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A simplified version of the Li, Nunes and VanderHiRhys. Rev. B47, 10891(1993] and Daw

[Phys. Rev. B47, 10895(1993] density matrix minimization is introduced that requires four fewer
matrix multiplies per minimization step relative to previous formulations. The simplified method
also exhibits superior convergence properties, such that the bulk of the work may be shifted to the
quadratically convergent McWeeny purification, which brings the density matrix to idempotency.
Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and
Tuma [SIAM J. Sci. Comp.17, 1135(1996)] is introduced to linear scaling electronic structure
theory, and found to be essential in transformations between orthogonal and nonorthogonal
representations. These methods have been developed with an atom-blocked sparse matrix algebra
that achieves sustained megafloating point operations per second rates as high as 50% of theoretical,
and implemented in th&ondoScFsuite of linear scaling SCF programs. For the first time, linear
scaling Hartree—Fock theory is demonstrated with three-dimensional systems, including water
clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with
minimization in an orthonormal representation. An early onset of linear scaling is found for both
minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are
achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with
system size is investigated for various levels of approximation.1999 American Institute of
Physics[S0021-960809)30702-9

I. INTRODUCTION manifests itself in exponential decay of the density
matrix:38 -4
Computation of the Fock matrix has historically been the
limiting step in quantum chemical applications of the  ,(r y/)~exp — /Egadf—f'|), (1)

Hartree—FockHF) and Kohn—ShantKS) theories to large

. . . 2
systems. This is due to the expensiéN,,) COst of tWo-  \yhereE, ) is the HOMO-LUMO gap, which is the differ-
electron integral computation and manipulatiémthe direct  ence between eigenvalues of the highest occupied molecular
method> whereNy,sis the number of basis functions and is grhjtal and the lowest unoccupied molecular orbital. If a ba-

proportional to system size. Recently, methods with a coms;s of |ocal functions is used in calculation of the density

putational complexity ofO(Ny,9 have been introduced for matrix.

computing the Fock matri%;® allowing access to systems

large enough that th(@(Nﬁag eigensolution of the self-

consistent fieldSCP equations is presently the bottleneckin ~ p(r,r')=2>, Piji(r)¢;(r), 2

the large scale application of HF and KS theories. !
The computationally demanding aspects of quantum . . _

chemical SCF theory are now identical to those encountereﬁ"en.It fC.)HOWS that t_he dlscrete representatiinas similar

in condensed matter formulations of the local density ap—ocﬂ!f(?t'on pé%pertles]. Thr'f' h?s beenff.o.bselrwled for both

proximation (LDA) and tight binding theories, for which a HF and K mode's. Thus, for a sufficiently large Sys-

tem only O(N,,9 matrix elements are expected to remain

variety of linear scaling algorithms exist. These include den—numericall sianificant. and sparse matrix methods mav be
sity matrix minimization(DMM),*’~24 orbital minimization Yy sl9 ’ P y

(OM) 229 and the Fermi operator expansi¢ROB) 20— used to obtain the SCF in linear scaling CPU time.

. . The DMM, OM, and FOE methods employ a single vari-
See Refs. 36-38 for excellent reviews and comparisons Oz;ble, such as a localization radius or a matrix element thresh-

thes_(rehmethodsk,] ads WEIL.aS almore corr;pletfe b_lbllolgrgphy. old, which defines an approximate sparse matrix algebra, and
ese mgt 0ds achieve finear scaling for insu ating SYSyhich allows deviation from the exact result to be controlled

tems and finite temperature metals by exploiting the shorfygiematically. However, the extension of these methods to
range nature of quantum interactions, the locality of whlch.[he quantum chemical domain has faced a number of chal-

lenges related to the use of large nonorthogonal basis sets, an
dElectronic mail: MChalla@T12.LANL.Gov exacting demand for error control, and the sl@pproxi-
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mately exponential but slomdecay in off-diagonal elements cfc=1. (5
of P with increasing system siZé&:**which can be severe in

the case of three dimensions. The minimization ofE with respect taC, and with the

Clearly, the off-diagonal behavior 6t depends on the constraint of orthogonality, leads to Roothaan’s form of the

; 54

physical system, the model chemistry, and the basis set. F&CF equatior’s

example, minimal basis set calculations may lead to large F[P" 1]C"=C"¢, (6)
HOMO-LUMO gaps. Likewise, HF theory tends to overes-
timate the HOMO-LUMO gap while LDA tends to underes-
timate it. One approach to limiting the bandwidth s to
construct basis sets with only local suppBrt? Another ap-
proach is the use of orthogonal bases such as waf&léts

468 X . reach convergence.
or gridg®~*8which tend to yield very sparse matrices. A less . . . .

. . In the preceding matrix equations, an orthogonal basis
exotic approach, pursued here, is to use standard quantum . . .

