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TUNING IN TO NOISE
Since its introduction more than ten years ago, stochastic resonance

has become widely recognized as a paradigm for
noise-induced effects in driven nonlinear dynamic systems.

Adi R. Bulsara and Luca Gammaitoni

Why, these balls bound; there's noise in it.
—W. Shakespeare, "All's Well That Ends Well."

Two sweeping generalizations can be made about most
natural systems: They are intrinsically nonlinear and

they operate in noisy environments. Examples abound,
ranging from weather systems to oscillating chemical
reactions to the movements of an eel. The most complex
example is arguably the human central nervous system,
flooded as it is with the "noise" of modern life.

For any such system subjected to a periodic modulat-
ing signal so weak as to be normally undetectable, one of
a class of noise-induced cooperative phenomena can often
be set up, leading to a resonance between the weak
deterministic signal and the stochastic noise. Such a
resonance, in effect, matches characteristic deterministic
and stochastic time scales, making the signal apparent.

One of these cooperative phenomena, stochastic reso-
nance, has been propounded as a possible explanation for
the ice ages and has been demonstrated in a broad variety
of physical systems including lasers, SQUIDS and tunnel
diodes. Young as it is, SR—developed by Roberto Benzi
and his coworkers a mere 15 years ago1—is already
undergoing a renaissance of sorts.

The basic SR mechanism can be intuitively under-
stood by considering a simple system—a bistable dynami-
cal system that can switch between two stable states.
Let's suppose that the dynamics can be characterized by
a potential function (see the box on page 43). The system
can then be visualized as a marble in a two-egg carton.
A gentle rocking of the carton will cause the marble to
roll back and forth within one of the egg wells; only under
a much stronger disturbance will it surmount the wall
and enter the other well. In the absence of any external
forcing, friction will cause the system's output (the mar-
ble's position) to settle near the bottom of a well.

We observe a more complex output when an external
forcing—composed of a deterministic "signal" (here as-
sumed to be time-periodic) and stochastic "noise" (usually
assumed to be Gaussian)—is applied. The external forcing
may be interpreted as a periodic rocking of the potential
(figure 1), while it is simultaneously jiggled randomly by
the noise. If the determinis-

response; that is, some potential barrier crossings will
occur. For moderate noise, the switchings will acquire a
degree of coherence with the underlying signal; the switch-
ing probability is briefly maximized whenever the signal
is at its own maximum.

The barrier-crossing rate thus depends critically on
the noise intensity. If the noise intensity is very low, the
probability of any switching occurring at all is tiny. On
the other hand, intense noise can induce switching even
during an "unfavorable" interval when the signal is close
to its minimum; the signal will be swamped. In between,
one expects to find a range of noise intensities that induce
switching events in near-synchrony with the signal. Intui-
tively, one expects this situation to correspond to some form
of resonant behavior in the dynamics. It does.

SR classically defined
The "cooperation" between the signal and noise introduces
coherence into the system, as shown in figure 2. This
coherence is conveniently quantified by the power spectral
density (PSD), Sia>), of the system response (figure 2a).
For convenience, we assume that the signal has a sinusoi-
dal time dependence A sin &>,/. For a symmetric potential
function, the PSD consists of a Lorentzian-like noise back-
ground on which peaks are superimposed that correspond
to the odd harmonics of the periodic signal. The ampli-
tude, S(co0), of the fundamental rises with increasing noise
strength, reaching a maximum value corresponding to the
maximum cooperation between the signal and noise (fig-
ures 2c and 2d). A similar peak occurs in the output
signal-to-noise ratio (SNR, figure 2b), defined below. Past
this critical noise strength, the switchings gradually lose
coherence with the signal frequency and the dynamics
become noise-dominated.

