depends on 
domain density at zero magnetization, temperature, and 
saturation magnetization. 

In the magnetization calculation, dX/dM and d2 X/dM2 
are evaluated for M = Ma, and therefore magnetization 
does not depend on a’ and a”. Thus a‘ and a” only in- 
fluence the magnetostriction hysteresis, and these effects 
can be studied independently of changes in the magne- 
tization hysteresis. 

Figs. 4 and 5 show X versus H and X versus B for a’ 
= 0.00125; all other parameters are as before. Note that 
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H (trim) H ( L A l m )  
Fig. 8. X versus H loops computed for a’ = 1.25 x lo-’ and for a” = 

8.44 X 1.35 x 
8.57 x respectively for (a) -275 MPa, (b) 0 
MPa, and (c) +275 MPa. With the increase in a”, liftoff is enhanced; also 
dependence of liftoff on stress is altered, so that liftoff is now less for 
tension. 

Fig. 6. X versus H loops computed for CY’ = 1.50 X lo-’  and other pa- 
rameters as earlier. This time the A,,,= values are 4.98 X 

and 11.45 X for (a) -275 MPa, (b) 0 MPa, and (c) +275 
MPa, respectively. 

with other parameters as before. Here, X,, = 5.33 x 
and 11.50 X 

1 t 1 

B I B  ma, 

I t I 

ma: 

Fig. 7.  versus B loops computed for (a) -275 MPa, (b) 0 MPa, and (c) Fig. 9.  X versus B loops computed for (a) -275, (b) 0 MPa, and (c) +275 
+275 MPa and CY’ = 1.50 X as in Fig. 6. MPa and for a’ = 1.25 x lo-’  and a” = 1.35 x 

increasing a’ has the effect of widening the magnetostric- with compression than with tension. Thus, both types of 
tion loops; the effect is particularly noticeable for the X liftoff dependence on stress are possible-that is, there can 
versus B loops. Liftoff is also reduced to the point where be an increase or a decrease of magnetostriction liftoff 
under 40 ksi of compression, there is no liftoff. 

Figs. 10, 11, and 12 show magnetization and mag- 
in the case of compression, can become negative. Note netostriction hysteresis for a case where material aram- 
that the a’ has the effect of modifying liftoff in addition eters M,, k, and a are changed to M, = 1.25 x 10 A/m, 
to controlling the widths of the magnetostriction loops. k/po = 7000 A/m, and a = 3150 A/m. In this case, as 

Figs. 8 and 9 show the effect of greatly increasing a” seen in Fig. 10, the changes in the magnetization hyster- 
to 0.000135. In this case, which is also for a‘ = 0.00125, esis are more extreme than in Fig. 1 as the applied stress 
the liftoff is dramatically increased and its behavior with is changed from compression to tension. In correspond- 
stress is now modified so that liftoff in this case is greater ence with the large value of k, there is a large decrease in 

with compression. 
As seen in Figs. 6 and 7, for a’ = 0.00150, the liftoff, 

? 
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-275MPa ‘1 

Fig. 10. Magnetization hysteresis M versus H computed for three cases of 
applied stress (u = -275 MPa, u = 0, u = +275 MPa) and with M, = 
1.25 X lo6 A/m, k/p, = 7000 A/m, n = 3150 A/m, a’ = 1.25 x 
IO-’, anda”  = 3.5 x lo-’. 

the coercivity as the stress is changed from compression 
to tension. Similarly, in correspondence with the smaller 
value of a, there is a large increase in remanence and 
magnetic susceptibility (slope of the M versus H hyster- 
esis curve) as compression changes to tension. Even more 
striking is the predicted behavior of X versus H in Fig. 
11, where the magnetostriction hysteresis loops are much 
wider than those shown earlier, and where the loop shape 
under tension is distinctively different from the loop shape 
under compression, tending to be concave inward rather 
than concave outward. This distinctive shape in part cor- 
responds to the smaller value of M,, and tends to be less 
noticeably apparent for larger values of M,. The X versus 
B loops, seen in Fig. 12, for these new values of the ma- 
terial parameters, are generally wider in shape, particu- 
larly for zero field or for compressive conditions. The 
phenomena of (1) liftoff and (2) continuing increase of X 
as B decreases from its maximum value are still seen, as 
before. In this case, the figures do not show interior loops, 
and hence one additional phenomena is made much more 
noticeably clear. This additional phenomenon is that dur- 
ing initial magnetization, the magnetization and magne- 
tostriction may rise to different values than the values to 
which they return after traversing a full loop. This phe- 
nomenon is often seen experimentally, although it is not 
always present, and would be worthy of additional study 
in a later work. 

The generic behavior of the magnetostriction hyster- 
esis, as described above, can be seen experimentally not 
only in the behavior of steel and polycrystalline iron but 
also in other materials such as Terfenol D [38] and Ni- 
Zn femtes [42]. Magnetostriction hysteresis in Terfenol 
D was reported by Jiles and Hariharan [38] and may be 
seen in Fig. 2 of that paper. It is seen that for that mate- 
rial, the description of magnetostriction with liftoff de- 
creasing with compressive stress is the applicable one. 
Bienkowski and Kulikowski [42] report magnetostriction 
hysteresis for Ni-Zn femtes in Fig. 4 of their paper. In 

-275MPa ’ F ,- 

275MPa w 
M I U l m . ,  

Fig. 1 1 .  X versus H loops computed for the same values of M, k/po, a, 
a’, and a” as in Fig. 10. Here we have A,,,, = 1.23 X 
and 13.02 x and for u = -275 MPa, 0 MPa, and 275 MPa, respec- 
tively. 

