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Some multivariable orthogonal polynomials of the Askey tableau-discrete 
families 

M. V. Tratnik 
Centerfor Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, 
New Mexico 87545 

(Received 3 1 May 1990; accepted for publication 16 April 1991) 

A multivariable generalization is presented for all the discrete families of the Askey tableau. 
This significantly extends the multivariable Hahn polynomials introduced by Karlin and 
McGregor. The latter are recovered as a limit case from a family of multivariable Racah 
polynomials. 

1. INTRODUCTION 

At the head of the Askey tableau’ of classical orthogo- 
nal polynomials lie the Wilson family2*3 and their discrete 
analogs the Racah polynomials.’ The latter can be expressed 
as the following hypergeometric series 

r, (GP,&ylx) 
= (a+ l),(y+ l),(P+s+ l), 

x,l;; 
-n,n+a+P+l,-x,x+y+S+l 

a+ 18+S+ l,y+ 1 
;l , > 

(1.1) 
where a,,@, y are complex parameters, n is a non-negative 
integer, and (a + 1)” =T(n + a + l)/l?(a + 1) denotes 
the Pochhammer symbol. These are polynomials of degree 
2n in x and they satisfy the following discrete orthogonality 
relation: 

* (y+S+ l),(y/2+W2+3/2),(a+ l),W+~+I)x(Y+l)xr (x)r (x) =A s 
x=c (y/2+S/2+ 1/2),(y+S-a+ l),(r-P+ l),(S+ 1),x! n c m 

n nm, 

A, =n!(a+ l),(/?+ l),(y+ l).(a-a+ l).(a+P-Y+ l).(P+S+l). (n+a+P+ 11, 

(a+P+2L 

(1.2) 

x r(y+S-a+ l)r( -a-P- i)r(r-P+ 1)ns-t 1) 
r(y+s+2)r(--p)r(y-----P)r(S-a) ' 

witha+ 1,/3 +S+ l,ory+ 1 = -A,whereAisanon- 
negative integer. The x sum is over the positive integers 
x = 0 1 2 , , ,***9 A and the indices are confined by O(n,m<A. 

Thelimit6-co witha+lory+l= -Agivesthe 
Hahn orthogonality relation 

c 
A (a + l)x(y+ l)x h (x)h (x) =A,S,,, (1.3) 

x=cl (y-P+l),x! n m 
where 

A, (a$,B,ylX) = (a + 11, (Y + l)n 

x3F2 - ( 
n,n + a + P + 1, - x 

a+ LY+ 1 ;l , > 
O<n<A, 

R, = ( - l)“n!(a+ l),(P+ l),(Y+ l), 

x(a+B--yf 11, 
(n+a+P+ 11, 

(a +P+ 212, 

x rt-a--B-urw--P+l) 
r(-8)r(r-a-P) * 

(1.4) 

Letting p-+ 00 in (1.2) with a + 1 = - A gives the dual 
Hahn orthogonality 

* (y+S+ l),(y/2+S/2+3/2),(a+ l),(Y+ 11, 
c 

.X=0 (y/2+6/2+ 1/2),(y+S-a+ l),(S+ 1),x! 
x ( - lY4 (x)d, (xl = ~“S,,, (1.5) 

with 
d, (a,S,ylx) = (a + l), (Y + l), 

x3& - ( n, - x,x + y + S + 1 
a+ l,y+ 1 

;l , > 

O<n<A, 
An =n!(a+ l),(y+ l).(a-S+ l), 

x r(y+s--a+ lr(S+ 1) 
r(y+s+ww-aa) * 

(1.6) 

The Meixner polynomials limit from the Hahn family by 
transforming a+&, y + 1 -fi, /I+ - 6, and taking {- 03. 
These are given by 

xi20 5 (P)x m, (x)m,, 0) 

= (fl).n!c-“( 1 - c) -BS,,,, 
m,(~,clx>=(P),2F~(-n,-Xx;P;l-c-‘), (1.7) 
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where the sum is over all non-negative integers 
x=012 , , ,..., CO. The Krawtchouk polynomials are obtained 
from the Meixner family in the special case when 