The earliest definition of SR was the maximum of the
output signal strength, S(ion), as a function of noise (al-
though the higher harmonics in the PSD also demonstrate
the effect). Under near-adiabatic conditions (discussed
below), the critical noise strength corresponds to an ap-
proximate matching of the signal frequency to one-half
the Kramers rate (defined as the characteristic escape rate
from a stable state of the potential, in the absence of the

signal).
tic rocking is too weak to
cause the system to scale the
potential barrier in the ab-
sence of noise we call it "sub-
threshold." The addition of
even small amounts of noise,
however, can give a finite
switching probability to the

ADI BULSARA (bukara@nosc.mil) is a senior scientist at the
Naval Command, Control and Ocean Surveillance Center,
RDT&E Division, in San Diego, California, and a visiting
scholar at the University of Perugia, Italy.
LUCA GAMMAITONI (gammaitoni@perugia.infn.it) is an
assistant professor of physics at the University of Perugia and a
senior researcher on the VIRGO Project, an INFN-CNRS
collaboration.

The signal is still sub-
threshold. The above-de-
scribed maximum in the
noise-induced response means
that the system will show a
tendency to exhibit the peri-
odic effects of the weak sig-
nal, as in figures 2c and 2d.

* 1996 American Institute of Physics. S-0031-9228-9603-030-X MARCH 1996 PHYSICS TODAY 39

Downloaded 01 Jul 2013 to 18.7.29.240. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://www.physicstoday.org/about_us/terms



-1

This phenomenon has attracted considerable interest re-
cently, and it has become common to compute the corre-
sponding behavior in the output SNR, at the fundamental
frequency a>0, as the "fingerprint" of the effect. In practice
the SNR, which should be contrasted with the amplitude
S{ai0) defined above, is usually computed (in decibels) as
SNR = 10 log10(S/B) where S and B represent the values
of the output PSD at the peak and the base of the signal
feature respectively (figure 2a). The output SNR displays
the same qualitative behavior as a function of noise (figure
2b) as the output signal strength S(a>0), but with the
resonance shifted slightly to a different noise value. (In
contrast, for a supra-threshold periodic input signal, the
output SNR decreases monotonically at high noise levels,
closely following the input SNR.)

Although the usual characterization of the resonance
has involved the output SNR versus the noise-strength
profile, one can also, for fixed input noise, realize the

A BISTABLE POTENTIAL FUNCTION (black line) can introduce
the basic features of stochastic resonance. In the absence of
any forcing, the switching process between the two stable
states (minima of the potential at ± c) is noise-driven; the
escape rate across the potential "barrier," Uo, is independent of
time and state, being the same in either direction. With a
finite periodic forcing term added (as in the box on page 43),
the potential tilts periodically between the red and green
configurations. When the periodic force is at its maximum (or
minimum), the difference between the escape rates from the
two states is maximum, as shown by the two unequal red
arrows. FlCURE 1

resonance by changing other appropriate system parame-
ters (notably the height of the potential barrier). This is
important for practical applications, where adding noise
to or reducing noise in the system might not be an option.
SR is quite universal, and can occur in most nonlinear
dynamical systems. Because SR relies on the cooperative
interaction between different inputs, mediated by the
system, it does not occur in linear systems.

Theories underlying the basic SR effect tend to be
perturbative in nature, with Ac/D <K 1. Here, A is the
signal strength, c is the separation of the potential minima
and D measures the intensity of the noise (assumed to be
zero-mean, white Gaussian noise).

The adiabatic theory2 is one of the earliest, and still
the most commonly used, of these theories. It assumes
the signal frequency w0 to be much smaller than the
characteristic rate of equilibration in one of the (stable)
states of the potential. In this theory, one introduces a
Kramers rate (modified to include the effects of the signal)
that explicitly uses the adiabatic and perturbative approxi-
mations, and then solves the rate equations underlying
the dynamics. One can then compute the output PSD
and thence the SNR at the fundamental:

SNR oc ^ exp(-U0/D) (1)

The SNR has a maximum at a critical value of the noise
intensity, 2D = Uo. This result does not describe the SNR

