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A simplified density matrix minimization for linear scaling self-consistent
field theory

Matt Challacombea)
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New Mexico 87545
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A simplified version of the Li, Nunes and Vanderbilt@Phys. Rev. B47, 10891~1993!# and Daw
@Phys. Rev. B47, 10895~1993!# density matrix minimization is introduced that requires four fewer
matrix multiplies per minimization step relative to previous formulations. The simplified method
also exhibits superior convergence properties, such that the bulk of the work may be shifted to the
quadratically convergent McWeeny purification, which brings the density matrix to idempotency.
Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and
Tůma @SIAM J. Sci. Comp.17, 1135 ~1996!# is introduced to linear scaling electronic structure
theory, and found to be essential in transformations between orthogonal and nonorthogonal
representations. These methods have been developed with an atom-blocked sparse matrix algebra
that achieves sustained megafloating point operations per second rates as high as 50% of theoretical,
and implemented in theMondoSCFsuite of linear scaling SCF programs. For the first time, linear
scaling Hartree–Fock theory is demonstrated with three-dimensional systems, including water
clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with
minimization in an orthonormal representation. An early onset of linear scaling is found for both
minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are
achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with
system size is investigated for various levels of approximation. ©1999 American Institute of
Physics.@S0021-9606~99!30702-9#

I. INTRODUCTION

Computation of the Fock matrix has historically been the
limiting step in quantum chemical applications of the
Hartree–Fock~HF! and Kohn–Sham~KS! theories to large
systems. This is due to the expensiveO(Nbas

2 ) cost of two-
electron integral computation and manipulation1 in the direct
method,2,3 whereNbasis the number of basis functions and is
proportional to system size. Recently, methods with a com-
putational complexity ofO(Nbas) have been introduced for
computing the Fock matrix,4–16 allowing access to systems
large enough that theO(Nbas

3 ) eigensolution of the self-
consistent field~SCF! equations is presently the bottleneck in
the large scale application of HF and KS theories.

The computationally demanding aspects of quantum
chemical SCF theory are now identical to those encountered
in condensed matter formulations of the local density ap-
proximation ~LDA ! and tight binding theories, for which a
variety of linear scaling algorithms exist. These include den-
sity matrix minimization~DMM !,17–24 orbital minimization
~OM!,25–29 and the Fermi operator expansion~FOE!.30–35

See Refs. 36–38 for excellent reviews and comparisons of
these methods, as well as a more complete bibliography.

These methods achieve linear scaling for insulating sys-
tems and finite temperature metals by exploiting the short
range nature of quantum interactions, the locality of which

manifests itself in exponential decay of the density
matrix:38–40

r~r ,r 8!;exp~2AEgapur2r 8u!, ~1!

whereEgap is the HOMO-LUMO gap, which is the differ-
ence between eigenvalues of the highest occupied molecular
orbital and the lowest unoccupied molecular orbital. If a ba-
sis of local functionsf is used in calculation of the density
matrix.

r~r ,r 8!5(
i j

Pi j f i~r !f j~r 8!, ~2!

then it follows that the discrete representationP has similar
localization properties. This has been observed for both
HF14,40 and KS38 models. Thus, for a sufficiently large sys-
tem onlyO(Nbas) matrix elements are expected to remain
numerically significant, and sparse matrix methods may be
used to obtain the SCF in linear scaling CPU time.

The DMM, OM, and FOE methods employ a single vari-
able, such as a localization radius or a matrix element thresh-
old, which defines an approximate sparse matrix algebra, and
which allows deviation from the exact result to be controlled
systematically. However, the extension of these methods to
the quantum chemical domain has faced a number of chal-
lenges related to the use of large nonorthogonal basis sets, an
exacting demand for error control, and the slow~approxi-a!Electronic mail: MChalla@T12.LANL.Gov
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mately exponential but slow! decay in off-diagonal elements
of P with increasing system size,14,40 which can be severe in
the case of three dimensions.

Clearly, the off-diagonal behavior ofP depends on the
physical system, the model chemistry, and the basis set. For
example, minimal basis set calculations may lead to large
HOMO-LUMO gaps. Likewise, HF theory tends to overes-
timate the HOMO-LUMO gap while LDA tends to underes-
timate it. One approach to limiting the bandwidth ofP is to
construct basis sets with only local support.41,42 Another ap-
proach is the use of orthogonal bases such as wavelets43–45

or grids46–48which tend to yield very sparse matrices. A less
exotic approach, pursued here, is to use standard quantum
chemical basis sets together with efficient numerical algo-
rithms to access system sizes that yield a sparse representa-
tion.