/3= -A, c=q/(q-1), (1.8) 
where A is again a non-negative integer, and these satisfy 

= (AAF;)! (I-“(1 -q)“S,,, 

k,(A,q)x) = ( - A),,F, ( - IZ, -xx; - A;q-‘). (1.9) 
The Charlier polynomials result upon setting c = a/g and 
s;fb; the Meixner family and taking {-+ CCI. These are 

c,(a[x) =,F,( -n,-xx;-u-l). (1.10) 
A family of multivariable Hahn polynomials was intro- 

duced by Karlin and McGregor4 in the context of linear 
growth models with many types. In this paper we extend 
those polynomials to the remaining discrete families of the 
Askey tableau. That is, to the Racah, dual Hahn, Meixner, 
Krawtchouk, and Charlier polynomials. The Hahn family is 
recovered as a limit case of the Racah polynomials. The anal- 
ogous generalizations of the continuous families of the As- 
key tableau are discussed in a companion papers5 

il. MULTIVARIABLE RACAH, HAHN, AND DUAL HAHN, 
POLYNOMIALS 

The multivariable Racah polynomials of p variables 
Xl 7x2 . ..xP are given by the following expression 

R ( aI ‘“2;;p + L y%;~~~;~~) 

P- ’ 
= L-I r,*(2Ay +77+d,ak+’ - l,N;-’ 

Lk= 1 

+a; +xk+,,Nf-‘-xk+, - lI-N~-‘+Xk) I 
Xrnp(2NP-’ -I- q + a$,ap+, - l,N’;-’ 

+ aP -y- l,N<-‘+y[ -N7-‘+xJ, (2.1) 
where r, (x) are the single variable Racah polynomials ( 1.1) 
and we are using the following shorthand notation 

N:E~ nk, ajs i ak (Nf-’ = ai-‘z0). (2.2) 
k=j k-j 

Although these polynomials are products of single variable 
orthogonal polynomials they are nontrivial in that the pa- 
rameter arguments also depend on the variables. The param- 
eters a, ,a2 ,..., a,, ’ ,q,y are in general complex and 
xl ,x2 ,.-,xp,nl ,n2 ,...,np are non-negative integers. These 
polynomials are of total degree 2Nf in the variables 
x, ,x2,...,xp and are associated with the following weight 
function 
da, y4p + , m+, ,x2 ,...,x, ) 

_ (a’ 1% (?1+ 1)x1 ‘-’ r(ak+i +Xk+, -&) 

xl! Cal -T),, (xk+, -xk)! 

X 
r(af+‘+xk+, +xk) tafi2+ 1)X, 

r(a: + 1 +xk+’ +xk) (af/21xk I 

x (a/;/2+ llxp (a’l+’ -y-- ‘lx, (y+ 11, 

(af/2),,, (y- ap+, + 2Jxp (af - y)IY ’ 
(2.3) 

which is nonvanishing over the domain 
o<x, <x2 ( * * * (x, (A where A is a non-negative integer and 
y i- 1 = - A. The parameters are assumed to be such that 
this weight function is finite. In the case p = 1 the empty 
products are to be interpreted as unity in which case (2.1) 
and (2.3) reduce to the respective single variable expressions 
( 1.1) and ( 1.2) apart from a redefinition of the parameters. 

These polynomials satisfy the following orthogonality 
relation: 

.-i,, P go *** P 1 
xgo x~oP(X)R. (x)Rt?z (xl = 4 kfj, &kmk> 
* , 

fi taf)-*nk!r(nk +ak+‘)(Nt fN:-‘+v+a$+‘)nk 
r(Nf +Nf-‘+q+a$ + 1) 

k=l WN$ +1;7+a,k+*+ 1) 1 
X 

r(a, - ~)r(a? - y)rwf + v + a$* * - y) 
r(a, )rbj + ur(ap+, -y- l)r(a, -q-y- 1) 

