Published April 3, 2018 | Version v1
Journal article Open

Reversible Immobilization of Proteins in Sensors and Solid‐State Nanopores

Description

The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica‐based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long‐term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid‐state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine‐tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices.

Notes

L. Yate (CIC biomaGUNE) is acknowledged for providing metal surface coatings, and A.N.A would like to thank Yaron Caspi for discussions and Diederik Lamen Trip (both Delft University of Technology) for sharing the conductance analysis script. This work was supported by the European Research Council Starting Grant "JELLY" (306435) to R.P.R., the European Research Council Advanced Grant "SynDiv" (669598) and NanoNextNL (program 07A.05) to C.D., and the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program.

Files

Ananth_Small_2018_1703357_MS+SI_author version.pdf

Files (1.9 MB)

Additional details

Funding

JELLY – Biomolecular Hydrogels – from Supramolecular Organization and Dynamics to Biological Function 306435
European Commission