To this end, a simplified version of the Li, Nunes,
Vanderbilt17 and Daw18 ~LNVD ! density matrix minimiza-
tion ~SDMM! is introduced that requires four fewer matrix
multiplications than standard versions of the density matrix
minimization, and which permits the time dominant work to
be carried out with the quadratically convergent McWeeny
purification.49 The simplified density matrix minimization is
implemented in both an orthogonal and nonorthogonal rep-
resentation using an atom-blocked sparse matrix algebra that
exploits both data locality and available sparsity. The
AINV 50,51method for computation of the incomplete inverse
Cholesky factor is introduced to electronic structure theory
as an efficient and accurate method for enabling the congru-
ence transformation to and from an orthogonal representa-
tion, and for applying the inverse overlap matrix in nonor-
thogonal methods.

The paper is organized as follows. In Sec. II, the con-
ventional and LNVD approach to solving the SCF equations
is reviewed. In Sec. III, details of the LNVD method are
presented, and a diagonal guess is shown to greatly simplify
gradient and line searches. In Sec. IV, the sparse atom-
blocked matrix algebra is introduced, and details of its
implementation in theMondoSCFsuite of linear scaling SCF
programs52 are given. Then in Sec. V, timings and errors are
presented and discussed for water clusters and estane poly-
mers. Finally, conclusions are drawn in Sec. VI.

II. OVERVIEW

A. SCF theory

In SCF theory, the density matrixP defines the entire
physical system.53 In particular, the electronic energy54 is

Eel5Tr$~h1F@P# !P%, ~3!

whereF is the Fock matrix, which depends onP in a com-
plicated way, andh is the core Hamiltonian, which does not
depend onP. For mathematical convenience, the closed shell
density matrix may be factored in terms of the occupied mo-
lecular orbital coefficientsCocc as

P52CoccCocc
† . ~4!

The molecular orbital matrixC, including both occupied and
virtual orbitals, is orthogonal;

C†C5I . ~5!

The minimization ofEel with respect toC, and with the
constraint of orthogonality, leads to Roothaan’s form of the
SCF equations55,54

F@Pn21#Cn5Cne, ~6!

which is an eigenproblem withO(Nbas
3 ) computational com-

plexity. Iteration of Eq.~6! leads to the minimum energy
solution at self-consistency, whenPn5Pn21. For well be-
haved problems, typicallyn;10 SCF cycles are required to
reach convergence.

In the preceding matrix equations, an orthogonal basis
has been tacitly assumed. In practice however, matrix ele-
ments are evaluated in the nonorthogonal basis of atomic
orbitals~AOs!. Introducing the metric or overlap matrix with
elements

Sab5~fa ,fb! ~7!

between AO basis functionsfa andfb , the Roothaan equa-
tions may be posed as the generalized eigenvalue problem55

FaoCao5SCaoe, ~8!

where subscript ao implies a nonorthogonal representation.

B. Orthogonal and nonorthogonal bases

It is well known that the generalized eigenproblem, Eq.
~8!, can be transformed to the standard eigenproblem, Eq.
~6!, using a congruence transformation involving factoriza-
tion of the metric~overlap! matrix.56,57 A key matrix in this
transformation isZ, the inverse factor, which relates nonor-
thogonal ~AO! and orthogonal representations of the Fock
matrix

F5ZFaoZ
T ~9!

and the density matrix

Pao5ZTPZ. ~10!

The inverse factor has the property

ZTSZ5I , ~11!

which is satisfied byZ5S21/2 or Z5L21, whereL is the
Cholesky factor for whichS5LL T. The choiceZ5S21/2

corresponds to Lo¨wdin’s symmetric orthogonalization,58,59

which is commonly used in modern quantum chemistry. The
choiceZ5L21 is widely used in solution of the generalized
eigenproblem,56,57and has recently been introduced to linear
scaling SCF theory by Millam and Scuseria~MS!.23

Symmetric orthogonalization requires an eigensolve,
which is O(N3). As discussed by MS,23 the incomplete
Cholesky factorization is potentiallyO(N) when sparse ma-
trix methods are employed in conjunction with an elimina-
tion tree. In the MS approach, the approximate inverse factor
Z is obtained through an incomplete linear solve. This tends
to be inaccurate unless tight thresholds are employed, in
which case the solve may become expensive. Moreover, in-
verting the Cholesky factor introduces two levels of incom-
pleteness~one in the factorization and one in the inversion!,
which may introduce errors that are difficult to control.
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A more elegant approach, pursued here, is to solve for
Z5L21 directly using the AINV algorithm.50,51 AINV is
state of the art in the theory and application of inverse pre-
conditioners, and may be used to obtain the inverse factorsZ
to within arbitrary accuracy. The matrixZ is obtained byS
orthogonalization of the standard basis vector, where sparsity
is preserved with the use of a drop tolerance.50,51 We have
recently implemented a block version of AINV60 and found
it to be very fast under the demands of high accuracy.