(a{+’ -Y-- i),p(~+ l),+j --aI + Y+ 21,fs (2.4) 

which is proven as follows. The x, summation 

x2 (a,lA,(l;l+ l),,I(a, +x2 --xx,)I(a: +x, +x,)(a’/2+ l),, 
c X) =o ~,!(a, - VI,, (x2 -x1 Nw, + 1 f x2 +x1 1 (a,/2),, 

xr,, (qa, - La, +.x2, - x2 - llxl)r,,(~,a2 -La, +x2,-x2 - 11x,) (2.5) 

is evaluated by using the single variable results ( 1.1) and ( 1.2) with the parameters depending on the variable x, . This gives 
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a,,,, (a, ) - ‘n, !l-(n, + a2 1 (n1 + 77 + a2 I”, 
m l, + rl+ 1) ua1 - 71) 

r(2n, + 7  + a2  + 1) Ua, )r(77 + 1) 

X 
r(n, +~+a~ + 1 +x,r(n, +a: +x2) 

(x2 -n,)!rb, -~+x2--nl) ’ 
which suggests that after the x, ,x2,...,xj summations we obtain 

(2.6) 

[ 

r(ivf+N';-*+v+at+l) 
fi Sn,,n,(a~)-1~k!~(~k+~k+l)(N~+N~-'+71+~~+1)nk r(2Nf+17+ai+l+1) 

&=I 1 
x r(a , -7) rw/; +~+aj,+‘+ l+xj+,rw’, +di+l+Xj+*) 

’ W , rw + 1) -N{)!IYa, -v+xj+, -IV’,) 
j = 1,2 ,..., p  - 1, (2.7) 

Cxj+ 1  
where by convention l/(x, + 1  - N’, )! = 0  ifx,, 1  - N{ = 0, - 1, - 2  ,... . The  postulate (2.7) is then proven by induction 
onj. Mu ltiplying (2.7) by the remaining xj + 1  dependent  part of the weight function and  polynomials and  summing over xj + , 
gives 

(a~)-‘n,!T(n,+a,+l)(Nf+N~-l+V+a,k+l)nk 
r(N:+Nf-'+rl+a,k+l) 1 r(a , -17) 

r(2N!+77+a:f1+l) Ra, HY77 + 1) 

+I rw: +~+d;+*+ i+xj+,)r(N{ +QJ;+~+~~+J 
xx,+? =o txj+ 1 -N{)!r(a, -v+x~+, -N’,) 

X r(aj+2 +xj+2 -xj+*)r(aj,+2+xj+2 +Xj+*)(aj+‘/2+ l),+, 
&+2 -xj+ I maj,+* + 1 +x~+~ +xj+1)(d;+v2)x,+I 

x ‘5 + I (2N', +?I+&2+'9aj+2 - l,N', +aj,+‘+xj+,,N’, -xj+2 - 11 -N', +xj+,) 

xrm,+, t2M: +1?+4+',aj+2 -l&f', +d~+1+Xj+2,Mjl -xj+2 - 11  -M{ +xj+,), (2.8) 

and noting that this expression vanishes unless M  , ’ = N’, due  to the Kronecker deltas, the summation is then evaluated by 
( 1.1) and  (1.2) yielding 

I+ 1 
n %fh (a:)-'n&!r(n& +ak+,)(N:+N:-'+17+a:+')nk 

l?(Nf+NT-'+q+at + 1) 
&=I r(2Nf+rl+a2k+‘+l) 1 

W, -7) 

xWl u-(77 + 1) 
r(Njl+’ +~+di’~+ 1  +xj+2)r(N{+1+aj,+2+Xj+2) 

(2.9) 
txj+2 -NNi,+*)!r(a, -v+x~+~ - N’,+ ’ 1 ’ 

which is (2.7) withj + 1  replacingj thus proving (2.7). Settingj = p  - 1  in (2.7) and  substituting into the left side of (2.4) 
then gives 

-j, xp tzo -** z. xtop(x)R. (x)R,n (X) P 
P- ’ k~,6,~,~(a:)-‘nk!r(nk -i-a&+,)(N: fNf-‘+v+“if’)nk r(r”,(~~&~~,l~a~~l~~” 1 

W , - 17) * ~(N~-l+q+a~+l+x,,)r(N~-L+a~+xp) (af/2+1)Xp 
'rca,)r(17+ 1) x,=~ c (xp -NT-*)!r(a, ---+xp-NC-‘) (aY/2)xp 