CHARACTERISTICS OF SR, shown
schematically for an overdamped standard
quartic oscillator subject to white
Gaussian noise and a weak periodic signal.
a: Power spectral density, S(eJ), of the
output consists of odd harmonics of the
driving frequency superimposed on a
Lorentzian-like noise. Note the
logarithmic scales, b: Output
signal-to-noise ratio (SNR), in dB, passes
through a global maximum at a critical
value of the noise intensity, as discussed in
the text. Intra-well motion (at very low
noise) has been filtered out. c: The input
periodic signal, d: The maximum
coherence in the two-state output of the
system, corresponding to the peak of the
SNR. FIGURE 2.
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RESIDENCE TIME DENSITY FUNCTION
P(T) consists of peaks located at odd
multiples of one-half the driving period,
70/2, with an exponentially decaying
envelope. Individual peak areas pass
through maxima either as functions of
noise intensity or of frequency (inset).
The critical frequency in each case
corresponds to the synchronization
condition (see equation 2). FIGURE 3.

RESIDENCE TIME T/T,

behavior at very low noise. In that limit, the system is
confined to one well and the motion is approximately
linear; there is a sharp rise of the SNR with noise.

The basic SR effect is not limited to systems in which
bistability occurs between two stable fixed points. Other
forms of bistability (or multistability) abound in nature,
and these systems can also display the same basic noise-
enhanced response.3"5 Some variant of this effect has been
found in underdamped systems, in systems subject to
chaotic rather than noisy backgrounds, in systems subject
to state-dependent noise and in systems operating under
a host of other scenarios.

A rash of SR theories,3"6 in addition to the adiabatic
approach, has erupted in the physics literature. Subject
to their appropriate constraints, they all yield the same
qualitative behavior in the output SNR for subthreshold
signal inputs. Unfortunately, space constraints do not
allow us to mention in detail all of the fine work and
most recent developments in this field. A complete bib-
liography may be found on the World Wide Web at
http://www.pg.infn.it/sr/.

A bonafide resonance
The signal-to-noise ratio behavior discussed above is the
most widely used definition of SR. The "resonance" in the
SNR, however, is not well quantified. The maximum in
the SNR-versus-noise profile is only an approximate match
between the deterministic and stochastic time scales that
underlie the dynamics. Moreover, the SNR does not display
a resonance as a function of the forcing frequency cuQ.

An alternative statistical description of the response
is provided by mapping the continuous stochastic process
into the discrete process corresponding to the sequence of
residence times. A residence time, T, is defined as the
time the system spends in a stable state between consecu-
tive switches. The histogram P(T) (see figure 3) of these
residence times is called a residence times density function
(RTDF) and consists of a sequence of peaks centered at
Tn = (n - V2) To (where To = 2JT/<W0 is the forcing period and
n is a positive integer). These peaks have exponentially
decreasing amplitudes, and are superimposed on an ex-
ponentially decaying background.26 The sequence of
peaks implies a sort of phase locking of the dynamics to

the signal; if an escape does not occur at the first maxi-
mum of the signal cycle, then the next opportunity (with
the greatest probability) to escape occurs one cycle later,
and so on. Although the mere occurrence of these multi-
modal histograms is not a signature of SR, they are a
manifestation of the synchronization between the switch-
ing mechanism (the noise) and the external signal. The
heights PiT,,) of successive peaks are known36 to pass
through maxima as functions of the noise intensity D.
Given that the unperturbed Kramers rate /J.K (introduced
in the preceding section) is a function of noise, the condi-
tion for a resonance in the peak areas, at the critical noise
intensity Dc, can be expressed as a frequency-synchroni-
zation condition:7

= (n - V2) MK (DC) (2)

We now have an alternative definition of SR: namely
the n = 1 case, for which the peak at 7\ = T0/2 achieves
its maximum area (the green insets in figure 4) and
which corresponds to the maximum synchronization
(TQ = 2/Mjj"1). The area under the first peak in the resi-
dence time density function is, in fact, a direct measure
of the probability that the system switchings are driven
by the periodic force. The resonant condition corresponds
to the leading peak being located at Tj = /uK~l, and having
the greatest area or height. Despite the intuitive depiction
in figure 4, no precise connection has yet been demon-
strated between the RTDF and the PSD, except in very
simple systems wherein all correlations between succes-
sive escape events can be neglected. The new formalism,
however, permits us to exactly define SR as a bona fide
resonance that matches the two characteristic time
scales: stochastic (the Kramers rate in the absence of the
signal) and deterministic (the signal frequency). The reso-
nance may be realized by varying either the noise intensity
or the signal frequency,7 as in the inset to figure 3.