When working in a nonorthogonal representation, the
inverse overlap matrixS21 enters the OM,25,26 DMM,61 and
FOE34 formulations of SCF theory. WhileS21 is typically
dense, its Cholesky factorsZ may be quite sparse, depending
on the ordering ofS.62,63Thus, if the productS21X is sparse,
it is possible to efficiently apply the inverse as

Z~ZTX!5S21X, ~12!

without ever referencing a potentially denseS21.

C. The LNVD objective

Beginning with the seminal work of Lo¨wdin53 and
McWeeny,49 it has long been recognized that eigensolution
of the SCF equations can be avoided by the direct minimi-
zation ofEel subject to the constraint of normalization

Nel5Tr$P%, ~13!

and idempotency,

P5PP. ~14!

This latter condition is equivalent to requiring orthogonality
of Cocc.

Variation of the electronic energy leads to the stationary
condition49,64

dEel52 Tr$FdP%50, ~15!

allowing Eel to be replaced with the equivalent objective

E5Tr$PF% ~16!

in which F no longer depends onP.
A number of workers have formulated different versions

of density matrix minimization,65–71but these were not com-
petitive with eigensolution due to the expense associated
with enforcing Eq.~14!, and the high efficiency of direct
eigensolvers.72 A breakthrough came with the density matrix
minimization of Li, Nunes, and Vanderbilt17 and Daw18

~LNVD !, which imposes the constraint on idempotency im-
plicitly through substitution of the McWeeny purification,49

P53PP22PPP, ~17!

into Eq. ~16!. The purification transform brings an approxi-
mately idempotent matrix closer to idempotency, a process
that is quadratically convergent upon iteration.49 With this
substitution, Eq.~14! is imposed approximately during opti-
mization, and may be used after convergence to restore
idempotency to within the accuracy allowed by the underly-
ing matrix algebra. In the LNVD density matrix minimiza-

tion, normalization is imposed through a Lagrange multiplier
m, yielding the LNVD objective

V5Tr$~3PP22PPP!F%1m~Nel2TrP!. ~18!

III. DENSITY MATRIX MINIMIZATION

In the LNVD method, a density matrix minimization is
carried out after forming each new Fock matrix. To achieve
anO(N) complexity, it is necessary to employ an approxi-
mate sparse matrix algebra and to forego methods that re-
quire storing a Hessian. One possibility is steepest descent
~SD! in which the gradient,

Gj52“Pj
V ~19!

is simply followed. A better alternative is the nonlinear con-
jugate gradient~NLCG! method, which employs properties
of the Hessian implicitly through a sequence ofA-orthogonal
search directionsH j .73–75 In the nonlinear conjugate gradi-
ent method, if an exact line search is performed, that is if a
steplengthl j is chosen such that the updated density matrix

Pj 115Pj1lH j ~20!

exactly minimizes the objective, then each gradient in the
sequence will be orthogonal to the others;76

~Gk ,Gj !50 ~kÞ j !. ~21!

If conjugacy is preserved, the nonlinear conjugate gradient
method is in general much more efficient than the steepest
descent. In practice, incomplete matrix algebra, deviation
from quadratic behavior, and inexact line searches can spoil
this property,75–77 leading to an algorithm that may be less
efficient than the steepest descent. Note that modifying the
gradient or objective during optimization, through a purifica-
tion step or extrapolation, will tend to destroy conjugacy.

A. Gradient and line search

Using the trace algebra,78 the gradient ofV is

¹V53~PF1FP!22~PPF1PFP1FPP!2mI , ~22!

where it has been assumed thatm does not depend onP. The
Lagrange multiplierm is chosen as

m5Tr$3~PF1FP!22~PPF1PFP1FPP!%/Nbas, ~23!

which renders the gradient traceless at each step.20,23 With
each step an analytic line search is carried out as in Refs. 20
and 23 by solving

dV@P1lH#

dl
5b12cl13dl250 ~24!

for the root that minimizesV, where

b5Tr$H¹V% ~25!

c5Tr$3HHF22~HHPF1HPHF1PHHF!% ~26!

d522 Tr$HHHF %. ~27!
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B. A simplifying guess

At the start of each minimization, it is necessary to
choose a guess density matrix. A natural choice is the density
matrix from the previous SCF cycle. However, this guess
leads to very slow convergence, typically requiring on the
order of 50–100 nonlinear conjugate gradient cycles.

One method to accelerate convergence is to precondition
with a diagonal Hessian,74,75,79 which has been used by
Millam and Scuseria.23 Another approach employed by
Millam and Scuseria is to use direct inversion in the iterative
subspace~DIIS!80 to minimize the commutator@Fi ,Pj

i 11# be-
tween nonlinear conjugate gradient cycles~DIIS-CG!, where
superscripts have been used to emphasize the SCF iteration,
and j is the CG cycle. Note that@Fi ,Pi # will be zero only
whenPi5Pi 11.