(a:' ' 
X 

-y- lLp (r+ lLp rnp(2NI;-’ +rl+&pap+l -1,Nf-*+a~-y-1,N~-‘+y~--N~-‘+x,) 
(y- ap+, + 2),, (al; - Ylx, 

xrmp(2M~-‘+1;7+~~,~p+1 - l,My-‘+a{ -y- l,M ’;-‘+yj -MY-‘+x,), (2.10) 

I 

and as before noting that this expression vanishes unless al++-a? +2Y+2, ak+l++ap-k+l, 

My - ’ = Nf - ’ due  to the Kronecker deltas, this summa- 
tion is then also evaluated by using ( 1.1) and  ( 1.2) yielding 

k = 1,2 ,..., p  - 1, 

the orthogonality relation (2.4). ap+++v+ 1, x,+-+h-x,-,+,, k= 1,2 ,..., p, 

Apart from normalization, the weight function (2.3) (2.11) 
and  summation region are invariant under  the following per- and  if this is appl ied to the orthogonality relation (2.4) it 
mutation of parameters and  variables: implies that the transformed polynomials also form an  or- 
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thogonal family with the same weight function. The polyno- 
mials are not invariant under (2.11) so one immediately ob- 
tains a second family of multivariable Racah polynomials. 
After a redefinition of the indices nk+-+np _ ,+ + , this second 
family is given by 

=r “I (2NP +a$+’ - l,rl,NP - a, + y+ l,N$ 

tyl--;+A--,) 

fi 7&NPk+I +4X: - l,a, - 1, 
k=2 

NPk+, - a! - A-x,-,,NP,+, 

+ y+xk-,I --NP,+, + A-xx,) t 1 
(2.12) 

and these are also of total degree 2NP in x1 ,xZ ,...,x,. The 
normalization constant is not given explicitly but it can be 
evaluated from (2.4) after applying (2.11) . 

Another multivariable generalization of the Racah 
polynomials has been studied by Gustafson6 These are 
closely related to the so-called U(n) multivariable hyper- 
geometric series introduced by Holman et al.“’ Those poly- 
nomials are associated with a different weight function than 
(2.3) and apparently are not related to the polynomials dis- 
cussed here. 

Multivariable dual Hahn polynomials follow as limit 
cases of these Racah families. For example, dividing (2.4) 
by #I; f M? and taking the limit v--r CO yields 

(2.13) 

qb..;“+ t yang;:;;) 

P--l 
k~~dd,~(N:-‘+rr:+l+xk+, - LN:-’ 

+a: +X,+,,N:-l-X&+, - 11 -N:-‘+x,c) 1 
xd,p(N~-1+af+*-y-2,N’;-‘+a~-y-1, 

NT-‘+ y[ -Nf-‘+x,), da , ,...,ap+ , ,ylx, ,x2 ,...,x, 1 

(a, L z----2( -1)“’ p-1 r(ak+, -bxk+l -xk) 

x, ! (x&+1 -xk)! 

X 
,(a:+ * +x&+, +X&j tafi2+ ‘jxk 

r(af + 1 +x&+1 -bxk) 1 

fi (a!)-‘nk!rh +a&+,) 
k=l 1 

X 
r(af -Y) 

r(a, )Wp+, - y- 1) 

X (a{*‘- y- o,+y+ l),f( - l)Yfl, 

where d, (X ) are the single variable dual Hahn polynomials 
(1.6). These are also of total degree 2NP in xl,x2,...,x,,. 
After multiplying by appropriate renormalization factors 
one can obtain further families of multivariable dual Hahn 
polynomials in the limit 17 -+ CO of the second Racah family, 
or the limit aP + I 4 CO of either Racah family. 