. . . o . has been tacitly assumed. In practice however, matrix ele-
chemical basis sets together with efficient numerical algo- : . X
. ; . ents are evaluated in the nonorthogonal basis of atomic
rithms to access system sizes that yield a sparse represen?g\-. . . o
tion orbitals(AOs). Introducing the metric or overlap matrix with

To this end, a simplified version of the Li, Nunes, elements
Vanderbilt” and Daw® (LNVD) density matrix minimiza- Sap="(da,dp) 7

tion (SDMM) is introduced that requires four fewer matrlx. between AO basis functions, and ¢, , the Roothaan equa-

%ions may be posed as the generalized eigenvalue préblem
minimization, and which permits the time dominant work to y bep g 9 P

be carried out with the quadratically convergent McWeeny  FalCao= SCyet, (8)
purification?® The simplified density matrix minimization is where subscript ao implies a nonorthogonal representation.
implemented in both an orthogonal and nonorthogonal rep-

resentation using an atom-blocked sparse matrix algebra that

exploits both data locality and available sparsity. Thep. Orthogonal and nonorthogonal bases

AINV *°*Imethod for computation of the incomplete inverse _ _ _

Cholesky factor is introduced to electronic structure theory It iS well known that the generalized eigenproblem, Eq.
as an efficient and accurate method for enabling the congry8)» €an be transformed to the standard eigenproblem, Eq.

ence transformation to and from an orthogonal representa®): USiNg & congruence transformation involving factoriza-

tion, and for applying the inverse overlap matrix in nonor-tion of the metric(overlap matrix>®°" A key matrix in this
thogonal methods. transformation i&Z, the inverse factor, which relates nonor-

The paper is organized as follows. In Sec. II, the Con_thogonal (AO) and orthogonal representations of the Fock

ventional and LNVD approach to solving the SCF equationgnatr'x

is reviewed. In Sec. lll, details of the LNVD method are F:ZFaOZT 9
presented, and a diagonal guess is shown to greatly simpli
gradient and line searches. In Sec. IV, the sparse ato
blocked matrix algebra is introduced, and details of its P,=ZTPZ. (10
implementation in thevondoScFsuite of linear scaling SCF
programs? are given. Then in Sec. V, timings and errors are
presented and discussed for water clusters and estane poly- Z'SZ=1, 11

mers. Finally, conclusions are drawn in Sec. VI. which is satisfied bZ =S 22 or Z=L "1, whereL is the

Cholesky factor for whichS=LL . The choicez=S"*/
Il. OVERVIEW corresponds to Lwdin’s symmetric orthogonalizatioi;>
which is commonly used in modern quantum chemistry. The
A. SCF theory choicez=L "1 is widely used in solution of the generalized
In SCF theory, the density matriR defines the entire eigenprobleni®*’and has recently been introduced to linear
physical system® In particular, the electronic enertfyis scaling SCF theory by Millam and ScusefMS).??
Symmetric orthogonalization requires an eigensolve,
Ea=Tr{(h+F[P)P}, @ which is O(N%). As Sisoussed by ME the incor%plete
whereF is the Fock matrix, which depends éhin a com-  Cholesky factorization is potentialp(N) when sparse ma-
plicated way, andh is the core Hamiltonian, which does not trix methods are employed in conjunction with an elimina-
depend orP. For mathematical convenience, the closed sheltion tree. In the MS approach, the approximate inverse factor
density matrix may be factored in terms of the occupied mo<Z is obtained through an incomplete linear solve. This tends
lecular orbital coefficient€,. as to be inaccurate unless tight thresholds are employed, in
p—2cC. cf @) Whi(;h case the solve may bgcome expensive. Morepver, in-
oce=oce: verting the Cholesky factor introduces two levels of incom-
The molecular orbital matri, including both occupied and pletenesgone in the factorization and one in the inversion
virtual orbitals, is orthogonal; which may introduce errors that are difficult to control.

which is an eigenproblem with(N2,) computational com-
plexity. Iteration of Eq.(6) leads to the minimum energy
solution at self-consistency, whe?l'=P"" . For well be-
haved problems, typicallp~10 SCF cycles are required to