An alternative guess for the start of a density matrix
minimization is

P05S Nel

Nbas
D I , ~28!

which preserves symmetry of the converged result, namely

@P,F#5@H,F#50, ~29!

throughouta nonlinear conjugate gradient or steepest descent
sequence.

Starting with Eq.~28! it is found that after some charac-
teristic number of conjugate gradient cycles,Ncg;3, purifi-
cation will establish the exact answer, even though the gra-
dient may still be large. If too few steps are taken,
purification will lead to the loss of electrons. AsNcg in-
creases, fewer purification stepsNpur are needed to obtain the
correct result. In every case, it is found possible to cast the
dominant portion of the work into the purification step,
which is quadratically convergent.

In addition to enhanced convergence properties, Eq.~29!
leads to a significant reduction in complexity of the gradient
evaluation and the line search. In particular, Eqs.~22! and
~23! reduce to

¹V56~ I2P!PF2mI ~30!

and

m56 Tr$~ I2P!PF%/Nbas, ~31!

while Eq. ~26! simplifies to

c53 Tr$~ I22P!HHF %. ~32!

Inspection of Eq.~30! shows that during minimization,P
will start with the sparsity pattern ofF, and will broaden
with additional iterations. In practice, this results in initial
cycles that are quite-fast.

Note that preconditioning will destroy the commutation
property; that is, if preconditioning is used then Eqs.~30!,
~31!, and~32! will become invalid.

C. Nonorthogonal density matrix minimization

Just as with eigensolution, it is possible to cast the
LNVD method in a nonorthogonal basis. There are at least

two ways to perform the density matrix minimization in a
nonorthogonal basis: One way is to simply follow the gradi-
ent of the nonorthogonal objective19,21,22

Vao5Tr$~3PaoSPao22PaoSPaoSPao!Fao%2mNel . ~33!

Another approach is to follow the gradient of the orthogonal
objective, Eq.~18!, but in a nonorthogonal basis as suggested
by White et al.;61

~¹V!ao5S21/2@¹V#S21/2. ~34!

This latter approach is independent of basis set transforma-
tions, and may have improved convergence properties over
the former approach. One disadvantage is that the inverse
overlap matrixS21 must be applied at every iteration, and it
is no longer possible to use the nonlinear conjugate gradient
without a back transformation, as the gradient corresponds to
the orthogonal objective, Eq.~18!, rather than the nonor-
thogonal one, Eq.~33!. On the other hand,Fao tends to be
much sparser thanF, and it may be that working in the AO
results in faster gradient evaluations and line minimizations.

Starting with the guess,

Pao,05S Nel

Nbas
DS21 ~35!

it is possible to achieve simplification and improved conver-
gence properties in the AO basis that are equivalent to those
of the orthogonal simplified density matrix minimization de-
veloped in Sec. IIIB. With this guess, Eq.~34! reduces to

~¹V!ao56S21@~ I2SPao!FaoPao2mI #. ~36!

with

m5Tr$~ I2SPao!FaoPao%/Nbas. ~37!

Rather than compute and manipulateS21, it is much more
efficient to apply the AINV factors as in Eq.~12!. As before,
an analytic line search is carried out. However, this time the
nonorthogonal objective is used, yielding the coefficients

b56 Tr$~ I2PaoS!HFao%, ~38!

c53 Tr$~ I22PaoS!HSHFao%, ~39!

d522 Tr$HSHSHFao%. ~40!

IV. IMPLEMENTATION

The orthogonal and nonorthogonal simplified density
matrix minimization have been implemented in the
MondoSCF52 suite of programs for linear scaling SCF theory,
with details as follows.

A. Atom-blocked sparse matrix algebra

A library of routines for carrying out variable block size,
sparse matrix algebra have been developed and employed in
the implementation ofMondoSCF. These routines exploit both
existing sparsity and data locality. Related methods have
been shown to yield significant speedups for matrix-vector
multiplies.81–83 Note that in Ref. 82, Goedeckeret al. em-
ploy an atom-blocked algebra for matrix-vector multiplies in
the context of the tight binding FOE method.
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1. Matrix multiplies

In the sparse atom-blocked matrix multiply, the matrices
are stored in a modified compressed sparse row~CSR!
format,84–86 in which all pointers index blocks rather than
individual matrix elements. An additional pointer is required
to address the start of each block since the blocks are not
grouped by dimension. A modified version of Gustavson’s
sparse matrix multiply87 is employed, with DGEMM-like
routines to carry out the block–block multiplies. DGEMM is
a level three BLAS72 routine for performing double precision
matrix multiplies. In the limit that the block size is reduced
to 131, an algorithm equivalent to the standard87 sparse
matrix multiply is obtained.