Stochastic resonance and neuroscience
An exciting possible role for SR has recently been found
in the neurosciences. Neurons are often subject to both
random and deterministic signals. In a neurophysiological
experiment, the observed response is usually a sequence
of narrow pulses or spikes that correspond to firing events.
It is generally accepted that sensory information is en-
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CONNECTION BETWEEN ORIGINAL and
new formulations of stochastic resonance.
The main figure is similar to figure 2b,
but at the driving frequency <% Each
pair of inserts shows the position
probability density function, P(x), in red
and the residence time density function,
P{T), versus T/To in black. At low noise
(yellow insets) the RTDF has many
peaks, located at T/To = n - V2, indicating
that interwell hopping can occur in any
of several cycles of the signal. At the
maximum of 5(<w0) (green insets), there is
a dominant peak in the RTDF at 7*0/2,
indicating the near-synchrony of
switching events with the signal. This
peak is much higher than at low noise,
and is a true resonance. At high noise
(blue insets), the switchings are
noise-dominated. FIGURE 4

0 10
NOISE INTENSITY D

coded in the interspike intervals, which can contain sig-
nificant random components. The classical SR effect has
been recently observed in some biological experiments
with injected noise.3-8 We must note, however, that neuro-
physiologically relevant signals are often aperiodic; for
these signals, the output SNR can be ill-defined, uninfor-
mative, or irrelevant, and alternative measurements of
the response must be considered.

There has been some recent work in this area.9 Jay
Levin and John Miller have shown the existence of SR
and noise-enhanced signal transduction in a cricket cereal
neuron subject to a nonsinusoidal input signal in a white
Gaussian noise background. The "resonance" in this case
appears in an experimentally measured input-output
trans-information function that has been studied theoreti-
cally by Michael deWeese and William Bialek and by us.
Other measures of the response of nonlinear model neu-
rons to nonsinusoidal inputs have been recently proposed
by Jim Collins, Laszlo Kiss and their coworkers.

In the neurophysiological literature, however, the dis-
tribution P( T) of the interspike time intervals Ty is ubiq-
uitous. The inverse of the mean value <T> of such a
histogram leads directly to a mean firing rate that is often
used to characterize neurons in noisy environments.
These observations led Andre Longtin and his coworkers10

to advance a bistable dynamical single-neuron model, with
a potential as in the box on page 43 for the Hopfield
neuron. This model provides a simple explanation of the
residence-time histograms obtained experimentally11 in
sensory neurons subjected to time-periodic signals in
Gaussian noise backgrounds. The dynamical variable in
this model is the neuronal cell membrane voltage, and
firing corresponds to crossing the potential barrier, which
plays the role of a firing threshold. The model elucidated
the sequence of "reset" intervals between firings, in addi-
tion to explaining many of the experimentally observed
properties of the RTDF and the mean firing rate. Further,
the model could fit the experimental data by changing
any of the stimulus, the noise intensity or the potential
barrier height (in this case, the firing threshold). How-
ever, the model provides only a coarse-grained picture of
neural dynamics in the presence of noise. Real neurons,
when bistable, are more likely to follow excitable dynam-
ics—described by a bifurcation between a fixed point and
limit cycle—in which SR was first quantified by Longtin.4

In the simplest cases, neural firing may be modeled
by "integrate—fire dynamics." The firing threshold is mod-
eled as a fixed barrier that is approached by a random
walk under a stimulus that can have both random and
deterministic components. When the threshold is reached,
a delta spike is emitted (corresponding to a firing event)
and the state point (the cell membrane voltage) is reset
to its initial value. With subthreshold time-periodic sig-
nals in white Gaussian noise backgrounds, one can obtain
a slightly modified synchronization signature of stochastic
resonance as well as a resonance in the mean (noise-depend-
ent) firing rate as a function of the stimulus frequency.