ind the density matrix

The inverse factor has the property
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A more elegant approach, pursued here, is to solve fotion, normalization is imposed through a Lagrange multiplier
Z=L""1 directly using the AINV algorithm®®* AINV is  u, yielding the LNVD objective
state of the art in the theory and application of inverse pre-
conditioners, and may be used to obtain the inverse faztors Q=Tr{(3PP—2PPP)F} + 1t(Ng— TrP). (18)
to within arbitrary accuracy. The matriX is obtained byS
orthogonalization of the standard basis vector, where sparsityl. DENSITY MATRIX MINIMIZATION
is preserved with the use of a drop tolerafte: We have
recently implemented a block version of Al¥and found In the LNVD method, a density matrix minimization is
it to be very fast under the demands of high accuracy. carried out after forming each new Fock matrix. To achieve
When working in a nonorthogonal representation, thean O(N) complexity, it is necessary to employ an approxi-
inverse overlap matri§ ! enters the OM>?DMM,%* and ~ Mate sparse matrix algebra and to forego methods that re-
FOE* formulations of SCF theory. Whil& ! is typically quire storing a Hessian. One possibility is steepest descent
dense, its Cholesky factoBsmay be quite sparse, depending (SD) in which the gradient,
on the ordering 06.°2%3Thus, if the produc8™ !X is sparse,

it is possible to efficiently apply the inverse as Gj=- VPjQ (19
Z(Z™X)=S"1X, (12)  is simply followed. A better alternative is the nonlinear con-
_ ) ) - jugate gradien{NLCG) method, which employs properties
without ever referencing a potentially derSe". of the Hessian implicitly through a sequencefebrthogonal

search direction$i;.”*~"°In the nonlinear conjugate gradi-
ent method, if an exact line search is performed, that is if a
C. The LNVD objective steplength\; is chosen such that the updated density matrix

Beginning with the seminal work of wadin®® and Pi+1=P;+\H,; (20)
McWeeny? it has long been recognized that eigensolution o o o
of the SCF equations can be avoided by the direct minimi€xactly minimizes the objective, then each gradient in the

zation of E, subject to the constraint of normalization sequence will be orthogonal to the othéts;
Ne=Tr{P}, (13 (Gk,Gj)=0 (k#]). (21)
and idempotency, If conjugacy is preserved, the nonlinear conjugate gradient

method is in general much more efficient than the steepest

P=PP. (14) descent. In practice, incomplete matrix algebra, deviation
This latter condition is equivalent to requiring orthogonality from quadratic behavior, and inexact line searches can spoil
of Coe. this property,°~"" leading to an algorithm that may be less

Variation of the electronic energy leads to the stationaryefficient than the steepest descent. Note that modifying the
conditiorf®-64 gradient or objective during optimization, through a purifica-

tion step or extrapolation, will tend to destroy conjugacy.

6Ee=2 THFoP}=0, (15 A. Gradient and line search

allowing E, to be replaced with the equivalent objective Using the trace algebf&.the gradient of is

£=Tr{PF} (16 VQ=3(PF+FP)—2(PPF+PFP+FPP)—pul, (22

in which F no longer depends oR.

A number of workers have formulated different versions
of density matrix minimizatiofi>~"*but these were not com-
p(_atltlve wnh eigensolution due to_ the expense ass_omated w=Tr{3(PF+FP) — 2(PPF+ PFP+ FPP)}/Npss (23
with enforcing Eq.(14), and the high efficiency of direct

eigensolver$? A breakthrough came with the density matrix which renders the gradient traceless at each St&bWith
minimization of Li, Nunes, and Vanderbift and Daw® each step an analytic line search is carried out as in Refs. 20
(LNVD), which imposes the constraint on idempotency im-and 23 by solving

plicitly through substitution of the McWeeny purificatién,

where it has been assumed thatloes not depend dA. The
Lagrange multiplierw is chosen as

dQ[P+\H]

= 2:
0 b+2c\ +3dA2=0 (24)

P=3PP-2PPP, (17)

into Eq. (16). The purification transform brings an approxi- L
mately idempotent matrix closer to idempotency, a procesgOr the root that minimizes), where

that is quadratically convergent upon iteratfSrwith this b=Tr{HVQ} (25)
substitution, Eq(14) is imposed approximately during opti-
mization, and may be used after convergence to restore ¢=Tr{3HHF — 2(HHPF + HPHF + PHHF)} (26)

idempotency to within the accuracy allowed by the underly-
ing matrix algebra. In the LNVD density matrix minimiza- d= -2 T{HHHF}. (27
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B. A simplifying guess two ways to perform the density matrix minimization in a
nonorthogonal basis: One way is to simply follow the gradi-

At the start of each minimization, it is necessary to N
y gnt of the nonorthogonal objectitfe?:?2

choose a guess density matrix. A natural choice is the densi
matrix from the previous SCF cycle. However, this guess (), =Tr{(3P,SPs— 2PaSPacSPao) Fagd — uNg. (33

leads to very slow convergence, typically requiring on the ) )
order of 50—100 nonlinear conjugate gradient cycles. Another approach is to follow the gradient of the orthogonal