The multivariable Hahn polynomials of Karlin and 
McGregor4 are contained as a limit case of the Racah family 
(2.1). To obtain these divide (2.4) by a?-‘+ ’ f Nft MC, 
take the limit a, + M), redefine r/-+a,, a&-*a& + 1, 
k = 2,3 ,..,, p + 1, and make the change of variables y, =x1, 
yk =xk - xk _ r, k = 2,3 ,.,., p, This gives 

z *+* ; pm” (Y)Hnl (VI = 4 fi kkrnk, 
k=l 

)$f*>...;+ 1 p:~‘g 

- Y;k+‘- 11-N:-‘+ yf) I 
xh,(2Nf- ’ -t a: +p - Lap+ 1 ,NT- ’ 

+yI -NY-‘+ Yl;), 

P(%,...,qe+ l,YIJb..dp, = 

X 
(Y-l- l),p 

W-ap+, + llyf ’ 

fi n,!(Nt +Nf-‘+a:” 
k=l 

+ k),, 

X 
rbk +ak+l + ‘1 

r(ak f l) 

x r(Nt+Nf-‘+af+k) 

r(2N: +a:+l +k+ 1) 1 
X r(Nf + a?+ ’ +p - y) 

J3cr,, I - Y) 
(y+ l),f( - uNe, 

(2.14) 
x (a?/2 + llXP (a/;” - y- 11, (Y + 11, 

(af/2)xp (Y-a/I+1 + 21xp (4 - Ylxp ’ 
where the summation region is over non-negative integers 
satisfying Y& >O, Yf <A, and h, (x) are the single variable 

2340 J. Math. Phys., Vol. 32, No. 9, September 1991 M. V. Tratnik 2340 

Downloaded 13 Jun 2013 to 35.8.11.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



Hahn polynomials ( 1.4). These polynomials are of total de- 
gree N’; iny, ,Y2 ,.,.,Y~ and form a complete set for polynomi- 
als in these variables. 

In these variables it is obvious that the summation re- 
gion and weight function are invariant under an arbitrary 
permutation of the labels (1,2,...,p). If one defines 
Y p-t , =A - Y$‘, then they are also invariant (apart from 
normalization of the weight function) under an arbitrary 

permutation of the labels (1,2,...,p + 1). That is, under an 
arbitrary simultaneous permutation of (a, ,a2 ,...,ap + , ) and 
(Y, ,Y2>...,Yp+ , ). The polynomials given in (2.14) are, in 
general, not invariant and thus one generates distinct fam- 
ilies satisfying orthogonality relation (2.14) under these per- 
mutations. 

A family of biorthogonal polynomials9*‘0 with the same 
weight function is already known. These are given by 

Z’, (y) = F :;;;:::i: 
N’; +af+‘+p:-n,,-y,;...;-nn,,-yp 

y+ l:a, + l;...;a, + 1 , 

%‘n (y) = (y + 1 + YP lNe Fii:;:::;: 
( 

-NN’;-aa,,.,:-n,,-y,;...;-nn,,-yp 
- Nf - y- Yy:a, + l;...;cr, + 1 ’ 

k=l 

(2.15) 

where F${i;?$ is the Srivastava hypergeometric function” 
or more commonly known as the generalized KampC de Fer- 
iet hypergeometric series. These polynomials are invariant 
under permutations of ( 1,2,...,p) but are not invariant under 
permutations involving the p + 1 label; the latter transfor- 
mations therefore generate new families of biorthogonal 
polynomials with respect to the same weight function. 

III. MULTIVARIABLE MEIXNER, KRAWTCHOUK, AND 
CHARLIER POLYNOMIALS 

The Hahn polynomials (2.14) contain as a limit case a 
family of multivariable Meixner polynomials. Set 
y+ 1 =fl, ak =lck, aP+, = -6, divide (2.14) by 

6 Ne+ M7, and take the limit g-+ 00. This yields 

2 . . . 2 2 p(r>M, (Y)M, (Y) = 4 
y, = 0 y*=oy, =o 

[kfj %%I 9 

(3.1) 

P- ’ 

kg, mnA(Nf-’ - I’:+‘, 

- cf/ck+ 1 I-N’;-‘+ r:,] 

xm,p(Nf-’ +B,C7I- Nf-’ + Yf), 

p(c* 42 T..., c,,B IY, 9Y2 9...9 VP) = 
p c’k* 

[ .I kJJ z (8) yfy 

fi n,!(cf) -nk+nk-‘(Ck)nk-’ (p),, 
k=l 1 

x(l-c~)-N+P (n,=O), 
where the summation convention is being used for the ck 
parameters. These polynomials are also of total degree N’; in 
y1 ,y2 ,...,y, and form a complete set. In analogy with the 
Hahn family, the summation region and weight function are 
invariant under an arbitrary simultaneous permutation of 
(c, ,cz,-9 cp) and (yl ,y, ,...,v,), and as before one generates 
new families satisfying (3.1) by applying these permutations 
to the polynomials. 