There are some important caveats. There is no known
mechanism for dynamically changing the noise in real
neurons. However, there have been experiments in which
the neuronal response has been optimized by changing
such factors as ambient temperature or neurotransmitter
concentrations, but neither of these changes has been
precisely connected to a variable noise strength. Hence,
although background randomness seems to play a signifi-
cant role in the dynamics of certain neurons in the central
nervous system, the SR effect has not yet been shown to
be fundamental in the processing of information. Never-
theless, in response to deterministic signals embedded in
external Gaussian noise, all the neural models listed in
this section display a version of SR. It must be remem-
bered, though, that the experimentally obtained RTDFs11

cannot exist without noise. Clearly, therefore, neurosci-
ence is an area in which theoretical predictions, based on
accepted neurophysiological models, can be used to guide
future experiments.

Stochastic resonance in extended systems
Extended systems are currently in vogue. They are com-
posed of coupled nonlinear-dynamic elements subjected to
the usual weak periodic signals in a noisy background.
This line of research has potential applications in signal
processing, the physics of coupled nonlinear devices and
neurophysiology in which one might describe the dynamics
of populations of neurons. Although mean-field treat-
ments of coupled many-body dynamical systems abound
in the physics literature, the first studies of SR-like
behavior in such systems were carried out in 1985 by
Roberto Benzi and coworkers on a stochastically perturbed
system of Ginzburg-Landau equations. In 1992, studies
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Nonlinear Dynamic Systems
he simplest version of a one-dimensional nonlinear dynamic system that
exhibits stochastic resonance is an overdamped system of the form

dx SU
— = - — + F(t) + Asin co0t
at Ox

with the restoring force expressed as the gradient of some bistable or multistable
potential function U(x). In addition to the time-periodic signals sinaj^t, we assume
the presence of noise F(t), which is generally Gaussian and exponentially correlated.
In this article, however, we take F(t) to be zero-mean white noise: ^F(t)y => 0 and
<^F(t)F(t')y = 2D 8(t-1'). The signal amplitude A is assumed to be subthreshold
throughout, so that deterministic switching between the two or more stable states
of the potential does not occur.

The state point x(t) denotes, in the most commonly considered case, the
displacement of a particle in a "standard quartic" potential (see figure 1),

U(x) = -ax2

with stable fixed points (extrema) at x = ±4a/2/3, an unstable fixed point at x = 0,
and a potential barrier height Uo = a1 A/8. This system remains dynamically stable
for p > 0, and becomes monostable (although not parabolic) for a < 0.

Another example of a nonlinear dynamic system is the analog Hopfield neuron,

= ax2-/8\ncoshx

in which the state point x(t) might denote a cell membrane voltage. Still another
is the rf SQUID loop,

in which x(t) denotes the magnetic flux in the loop. For these last two cases, a
and /? are positive (which also guarantees dynamic stability) and for 0 = 0 the
potential is parabolic (like a harmonic oscillator), becoming bistable (or multistable,
for the SQUID) when {3 exceeds a critical value. When models such as these are
used to characterize real sytems, a and /3 are usually given in terms of system
parameters, so that they can be altered or "tuned" in experiments or simulations.

by Peter Jung and his coworkers focused on a system of
linearly coupled bistable elements described by a nonlinear
master equation, in the mean-field limit.

Last year, John Lindner and his coworkers12 studied
the behavior of a bistable Duffing chain, with linear
nearest-neighbor coupling, subjected to white noise Ffit)
that is independent from site to site but with the identical
subthreshold periodic signal at every site. The ith element
obeys the dynamics

-—• = ax, - fix,3 + s(xM - 2x, + x,^) + A sin ojQt + F,(t) (3)
at

The SNE response of a single element can be en-
hanced by coupling it into the chain; this is now known
as array-enhanced stochastic resonance. Further, the out-
put SNR can be maximized by treating either the noise
or the coupling as design parameters. The optimal noise
variance scales as the number of elements in the array,
N, and the optimal coupling strength scales as AT2. These
scaling relations have been recently derived rigorously by
Fabio Marchesoni and us. The global maximum in the
output SNR across the array corresponds to a noise-in-
duced spatiotemporal synchronization of the array to the
external signal frequency, with the location on the noise
axis and magnitude of the SNR maximum depending
critically on system parameters such as the coupling.