One method to accelerate convergence is to preconditiofPlective, Eq(lﬁ?), but in a nonorthogonal basis as suggested
with a diagonal HessiaH,”>7® which has been used by PY Whiteetal,
Millam and Scusgrié‘?’ Another approach employed by (VQ).=S 2[VO]S 12 (34)
Millam and Scuseria is to use direct inversion in the iterative o )
subspacé¢DIIS)® to minimize the commutat({n:‘,P}”] be- This latter approach is independent of basis set transforma-
tween nonlinear conjugate gradient cyciB4IS-CG), where ~ tions, and may have improved convergence properties over
superscripts have been used to emphasize the SCF iteratidh® former approach. One disadvantage is that the inverse
andj is the CG cycle. Note thdtF',P'] will be zero only overlap matrixS™! must be applied at every iteration, and it

whenP =pi+1. is no longer possible to use the nonlinear conjugate gradient
An alternative guess for the start of a density matrixWithout a back transformation, as the gradient corresponds to
minimization is the orthogonal objective, Eq18), rather than the nonor-
thogonal one, Eq(33). On the other handr,, tends to be
Py= Ne'jl (29) much sparser thaR, and it may be that working in the AO
Npag results in faster gradient evaluations and line minimizations.

which preserves symmetry of the converged result, namely Starting with the guess,

= - Nei |
[PaF] [H!F] 01 (29) Pao,0= (N_ejs 1 (35)
throughouta nonlinear conjugate gradient or steepest descent ba

sequence. it is possible to achieve simplification and improved conver-
Starting with Eq.(28) it is found that after some charac- gence properties in the AO basis that are equivalent to those
teristic number of conjugate gradient cyclégg~3, purifi- of the orthogonal simplified density matrix minimization de-
cation will establish the exact answer, even though the graveloped in Sec. IlIB. With this guess, E(4) reduces to
dient may still be large. If too few steps are taken, P
purification will lead to the loss of electrons. A, in- (VE)ao=6S (1= SPag) FadPag— ! ] (36)
creases, fewer purification steNg,, are needed to obtain the with
correct result. In every case, it is found possible to cast the
dominant portion of )t/he work into theppurification step, p=Tr{(1 = SPagFadPagt/ Nbas. (37)
which is quadratically convergent. Rather than compute and manipul&e', it is much more
In addition to enhanced convergence properties(E8).  efficient to apply the AINV factors as in E¢L2). As before,
leads to a significant reduction in complexity of the gradientan analytic line search is carried out. However, this time the

evaluation and the line search. In particular, E@2) and  nonorthogonal objective is used, yielding the coefficients
(23) reduce to

b=6 Tr{(I = PaS)HF 4}, (38)
VQ=6(1-P)PF—ul (30
and c=3 Tr{(I —2P,,S)HSHF .}, (39
w=6Tr{(1—P)PF}/Np,s, (31) d=—2 Tr{HSHSHF,}. (40)
while Eq. (26) simplifies to V. IMPLEMENTATION
c=3Tr{(I-2P)HHF}. (32

The orthogonal and nonorthogonal simplified density
Inspection of Eq(30) shows that during minimizatio®®  matrix minimization have been implemented in the

will start with the sparsity pattern of, and will broaden Mondoscr? suite of programs for linear scaling SCF theory,

with additional iterations. In practice, this results in initial with details as follows.

cycles that are quite-fast.

Note that preconditioning will destroy the commutation
property; that is, if preconditioning is used then E¢B0), A library of routines for carrying out variable block size,
(31), and(32) will become invalid. sparse matrix algebra have been developed and employed in
the implementation oftondoSCE These routines exploit both
existing sparsity and data locality. Related methods have
been shown to yield significant speedups for matrix-vector
multiplies8~8 Note that in Ref. 82, Goedecket al. em-

Just as with eigensolution, it is possible to cast theploy an atom-blocked algebra for matrix-vector multiplies in
LNVD method in a nonorthogonal basis. There are at leasthe context of the tight binding FOE method.

A. Atom-blocked sparse matrix algebra

C. Nonorthogonal density matrix minimization
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1. Matrix multiplies | 5C\|le<MultNeglect (44)

In the sparse atom-blocked matrix multiply, the matricesyay pe rigorously bounded while avoiding all contractions
are stored in a modified compressed sparse (G8R A,;B,« for which
format®4~8 in which all pointers index blocks rather than
individual matrix elements. An additional pointer is required 1By <MuItNegIect
to address the start of each block since the blocks are not " “KIF~ M|A;l
grouped by dimensiolgl]. A modified version of GUSIaVsON's oo \1 is the number of blocks in the contraction, and
sparse matrix multipf/ is employed, with DGEMM-like MultNealect i . !