2. Truncation

Small matrix elements are dropped after each matrix op-
eration such as multiplication or addition. Blocks are
dropped when they meet the criterion

iCIK iF,TrixtNeglect, ~41!

where TrixtNeglect is a drop tolerance andF demarks the
Frobenius norm88

iCIK iF5ATr$CIK
T CIK%. ~42!

This approach should be compared with truncation of indi-
vidual elements,23,89 and separation-based truncation.17,22

With truncation at the level of elements, a change of basis
may lead to very different behavior of errors. This is because
the average magnitude of the matrix elements must decrease
with increasing basis set size.40 Truncation at the level of
atoms is expected to yield errors that are more transferable,
as the amount of charge in a block should be less sensitive to
a change of basis.

In separation-based truncation, elements of a matrix
product are computed only if the corresponding basis func-
tion separation is less than a cut-off radiusRc . This has the
advantage that the structure of all matrices is knowna priori.
On the other hand, this approach requires a careful system,
basis set, and model chemistry dependent parametrization.
Also, when examining the fall off of density matrix elements
with basis function separation,14 it is seen that many small
elements correspond to small separations. This suggests that,
for a given level of error, truncation schemes based on mag-
nitude may yield sparser matrices.

3. SPAMM

A method related to thresholding schemes used in the
orderN exchange method ONX8,14 has been extended to ma-
trix multiplication, and may be well suited for matrices with
elements that decay away from the diagonal. In this sparse
approximate matrix multiply~SPAMM!, small matrix ele-
ments are treated in a more approximate manner than are the
large ones. For the matrix multiplyC5AB, each blockCIK

is formed as the sum over blocks

CIK5 (
J51

M

AIJBJK . ~43!

The error

idCIK iF,MultNeglect ~44!

may be rigorously bounded while avoiding all contractions
AIJBJK for which

iBJKiF,
MultNeglect

M iAIJiF
, ~45!

where M is the number of blocks in the contraction, and
MultNeglect is a threshold. Just as in the case of ONX, re-
peatedly executing a conditional like Eq.~45! in an inner-
most loop can create a significant overhead. This is avoided
in SPAMM by sorting each row in decreasing order on the
basis of i•iF, and using a binary search to find the limit
(<M ) of the innermost loop.

4. Trace

A substantial savings may be achieved in the execution
of Tr$•% by performing both the contraction and the diagonal
accumulation at the same time as

Tr$AB%5(
ik

AikBki , ~46!

rather than first forming the productAB.

5. AINV

MondoSCFemploys a blocked version of AINV, which is
described in detail elsewhere.60

B. SCF

1. Initial guess

For a minimal basis such as STO-3G, a sparse linear
scaling guess is built from the superposition of spherically
averaged atomic density matrices in an orthogonal~diagonal!
representation. The AINV factorZ is then used to transform
to an AO representation.90 For more complicated basis sets, a
partially converged density matrix from a minimal basis set
calculation is used to construct a mixed basis Fock matrix.90

These guesses are linear scaling.

2. Eigensolver

The Roothaan equations, Eq.~6!, are solved with the
LAPACK divide and conquer eigensolver DSYEVD72 as
implemented in the SGI scientific library SCSL. This a com-
petitive algorithm that has been highly optimized for the SGI
platform.

3. Fock builds

The multipole accelerated symmetrized orderN ex-
change algorithm~MASONX!16 is used to compute the ex-
change matrix, and the quantum chemical tree code
~QCTC!13 is used to compute the Coulomb matrix. Tight
integral (TwoENeglect51029) and distribution
(DistNeglect510211) thresholds are used throughout.

4. DIIS

A sparse implementation of DIIS for extrapolation of the
Fock matrix91 is used in all calculations. In this implementa-
tion, the error vector

eao5FaoPaoS2SPaoFao ~47!
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is transformed into an orthonormal basis with the transfor-
mation

e5ZTeaoZ. ~48!

The use of sparse matrix algebra will eventually cause the
DIIS method to stagnate. Tightening up the matrix thresholds
with SCF convergence leads to premature stagnation that is
incommensurate with the thresholds. One solution is to sim-
ply restart the DIIS after each decrement of a threshold, and
this should lead to significantly reduced average CPU times
per SCF cycle. For clarity and simplicity, this approach has
not been followed here; rather, constant thresholds are used
throughout.

5. Nonlinear conjugate gradient

The Polak–Ribie`re version of the nonlinear conjugate
gradient92 has been implemented for the orthogonal minimi-
zation. As discussed in Sec. III, the nonquadratic behavior of
the objective, approximate arithmetic, and deviation of the
gradient from the objective due to the normalization con-
straint may destroy conjugacy as measured by

a5
u~Gj ,Gj 11!u
~Gj 11 ,Gj 11!