This behavior is seen in the cover picture of this issue.
Each panel of the mosaic represents the time evolution
(vertical axis) of a two-state (red or blue) array of 513
elements (horizontal axis). The optimally tuned system
is second from the top and third from the left, and shows
a well-defined band structure. In this configuration, the

entire array behaves like a solid rod,
switching between red and blue
states every T0/2 seconds. Further,
in this best of all possible states, the
output SNR of any element in the
array is at its maximum; with care-
fully selected system parameters,
this output SNR can exceed that of
an isolated element. An optimal cou-
pling strength (column in the mosaic)
can be found for any given noise level
if the noise is not too low. Con-
versely, for a given coupling, some
noise level can be found that best
"tunes" the system. The upper left
panel is entirely dominated by noise.
(For the example on the cover, the
array's elements are linearly cou-
pled, subjected to the same time-pe-
riodic signal and to white Gaussian
noise that is independent, or uncor-
related, from site to site. The ith
element obeys equation 3.)

This tunability exists in a smor-
gasbord of nonlinear dynamic sys-
tems. Another example, recently

studied by Mario Inchiosa and us,12 is an array of globally
coupled neuronlike bistable elements with coupling that
is nonlinear and nonidentical but with noise that is iden-
tical at every site. In this case the SNR enhancement
depends critically on the magnitudes and signs of the
coupling coefficients. One can also define an input SNR
for this array. For Gaussian input noise, the output SNR
of a single element or an array is always bounded above
by the input SNR. In an enticing conspiracy, however,
nonlinear coupling can completely remove oscillator non-
linearities, allowing two coupled nonlinear elements to
perform like a linear system. Hence the benefits of SR
for signal processing applications are likely to be most
pronounced when the elements are intrinsically nonlinear.

Spatiotemporal patterns have been observed in neuro-
physiological experiments, and synchrony of the type de-
scribed above may be a feature of epileptic seizures.
Accordingly, simple models such as those discussed here,
although lacking neurophysiological rigor, may provide an
important starting point for understanding very complex
phenomena in the central nervous system.

The models can also be used to describe some features
of phenomena as diverse as coupled oscillations in chemical
reactions, nonlinear transmission lines and the locomotive
function of the tail of the lamprey eel. Some of the groups
studying noise-induced cooperative behavior in many-body
systems include Jung and Gottfried Mayer-Kress (University
of Illinois), Collins and coworkers (Boston University), Alex-
ander Neiman (Saratov State University, Russia) and Lutz
Schimansky-Geier (Humboldt University, Berlin), but this
still remains a largely unexplored area.
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SR IN SIMPLE THRESHOLD SYSTEMS,
such as analog-to-digital converters, loses
its peculiar resonant character and can
be interpreted as a noise-induced
threshold-crossing mechanism known to
electronic engineers as dithering, a: The
periodic signal is below threshold
(dashed lines), and its quantization
would result in a constant output (red
line) with a clear loss of signal detail, b:
The addition of noise dither of the
appropriate intensity enables the signal
to cross the thresholds in rough
coincidence with its maximum
amplitude, c: The quantized output
then reproduces more closely the
characteristics of the analog input signal.
d: For an ^-threshold system in the
presence of a uniformly distributed
noise dither, the power spectral density
amplitude at the signal frequency, S(a/0),
displays multiple peaks as a function of
the noise intensity D. See reference 13
for further details. FIGURE 5

Putting noise to work
There is optimism that new algorithms and devices, based
on SR, may be realized in the near future. Here are a
few possibilities.