) . . i hreshold. in th f ONX, re-
routines to carry out the block—block multiplies. DGEMM is ultNeglect is a threshold. Just as in the case of ONX, re

2 i . - peatedly executing a conditional like E@5) in an inner-
a Iev_el thre_e BLAé routln_e for performing dogble_premsmn most loop can create a significant overhead. This is avoided
matrix multiplies. In the limit that the block size is reduced

: . in SPAMM by sorting each row in decreasing order on the
to 1x1, an algorithm equivalent to the standdrparse basis of|-||z, and using a binary search to find the limit
matrix multiply is obtained.

(=<M) of the innermost loop.
4. Trace

Small matrix elements are dropped after each matrix op- ¢ TA sutt;stant]:al sgvmgsﬂ:ntiy be ?Ch'fﬁved |ndttr;]e Z%(ecutloln
eration such as multiplication or addition. Blocks are® r{-} by performing bo € contraction and the diagona

dropped when they meet the criterion accumulation at the same time as

(45)

2. Truncation

|Cikllr<TrixtNeglect, (41 Tr{AB}=% AyByi, (46)
where TrixtNeglect is a drop tolerance aRddemarks the
Frobenius norr#f rather than first forming the produgB.

ICikllr=VTr{C/«Cix}- (42 5 AINV

This approach should be compared with truncation of indi- ~MondosCFemploys a blocked version of AINV, which is

vidual element&® and separation-based truncatid??  described in detail elsewhef?e.

With truncation at the level of elements, a change of basis

may lead to very different behavior of errors. This is becaus®: SCF

the average magnitude of the matrix elements must decreade /nitial guess

with increasing basis set si2 Truncation at the level of For a minimal basis such as STO-3G, a sparse linear

atoms is expected to yield errors that are more transferablgcaling guess is built from the superposition of spherically

as the amount of charge in a block should be less sensitive taveraged atomic density matrices in an orthogdédiaigonal

a change of basis. representation. The AINV facta is then used to transform
In separation-based truncation, elements of a matrixo an AO representatiot!.For more complicated basis sets, a

product are computed only if the corresponding basis funcpartially converged density matrix from a minimal basis set

tion separation is less than a cut-off radRs. This has the calculation is used to construct a mixed basis Fock maftrix.

advantage that the structure of all matrices is knawriori.  These guesses are linear scaling.

On the other hand, this approach requires a careful system,

basis set, and model chemistry dependent parametrizatiod: Eigensolver

Also, when examining the fall off of density matrix elements ~ The Roothaan equations, E(f), are solved with the

with basis function separatidfi,it is seen that many small LAPACK divide and conquer eigensolver DSYEVDas

elements correspond to small separations. This suggests thahplemented in the SGI scientific library SCSL. This a com-

for a given level of error, truncation schemes based on magpetitive algorithm that has been highly optimized for the SGI

nitude may yield sparser matrices. platform.

3. SPAMM 3. Fock builds

A method related to thresholding schemes used in the The multipole accelerated symmetrized orddr ex-
orderN exchange method OND* has been extended to ma- change algorithmi(MASONX)™® is used to compute the ex-
trix multiplication, and may be well suited for matrices with change matrix, and the quantum chemical tree code
elements that decay away from the diagonal. In this spars(RCTO™ is used to compute the Coulomb matrix. Tight
approximate matrix multipl(SPAMM), small matrix ele- integral  (TwoENeglect10™®) ~ and distribution
ments are treated in a more approximate manner than are theiStNeglect=10" *) thresholds are used throughout.
large ones. For the matrix multipi@=AB, each blockC,«

is formed as the sum over blocks 4. DIIS

A sparse implementation of DIIS for extrapolation of the

M
Fock matrix* is used in all calculations. In this implementa-
C'K_le AiaBak- (“43) tion, the error vector

The error €30~ FadPao>— SPadFao (47)



J. Chem. Phys., Vol. 110, No. 5, 1 February 1999 Matt Challacombe 2337

FIG. 1. Configuration of the clusters
with 200, 250, 300 and 350 water mol-
ecules.

600 Atoms 750 Atoms 900 Atoms 1050 Atoms

is transformed into an orthonormal basis with the transfor-6. Overview of the orthogonal method

i
mation After each Fock build, DIIS extrapolation of the Fock

e=Z"e,Z. (48)  matrix is used, and the extrapolated Fock matrix is trans-

The use of sparse matrix algebra will eventually cause th&Prmed to an orthogonal basis. A diagonal guess is used to
DIIS method to stagnate. Tightening up the matrix thresholdStart; andNcy nonlinear conjugate gradient steps are taken
with SCF convergence leads to premature stagnation that KSiN9 the simplified gradient an_d line minimization particular
incommensurate with the thresholds. One solution is to simt© the SDMM. Then, the resulting density matrix is brought
ply restart the DIIS after each decrement of a threshold, anfP idempotency through purification. The degree of idempo-
this should lead to significantly reduced average CPU timeENCy achieved depends on the matrix thresholds TrixNeglect
per SCF cycle. For clarity and simplicity, this approach hasand MultNeglect. Stagnat_lon manifests itself in an inability
not been followed here; rather, constant thresholds are usd@ further reduce the maximum block of the difference den-