5.80 X 

-275MPa ’ I  A 

275MPa \ ‘ 1  1 
2 E -’ ,= 

Raw% 

Fig. 12. X versus B loops computed for -275, 0, +275 MPa and for the 
same values of the material parameters as in Figs. 10 and 1 1 .  

this case, magnetostriction is negative and the hysteresis 
appears as a butterfly curve which reflected across the X 
= 0 axis. Liftoff is again seen in that the negative mag- 
netostriction does not return to zero after the material 
leaves the demagnetized state. Bienkowski and Kuli- 
kowski [42] report magnetostriction hysteresis only for 
unstressed material. 

The results for the model compare favorably with ex- 
perimental results for unstressed steel and polycrystalline 
iron at low fields. [See Figs. 1 and 2 in [28], and Fig. 13 
here]. Clearly seen in all the experimental magnetostric- 
tion hysteresis displayed is the liftoff phenomenon. The X 
versus B (See [28] and Fig. 13) plots clearly show hys- 
teresis as well as the phenomenon of X increasing imme- 
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magnetic aligned along the [loo] axis and X l l l  is for the 
case of magnetic moments aligned along the [ 1 1  I ]  axis. 
In crystalline iron, Xloo is positive and X I  I is negative. 

To represent polycrystalline iron, a model could be 
constructed so that the domains in polycrystalline iron are 
such that at first their moments tend to be along the < 100) 
directions in the respective crystal grains in the polycrys- 
tal. Then as magnetization increases, the domains with 
moments tending to be aligned in the < 1 1  1 ) direction of 
the crystallites grow at the expense of other domains. The 
net result is that domains with negative magnetostriction 
would tend to dominate; b in turn would change from neg- $040 

RAN CAROW 0- 

10 10 24 ative to positive; and bulk magnetostriction, which is an 
Fig. 13. Experimental magnetostriction hysteresis ( A  versus B) for poly- 
crystalline steel (1045 plain carbon steel containing 0.45 wt. % carbon). 
The specimen was not subject to applied stress. 

average of all the domain magnetostrictions, would 
change from positive to negative. 

diately after B reaches a maximum and starts decreasing. 
The X versus H plot in [28] for polycrystalline iron is more 
characteristic of the plots in Fig. 1 1 ,  showing large mag- 
netostriction hysteresis and showing also the behavior of 
not returning to the same value after traversing a full mag- 
netostriction hysteresis loop. Similarly, the X versus B 
loops for polycrystalline iron and steel tend to be more 
open, like the loops in Fig. 12. 

At higher fields H, the behavior of the magnetostriction 
hysteresis in iron and steel is a little more complicated 
experimentally. Magnetostriction hysteresis for 2 % Mn 
pipeline steel is reported by Atherton et al. [43] (See Figs. 
1,2, and 3 in [43]). The A versus Hand X versus M curves 
for u = 100 MPa all show liftoff behavior. Furthermore, 
the h versus H curves for the pipeline steel greatly resem- 
ble our curves except for a slight falloff in magnetostric- 
tion values for H greater than 7.5 kA/m. The X versus M 
curves ought to behave like A versus B curves because of 
the high permeability, which ensures that B = p o M .  
However, the experimental X versus M curves have three 
crossovers between the upper and lower branches of the 
hysteresis loop. The extra crossovers may be associated 
with decrease in magnetostriction at the higher fields and 
hysteretic influences due to that decrease. It is known [44] 
that polycrystalline iron at high enough fields show such 
a large reduction in the magnetostriction (as a result of 
the Ewing-Villari effect [45]-[47]) that the magnetostric- 
tion eventually goes negative. Presumably the pipeline 
steel reflects some of these tendencies. 

This change in sign of dX/dH at the higher fields in 
polycrystalline iron (and steel) might be extracted from 
(26) if the magnetoelastic coupling constant b for the 
polycrystalline system can be represented as a function of 
the magnetization. As mentioned earlier in (28), Chika- 
zumi [40] represents b as 

b = -(3X/2)(~1l - ~ 1 2 )  = -3XCM (32) 

for an isotropic polycrystalline system, where x is - 
h = ;Alw + (33) 

where hloo is the saturation magnetostriction with the 

V. CONCLUS~ON 
We have demonstrated that hysteresis in the magneto- 

striction A is coupled to hysteresis in the magnetization M 
because of the dependence of the magnetostriction on the 
magnetization. At the same time, when the stress is pres- 
ent, the magnetization is in turn coupled to the behavior 
of the part of the magnetostriction associated with domain 
moment rotation. 

We have formulated an expression for the magneto- 
striction and have compared numerical modeling results 
for magnetostriction hysteresis to experimental results. 

Although some features of the magnetostriction in iron 
and steel still need additional explanation, the main fea- 
tures of the magnetostriction have been accounted for. 
These include liftoff (failure of the magnetostriction to 
return to its value in the demagnetized state as the hyster- 
esis loop is cycled) and a magnetostriction increase after 
flux density B reaches its maximum and starts to decrease. 
The fact that hysteresis exists in h versus B is an indica- 
tion that X depends on H as well as M. This extra de- 
pendence of X on H is a result of irreversible domain wall 
motion. 

It should be noted that the formulation is a macro- 
magnetic, multi-domain formulation and yields zero mag- 
netostriction in the demagnetized specimen, unlike the 
single-domain results for which the magnetostriction is a 
constant. 
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