Signal analysis. The signal-processing capabilities
of an algorithm based on SR have recently received at-
tention due to the counterintuitive notion discussed above:
For subthreshold input signals, increasing the input noise
can increase the output SNR. At least three issues are
being looked at: detection, estimation and processing. For
signal analysis, the best measure of performance consists
of the so-called receiver operating characteristics, which
are analogous to SNRs but are curves of detection prob-
ability. For a large class of nonlinear transducers, the
detection probability passes through a maximum at the
same value of input SNR that maximizes the output SNR;
once again, this is stochastic resonance standing up to be
noticed. These nonlinear systems, however, do not out-
perform the optimal linear systems when detecting peri-
odic signals in white Gaussian noise backgrounds, al-
though careful arraying (see preceding section) can
improve their performance. The SR effect and its poten-
tial for signal processing have not yet been explored for
more complicated (such as non-Gaussian and nonstation-
ary) noise backgrounds that are often encountered in
real-world signal-processing applications.

When signal detection in noisy environments is car-
ried out under SR conditions, the interchangeable roles
between the noise and the detector threshold can be
exploited. Although adding more noise to an already noisy
system is not a procedure to be trifled with, the fact that
SR can be obtained by adjusting other control parameters
is useful. For example, the signal might be made more
detectable by lowering the detector threshold, if possible.

Electronic devices and dithering. Electronic de-
vices have been used in SR studies for many years, and
most of them have been intrinsically bistable analog de-
vices. Recent theoretical studies by Jung, Zoltan Gingl

and their coworkers have focused on a class of discrete
bistable (threshold) systems, whose behavior can be re-
produced by hybrid devices. One of the simplest of these
devices (see figure 5) is the 1-bit analog-digital converter.
The performance of an ADC can be improved by the
well-known dithering effect: A carefully controlled amount
of noise (dither) added to the analog signal before it enters
the ADC will greatly reduce (on average) the quantization
error introduced during the ADC operation. The benefits
of this technique depend on the statistics of the dither (a
uniformly distributed noise outperforms Gaussian dither)
and on its intensity. The quantization procedure can thus
be improved by tuning the noise intensity to an optimal
value, in much the same way as in the SR phenomenon.
For such systems, SR loses its peculiar resonant nature
and becomes synonymous with dithering.13 The output
signal enhancement can thus be obtained for nonperiodic
signals as well.

The generalized multibit ADC acts as a multithresh-
old system in the presence of noise and periodic inputs.
Here the SR phenomenon displays some peculiarities that
are not observed in simple bistable systems. For instance,
there is a clear dependence on the noise statistics: While
Gaussian noise produces a single-peak output-versus-noise
curve, uniformly distributed noise produces a multipeaked
characteristic curve (figure 5). As in the single-threshold
case, the SR in multithreshold systems can be described
without reference to any frequency matching condition, as
a special case of the dithering effect.13

Optical and magnetic devices.14 One of the first
experimental realizations of stochastic resonance was car-
ried out by Bruce McNamara and his coworkers in a
bistable ring laser; the hopping dynamics between the
clockwise and counterclockwise propagating modes were
modulated by the injection of an external noisy periodic
signal. More recent experimental demonstrations include
the distributed feedback laser (John Ianelli and his co-
workers), the optical bistability (Mark Dykman and his
colleagues) and the unidirectional photorefractive ring
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resonator (Bradley Jost and Bahaa Saleh).
Magnetic systems have also proved to be fertile

ground for SR-based devices. These include electron
paramagnetic resonance systems (Gammaitoni and col-
leagues) and SR-based superconducting quantum interfer-
ence devices (Andrew Hibbs, Richard Rouse and their
coworkers). In particular, recent work has investigated
how SR might be utilized in a novel way to permit more
robust operation of SQUIDS in a noisy environment. Such
devices, which may ultimately be incorporated into simple
arrays of the type discussed in the preceding section, are
expected to find utility in applications centered on the
detection and quantification of extremely weak magnetic
signatures. Such applications include biomagnetic and
geomagnetic imaging, noninvasive testing, fundamental
physics experiments and even mine detection for the
military.

There may well be a new generation of nonlinear
devices and applications on the horizon, in which back-
ground fluctuations need not be minimized, but rather
can be used in a constructive way as an aid to performance.

Most of the research on stochastic resonance in the US is supported
by the physics division of the Office of Naval Research. We have
benefited from constructive criticism by Fabio Marchesoni and
Mario Inchiosa.
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