throughout. sity Pypu— Plpurﬂ, and is said to occur afteM,, iterations.
Thus,Np,is a function ofN., and the matrix thresholds. The
5. Nonlinear conjugate gradient resulting density matrix is then transformed back to a nonor-

thogonal atomic orbital representation and used to construct
a new Fock matrix. Stagnation of the DIIS procedure also
ccurs with more approximate matrix thresholds, and the
CF procedure is halted after the DIIS error fails to improve.

The Polak—Ribiee version of the nonlinear conjugate
gradient? has been implemented for the orthogonal minimi-
zation. As discussed in Sec. lll, the nonquadratic behavior o
the objective, approximate arithmetic, and deviation of the
gradient from the objective due to the normalization con-
straint may destroy conjugacy as measured by

1(G},Gj+1)] V. RESULTS AND DISCUSSION

(G11.6;.0)" 49

I+ =il All computations were carried out on ASCI Bluemoun-
which is ideally 0. While the Polak—Ribie nonlinear con- tain, which is a large collection of 195 MHz SGI Origin
jugate gradient tends to restart aloGg, , when conjugacy 2000s. The calculations were all performed in serial and in a
is lost, Powell® suggests a complete steepest descent restaghared memory environmefriondedicated
whena exceeds 0.2. In the calculations performed here, thi%\ Benchmark svstems
condition typically occurs only for large values bf,, and ' y
no advantage has been found in performing a steepest de- Two three-dimensional benchmark suites are used in this
scent restart. However, for systems with a small HOMO-study: a sequence of water clusters and a sequence of estane
LUMO gap this may yield an advantage. polymers. Linear systems of polyglycine chains, alkanes, and

719 Atoms 962 Atoms 1442 Atoms 1922 Atoms

FIG. 2. Local minimum energy configurations of the estane polymers with three, four, six and eight segments, corresponding to 719, 962, 1442, and 1922
atoms, respectively.
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FIG. 3. Scaling of CPU time per SCF for the RHF/3-21G sequence ofFIG. 4. Scaling of CPU time per SCF for the RHF/STO-3G sequence of
waters clusters using the nonorthogonal and orthogonal simplified densitwater clusters.
matrix minimization.

nucleic acids yield overly optimistic results with respect toe.g.,SF,,, with an increased density. In addition, the nonor-

both computational complexity and error control, and are nothogonal simplified density matrix minimization requires

considered here. many more matrix multiplies than does the orthogonal ver-
The sequence of clusters includes 50, 70, 90, 110, 15G&ion.

200, 250, 300, and 350 water molecules, with a constant

density corresponding to standard temperature and pressure.

The four largest clusters are shown in Fig. 1. These watep. Water

clusters have been used in a number of other

studies/6:131014.2389151nq have proven a challenge to . . .~ >*°% o
e . Lo . minimization is shown in Fig. 4 for the water clusters at the
achieving linear scaling in computation of the Coulomb

7610 . : RHF/STO-3G level of theory. A factor of two reduction in
matrlx'zg’gg the exchange matriX, and the density CPU time is observed on going froM,=7 to N4=3 for

matrix: ) . . ) | cg
. the TrixNeglect 10~° calculations. A similar gain is found
Estane 5703 polyester urethane is a segmented COpo'YE)ut not shgowm for the TrixNeglect 107° calcglation.

mer which is a constituent in the plastic-bonded high explo- These results should be compared with Fig. 5 from Ref.

sive PBX-9501"" A fundamental repeat unif\s.~=1, is a 23, which shows the inability of the CG-DMS algorithm to

!ength of chain comprised O.f two 4,41|phenylmethang di- ﬁchieve linear scaling for LDA/STO-3G calculations on the
isocyanate and 1,4-butanediol segments bonded to five pogl .
ame set of water clusters. In that work, the onset of linear

tetramethylene adipate segments. Configurations for degreés .~ =~ .
of polymerization corresponding to 1, 2, 3, 4, 6, an(®82, Scaling is predicted to occur at about 400 water molecules.