A family of biorthogonal polynomials’* with this same 
weight function are given by 

.A~ (y) = ( I’$’ + P),QF?i$:::i: 
-n,,-~~;...;--~~ -Yp -, 

-NT_ yf -fl+ 1 ;‘I 
-1 

““’ ’ 

<& (y) = F:;$!:::;; 
( 

-n,, -y,;...; - np, -Y, 

P 
;(C:‘- l)c,‘...(Cf - l)c,-’ , 

> 

(3.2) 

I 
and these are invariant under permutations of (1,2,...,p). k = 1,2 ,..., p, 

A special case of the Meixner family are the multivaria- 
ble Krawtchouk polynomials. These are obtained for qk>o, O<QY<l, Q;=i qk, (3.3) 

k=j 
fi= -A, A=0,1,2 . . . . ck =qk/(Qf - l), and are given by 
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.co ‘** ,;o (A -“3, )! [k& $1 P 
x(1 - Q?) A - “;K, (YX, (Y) 

P--l 

= jl-J k,(N(-‘- I’“;+‘, 

Q/l -- 
I 

AN”,-‘+ y’, 
4j+ 1 )I 

xknp Nf-’ - A, Q? 
(Qf - 1) 

fi nk!(Q:)-““f”k-l(qk)n’-’ 
k=l I 

X 
A! 

(A-N{;! 
(1 - Ql;)“‘, (3.4) 

where k, (y) are the single variable Krawtchouk potynomi- 
als ( 1.9) and the sum is over non-negative integers satisfying 
yk 20, Yy (A. This weight function and summation region 
have additional symmetries compared with the Meixner 
family.Ifonedefinesy,+,=A-Y$ and%,,rl-QT 
then they are invariant under an arbitrary simultaneous per- 
mutation of(y, ,y2,...,yp+ 1 > and (ql ,q2,...,qp+, 1. The poly- 
nomials are again not invariant and once more one generates 
new families of orthogonal polynomials under these permu- 
tations. 

The biorthogonal families” with the same weight func- 
tion are given by 

32”,(y) = (Y: - A)&$::;$ 
-n,, - yI ;...; - np, - up 

-N’;-YY’I+A+l 
;(Qp - l,q,“+*(Q$ - 114;’ > 

> 
, 

and these are invariant under permutations of ( 1,2,...9) but 
are not so under permutations involving the label p + 1. 

The Meixner polynomials also contain a family of multi- 
variable Charlier polynomials as a limit case. Set ck = qk/g, 
p = 4, divide (3.1) by 6 5 + mP, and take {-+ m. This yields 

N;-‘- y;+‘,-- 

ak+ I 

-N:-‘+ Y; )I 
xc,tjA’ll - N’I-’ + Yf), 

fi n,!(Af) --n,+nk-I(ak)nk-I 1 exp(AY), (3.6) k=l 
where c, (y) are the single variable Charlier polynomials 
( 1.10). The weight function is simply the product of single 
variable Charlier weights but the polynomials are a nontri- 
vial multivariable extension. An obvious family of polyno- 
mials orthogonal with respect to this weight function are just 
the products of single variable Charlier polynomials; these 
are obtained in the above limit with a different renormaliza- 
tion factor from the biorthogonal Meixner family (3.2). 
They are clearly invariant under the obvious permutation 
symmetries of the summation region and weight function, 
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(3.5) 

r 
The family given in (3.6) however is again not invariant and, 
as discussed several times, applying these permutations gen- 
erates new families satisfying ( 3.6). 

IV. DiSCUSSlON 
We have extended the previously known multivariable 

Hahn4 polynomials to all of the remaining discrete families 
of the Askey tableau. The analogous generalizations of the 
continuous families are discussed in a companion papere5 
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