, ~49!

which is ideally 0. While the Polak–Ribie`re nonlinear con-
jugate gradient tends to restart alongGj 11 when conjugacy
is lost, Powell93 suggests a complete steepest descent restart
whena exceeds 0.2. In the calculations performed here, this
condition typically occurs only for large values ofNcg, and
no advantage has been found in performing a steepest de-
scent restart. However, for systems with a small HOMO-
LUMO gap this may yield an advantage.

6. Overview of the orthogonal method

After each Fock build, DIIS extrapolation of the Fock
matrix is used, and the extrapolated Fock matrix is trans-
formed to an orthogonal basis. A diagonal guess is used to
start, andNcg nonlinear conjugate gradient steps are taken
using the simplified gradient and line minimization particular
to the SDMM. Then, the resulting density matrix is brought
to idempotency through purification. The degree of idempo-
tency achieved depends on the matrix thresholds TrixNeglect
and MultNeglect. Stagnation manifests itself in an inability
to further reduce the maximum block of the difference den-
sity PIpur2PI pur11 , and is said to occur afterNpur iterations.
Thus,Npur is a function ofNcg and the matrix thresholds. The
resulting density matrix is then transformed back to a nonor-
thogonal atomic orbital representation and used to construct
a new Fock matrix. Stagnation of the DIIS procedure also
occurs with more approximate matrix thresholds, and the
SCF procedure is halted after the DIIS error fails to improve.

V. RESULTS AND DISCUSSION

All computations were carried out on ASCI Bluemoun-
tain, which is a large collection of 195 MHz SGI Origin
2000s. The calculations were all performed in serial and in a
shared memory environment~nondedicated!.

A. Benchmark systems

Two three-dimensional benchmark suites are used in this
study: a sequence of water clusters and a sequence of estane
polymers. Linear systems of polyglycine chains, alkanes, and

FIG. 1. Configuration of the clusters
with 200, 250, 300 and 350 water mol-
ecules.

FIG. 2. Local minimum energy configurations of the estane polymers with three, four, six and eight segments, corresponding to 719, 962, 1442, and 1922
atoms, respectively.
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nucleic acids yield overly optimistic results with respect to
both computational complexity and error control, and are not
considered here.

The sequence of clusters includes 50, 70, 90, 110, 150,
200, 250, 300, and 350 water molecules, with a constant
density corresponding to standard temperature and pressure.
The four largest clusters are shown in Fig. 1. These water
clusters have been used in a number of other
studies,7,6,13,10,14,23,89,15,16and have proven a challenge to
achieving linear scaling in computation of the Coulomb
matrix,7,6,10 the exchange matrix,10 and the density
matrix.23,89

Estane 5703 polyester urethane is a segmented copoly-
mer which is a constituent in the plastic-bonded high explo-
sive PBX-9501.94 A fundamental repeat unit,Nseg51, is a
length of chain comprised of two 4,48-diphenylmethane di-
isocyanate and 1,4-butanediol segments bonded to five poly
tetramethylene adipate segments. Configurations for degrees
of polymerization corresponding to 1, 2, 3, 4, 6, and 8~242,
482, 719, 962, 1442, and 1922 atoms, respectively! have
been generated by molecular dynamics equilibration fol-
lowed by energy minimization. The four largest configura-
tions are shown in Fig. 2.

B. Scaling

1. Orthogonal and nonorthogonal simplified density
matrix minimization

In Fig. 3, the scaling of the nonorthogonal and orthogo-
nal simplified density matrix minimization are shown for the
sequence of water clusters at the RHF/3-21G level of theory.
In both cases, the thresholds TrixNeglect51026 and
MultNeglect51028 were used. Seven minimization steps
were taken in both the steepest descent nonorthogonal and
the nonlinear conjugate gradient orthogonal case. The non-
orthogonal simplified density matrix minimization is much
slower than the orthogonal one, and does not appear to
achieve linear scaling.

While F is denser thanFao, the interspersal ofS in the
nonorthogonal expressions leads to intermediate matrices,

e.g.,SFao, with an increased density. In addition, the nonor-
thogonal simplified density matrix minimization requires
many more matrix multiplies than does the orthogonal ver-
sion.

2. Water

The scaling of the orthogonal simplified density matrix
minimization is shown in Fig. 4 for the water clusters at the
RHF/STO-3G level of theory. A factor of two reduction in
CPU time is observed on going fromNcg57 to Ncg53 for
the TrixNeglect51026 calculations. A similar gain is found
~but not shown! for the TrixNeglect51025 calculation.