482, 719, 962, 1442, and 1922 atoms, respectjvbve Here, the onset of _Ilnear scaluj% is obse_rved at 90 water
; - . molecules for the TrixNegleet10 > calculation, and at 130
been generated by molecular dynamics equilibration fol-

L . water molecules for the TrixNegleetlO™® calculations. In
lowed by energy minimization. The four largest configura-_ | .. : . : . .
) - addition to differences in the algorithms and implementation,
tions are shown in Fig. 2.

it is known that the LDA tends to underestimate the HOMO-
_ LUMO gap, while HF tends to overestimate it. This effect is
B. Scaling shown in Table I. As the asymptotic behavior of the density

1. Orthogonal and nonorthogonal simplified density
matrix minimization

In Fig. 3, the scaling of the nonorthogonal and Orthogo—TABLE . HOMO and LUMO energies and the HOMO-LUMO gap for a
, . a
nal simplified density matrix minimization are shown for the €USter of 30 waters. All values were obtained withussian o4
sequence of water clusters at the RHE/B-ZlG level of theory. theory Basis set HOMO LUMO E
In both cases, the thresholds TrixNegkedi0 ¢ and

The scaling of the orthogonal simplified density matrix

gap

MultNeglect=108 were used. Seven minimization steps HF 3S,T2?G36 :82;2 8"1‘21 8'22?
were tak_en in bot.h the steep_est descent nonorthogonal and |- 6-31Q* 0423 0.126 0.549
the nonlinear conjugate gradient orthogonal case. The non- | pa STO-3G 0.005 0.200 0.195
orthogonal simplified density matrix minimization is much  LDA 3-21G -0.133 —-0.039 0.094
slower than the orthogonal one, and does not appear to LDA 6-31G™ —0.190 —0.061 0.129

- : : B3LYP 3-21G -0.178 0.008 0.186
achieve linear scaling. B3LYP 6-31G* -0.226 -0.013 0.213

While F is denser tharfr,,, the interspersal o in the
nonorthogonal expressions leads to intermediate matrice%ee Ref. 95.
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FIG. 5. Scaling of CPU time per SCF for the RHF/3-21G sequence of wateFIG. 7. Scaling of CPU time per SCF for the RHF/STO-3G sequence of

clusters.

estane polymers.

matrix is governed by/E g, as in Eq.(1), this phenomenon 3. Estane

may explain some of the differences between this work and

Ref. 23.

The scaling of the orthogonal simplified density matrix

The scaling of the orthogonal simplified density matrix
minimization withN.,=4 is shown in Fig. 7 for the estane

minimization withN,=3 is shown in Figs. 5 and 6 for the polymers at the RHF/STO-3G level of theory. As in the wa-

water series at the RHF/3-21G level of theory. For the 3-21@€T calculations, théle,=4 results are about a factor of two
calculations, the differences in CPU time betwedg=3  faster than those obtained withic,=8 (not shown. In all
andN.,=7 are much less pronounced than in the case of th€ases, the onset of linear scaling is seen to occur at the
STO-3G calculations. This is shown in Fig. 6 for Nseg=2 polymer, which corresponds to 482 atoms and 722
TrixNeglect=10"¢. A similar behavior is also found for basis functions.
looser values. C. Errors

The onset of linear scaling is slower for the 3-21G cal-

culations than for the STO-3G calculations, occurring at 90, ~ Errors in converged total energies are shown in Fig. 8
150, and 200 water molecules for TrixNeg|edt0_4’ 10_5' for the RHF/STO-3G water series, In F|g 9 for the RHF/3-

and 10°® respectively. Also, the STO-3G density matrix is 21G water series, and in Fig. 10 for the RHF/STO-3G estane
less dense than the 3-21G density matrix. These differenc&squence. A striking feature of the water errors is that the
are most likely because the STO-3G band gap is larger tha@alculations withN =3 yield more accurate results than the
the 3-21G band gap, as shown in Table I. calculations withN¢,=7.

20000 . T . . 0.1 T T . .
o
S0 e T
18000 |- . R — R
Mult=1.D-14, Ncg=7 © o 0.01 | A r
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FIG. 6. Scaling of CPU time per SCF for the RHF/3-21G sequence of wateFIG. 8. Absolute errors in converged total energies for the RHF/STO-3G
sequence of water clusters.

clusters with TrixNeglect 1076,



2340 J. Chem. Phys., Vol. 110, No. 5, 1 February 1999 Matt Challacombe

T T T T T TABLE Il. Sustained MFLOPS rates as a function of different systems and

0.1 ¢ basis setsNy /Ny is the ratio of hydrogen atoms to heavy atoms.

MFLOPS

b3

§ 0.01 System Ny /Ny Basis set  GradE LineM Purify

z Water 2 STO-3G 71 57 81

5 Estane 1 STO-3G 100 83 104
E 0.001 & Fullerene 0 STO-3G 162 136 158
2 Water 2 3-21G 137 125 140
E Estane 1 3-21G 154 135 150
< Fullerene 0 3-21G 163 145 157

0.0001 |

le0s L& e . . . . . . - - ;
e 1000 1500 2000 2500 300 3300 2000 2300 integer overheads are higher per FLOP for the evaluation of

Basis Functions Tr{-} with Eq. (46) than for the matrix multiply and addition.
FIG. 9. Absolute errors in converged total energies for the RHF/3-21G As the ratio of hydrern? to heavy atqmt_f’-l/NX de-
sequence of water clusters. creases, the MFLOPS rate increases. This is because the
number of basis functions per atom is smallene for
. , L ) . STO-NG and two for 3-21§for hydrogen than for the
One explanation for this behavior is that, with approxi- heavy atomsfive for STO-NG and nine for 3-21G and
mate algebra[F,P] and [F,H] are not exactly zero. With ., rations involving small dimensions are inefficient.

each additional step these commutators grow, leading to €k effect is less pronounced for the 3-21G basis set be-
rors in the gradient and line search. As the matrix thresholdgause the CPU time in this case is dominated by the
are tightened, results for different valuesh; will become g+ 9% 9 DGEMM corresponding to the all heavy atom mul-
identical; this can be seen for the TrixNegledt0™° calcu- tiplies. As larger basis sets are used, the influendg, 0Ny
lations in Fig. 9. will become less significant, and the peak rate will be deter-
mined by DGEMM efficiency, which is limited by cache
effects and is block size dependéht’

D. Performance of the matrix multiply
1. MFLOPS

Megafloating point operations per secdiMFLOPS for 2. SPAMM
gradient evaluatioiGradBb, line minimization(LineM), and The choice
purification (Purify) are given in Table Il for water, estane, L,
and fullerene for the STO-3G and 3-21G basis sets. These MultNeglect=10""TrixNeglect (50
are sustained values, and while dominated by multiplicationhas been found to yield results that are very close to those
they include additions, trace, diagonal adds, matrix-scalagpbtained with MultNeglect 0, and this parametrization has
multiplication and input/output (I10). For reference, been used throughout. In Fig. 6, results are shown using
Warners® optimized DGEMM using 5850 subblocks SPAMM with this default parametrization and with
achieves a peak rate of approximately 270 MFLOPS on th@jultNeglect= 10" % The effects of SPAMM here and in the
195 MHz SGI Origin 2000. other systems studied are sm&t10%). Nevertheless, it
The MFLOPS rate for line minimization is less than for may be more effective in systems which are not as well
purification or gradient evaluation. This is because cache angcalized as those studied here.

001 —s i , i : : 3. Nonlinear conjugate gradient vs purification cycles
D DT NeETt o As mentioned in Sec. Il B, the CPU time per nonlinear
’ ’ conjugate gradient step grows with the number of steps
0001 / taken. This is shown in Table Il for the 3-21G 350 water

TABLE Ill. The increase in CPU time per orthogonal nonlinear conjugate
gradient cycle for the 3-21G 350 water calculation with TrixNeglect
=10"" and MultNeglect 10"°.

0.0001 ¢

Absolute Error in Total Energy

lce CPU(9)
le-05 | E
0 407
1 505
2 714
le-06 -—t . . . : : 3 780
500 1000 1sggsis Funmizo(ﬁo 2500 3000 4 749
5 905
FIG. 10. Absolute errors in converged total energies for the RHF/STO-3G 6 828

sequence of estane polymers.
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TABLE IV. Decrease in the number of purification cyclbs,, on going  sider an extension of this approach to uniform block sizes

from Neg=3 10 Neg=7 for the 3-21G 350 water calculation with that are cache optimal, which could yield a factor of two
TrixNeglect=10"% and MultNeglect 107",

speedup.
Max|AP,, The methods developed here should lead to very effi-
cient parallel implementations. Sparse matrix multiplication
Lpur Neg=3 Neg=7 is efficient in parallel, and blocking will improve this effi-
1 0.215D+00 0.147D+0 ciency by reducing the overhead associated with decomposi-
2 0.154D+00 0.760D-01 tion and reordering. Also, because the computatiod oé-
i 8-2;2&81 8-‘2‘2‘7‘381 duces to performing matrix multiplies rather than triangular
5 0.579D-01 0.702D- 02 so!ves(as in the case of ), the.AINV algorithm is ideally
6 0.411D- 01 0.793D- 03 suited for parallel implementations.
7 0.282D-01 0.327D- 04 Linear scaling Hartree—Fock theory for insulating three-
8 0.175D-01 0.328D- 04 dimensional systems has been clearly established in Refs. 13
9 0.813D-02 and 14 for the Fock build, and here for solution of the SCF
10 0.182D-02 equations. While achieving linear scaling may be more dif-
E 8:224113 83 ficult for model chemistries that yield a less inflated HOMO-
13 0.330D- 04 LUMO gap, with parallel implementation and code matura-

tion the outlook for large scale application of the simplified
density matrix minimization is bright.
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