These results should be compared with Fig. 5 from Ref.
23, which shows the inability of the CG-DMS algorithm to
achieve linear scaling for LDA/STO-3G calculations on the
same set of water clusters. In that work, the onset of linear
scaling is predicted to occur at about 400 water molecules.
Here, the onset of linear scaling is observed at 90 water
molecules for the TrixNeglect51025 calculation, and at 130
water molecules for the TrixNeglect51026 calculations. In
addition to differences in the algorithms and implementation,
it is known that the LDA tends to underestimate the HOMO-
LUMO gap, while HF tends to overestimate it. This effect is
shown in Table I. As the asymptotic behavior of the density

FIG. 3. Scaling of CPU time per SCF for the RHF/3-21G sequence of
waters clusters using the nonorthogonal and orthogonal simplified density
matrix minimization.

FIG. 4. Scaling of CPU time per SCF for the RHF/STO-3G sequence of
water clusters.

TABLE I. HOMO and LUMO energies and the HOMO-LUMO gap for a
cluster of 30 waters. All values were obtained withGAUSSIAN 94.a

Theory Basis set HOMO LUMO Egap

HF STO-3G 20.318 0.497 0.815
HF 3-21G 20.393 0.164 0.557
HF 6-31G** 20.423 0.126 0.549

LDA STO-3G 0.005 0.200 0.195
LDA 3-21G 20.133 20.039 0.094
LDA 6-31G** 20.190 20.061 0.129

B3LYP 3-21G 20.178 0.008 0.186
B3LYP 6-31G** 20.226 20.013 0.213

aSee Ref. 95.
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matrix is governed byAEgap as in Eq.~1!, this phenomenon
may explain some of the differences between this work and
Ref. 23.

The scaling of the orthogonal simplified density matrix
minimization withNcg53 is shown in Figs. 5 and 6 for the
water series at the RHF/3-21G level of theory. For the 3-21G
calculations, the differences in CPU time betweenNcg53
andNcg57 are much less pronounced than in the case of the
STO-3G calculations. This is shown in Fig. 6 for
TrixNeglect51026. A similar behavior is also found for
looser values.

The onset of linear scaling is slower for the 3-21G cal-
culations than for the STO-3G calculations, occurring at 90,
150, and 200 water molecules for TrixNeglect51024, 1025,
and 1026 respectively. Also, the STO-3G density matrix is
less dense than the 3-21G density matrix. These differences
are most likely because the STO-3G band gap is larger than
the 3-21G band gap, as shown in Table I.

3. Estane

The scaling of the orthogonal simplified density matrix
minimization withNcg54 is shown in Fig. 7 for the estane
polymers at the RHF/STO-3G level of theory. As in the wa-
ter calculations, theNcg54 results are about a factor of two
faster than those obtained withNcg58 ~not shown!. In all
cases, the onset of linear scaling is seen to occur at the
Nseg52 polymer, which corresponds to 482 atoms and 722
basis functions.

C. Errors

Errors in converged total energies are shown in Fig. 8
for the RHF/STO-3G water series, in Fig. 9 for the RHF/3-
21G water series, and in Fig. 10 for the RHF/STO-3G estane
sequence. A striking feature of the water errors is that the
calculations withNcg53 yield more accurate results than the
calculations withNcg57.

FIG. 5. Scaling of CPU time per SCF for the RHF/3-21G sequence of water
clusters.

FIG. 6. Scaling of CPU time per SCF for the RHF/3-21G sequence of water
clusters with TrixNeglect51026.

FIG. 7. Scaling of CPU time per SCF for the RHF/STO-3G sequence of
estane polymers.

FIG. 8. Absolute errors in converged total energies for the RHF/STO-3G
sequence of water clusters.
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One explanation for this behavior is that, with approxi-
mate algebra,@F,P# and @F,H# are not exactly zero. With
each additional step these commutators grow, leading to er-
rors in the gradient and line search. As the matrix thresholds
are tightened, results for different values ofNcg will become
identical; this can be seen for the TrixNeglect51026 calcu-
lations in Fig. 9.

D. Performance of the matrix multiply

1. MFLOPS

Megafloating point operations per second~MFLOPS! for
gradient evaluation~GradE!, line minimization~LineM!, and
purification ~Purify! are given in Table II for water, estane,
and fullerene for the STO-3G and 3-21G basis sets. These
are sustained values, and while dominated by multiplication,
they include additions, trace, diagonal adds, matrix-scalar
multiplication and input/output ~IO!. For reference,
Warner’s96 optimized DGEMM using 50350 subblocks
achieves a peak rate of approximately 270 MFLOPS on the
195 MHz SGI Origin 2000.

The MFLOPS rate for line minimization is less than for
purification or gradient evaluation. This is because cache and

integer overheads are higher per FLOP for the evaluation of
Tr$•% with Eq. ~46! than for the matrix multiply and addition.

As the ratio of hydrogens to heavy atomsNH /NX de-
creases, the MFLOPS rate increases. This is because the
number of basis functions per atom is smaller~one for
STO-NG and two for 3-21G! for hydrogen than for the
heavy atoms~five for STO-NG and nine for 3-21G!, and
computations involving small dimensions are inefficient.
This effect is less pronounced for the 3-21G basis set be-
cause the CPU time in this case is dominated by the
93939 DGEMM corresponding to the all heavy atom mul-
tiplies. As larger basis sets are used, the influence ofNH /NX

will become less significant, and the peak rate will be deter-
mined by DGEMM efficiency, which is limited by cache
effects and is block size dependent.96,97

2. SPAMM

The choice

MultNeglect51022TrixNeglect ~50!

has been found to yield results that are very close to those
obtained with MultNeglect50, and this parametrization has
been used throughout. In Fig. 6, results are shown using
SPAMM with this default parametrization and with
MultNeglect510214. The effects of SPAMM here and in the
other systems studied are small~,10%!. Nevertheless, it
may be more effective in systems which are not as well
localized as those studied here.

3. Nonlinear conjugate gradient vs purification cycles

As mentioned in Sec. III B, the CPU time per nonlinear
conjugate gradient step grows with the number of steps
taken. This is shown in Table III for the 3-21G 350 water

FIG. 9. Absolute errors in converged total energies for the RHF/3-21G
sequence of water clusters.

FIG. 10. Absolute errors in converged total energies for the RHF/STO-3G
sequence of estane polymers.

TABLE II. Sustained MFLOPS rates as a function of different systems and
basis sets.NH /NX is the ratio of hydrogen atoms to heavy atoms.

System NH /NX Basis set

MFLOPS

GradE LineM Purify

Water 2 STO-3G 71 57 81
Estane 1 STO-3G 100 83 104
Fullerene 0 STO-3G 162 136 158
Water 2 3-21G 137 125 140
Estane 1 3-21G 154 135 150
Fullerene 0 3-21G 163 145 157

TABLE III. The increase in CPU time per orthogonal nonlinear conjugate
gradient cycle for the 3-21G 350 water calculation with TrixNeglect
51027 and MultNeglect51025.

I CG CPU ~s!

0 407
1 505
2 714
3 780
4 749
5 905
6 828
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calculation. Note that the first cycle’s cost is half as much as
the last cycle. The reduction in the number of purification
steps required to reach stagnation is shown in Table IV for
Ncg53 and Ncg57. Stagnation occurs when MaxiDPIJiF

fails to decrease with continued iteration due to the approxi-
mate matrix algebra.

VI. CONCLUSIONS

A simplified density matrix minimization~SDMM! has
been introduced and shown to yield linear scaling CPU times
that are highly competitive with a state-of-the-art dense
eigensolver. This work is the first demonstration of linear
scaling HF theory for three-dimensional systems, and one of
only a few that consider double zeta basis sets or the behav-
ior of errors with increasing system size.

The orthogonal simplified density matrix minimization
uses four fewer matrix multiplies than conventional imple-
mentations of the LNVD density matrix minimization, and
requires no transpositions. In addition, it is found that only a
few minimization steps are required, and that the majority of
the work can be shifted to the quadratically convergent
McWeeny purification. For more approximate matrix thresh-
olds, taking fewer nonlinear conjugate gradient steps is
found to yield both faster CPU times and more accurate re-
sults.

The nonorthogonal simplified density matrix minimiza-
tion turns out to be noncompetitive with the orthogonal ver-
sion, and is unable to achieve linear scaling.

The AINV algorithm for computation of the inverse
Cholesky factorZ has been introduced to linear scaling elec-
tronic structure theory, and found to be essential for working
with nonorthogonal basis sets. In particular,Z is used in the
transformation to and from an orthogonal representation, for-
mation of a linear scaling initial guess, application of the
inverse overlap, and in DIIS extrapolation.

A sparse atom-blocked matrix algebra was introduced
and found to yield sustained performances of up to 160
MFLOPS, which is more than half of the 270 MFLOPS pos-
sible with an optimized DGEMM. It is interesting to con-

sider an extension of this approach to uniform block sizes
that are cache optimal, which could yield a factor of two
speedup.

The methods developed here should lead to very effi-
cient parallel implementations. Sparse matrix multiplication
is efficient in parallel, and blocking will improve this effi-
ciency by reducing the overhead associated with decomposi-
tion and reordering. Also, because the computation ofZ re-
duces to performing matrix multiplies rather than triangular
solves~as in the case ofL !, the AINV algorithm is ideally
suited for parallel implementations.

Linear scaling Hartree–Fock theory for insulating three-
dimensional systems has been clearly established in Refs. 13
and 14 for the Fock build, and here for solution of the SCF
equations. While achieving linear scaling may be more dif-
ficult for model chemistries that yield a less inflated HOMO-
LUMO gap, with parallel implementation and code matura-
tion the outlook for large scale application of the simplified
density matrix minimization is bright.
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