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An improved thermodynamic energy estimator for path integral simulations
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A new path integral energy estimator is presented that improves upon the thermodynamic energy
estimator via a free particle projection. This centroid thermodynamic estimator significantly reduces

the numerical noise of the thermodynamic estimator. The debate as to which estimator is better
(virial, centroid virial, or thermodynamjds partially resolved. The centroid estimators are found to

be significantly better than their noncentroid analogues. The new centroid thermodynamic estimator
has accuracy close to the centroid virial estimator, and may have particular advantages when
derivatives of the potential are expensive to evaluate2@2 American Institute of Physics.
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I. INTRODUCTION and acting with an external potentigl. V¢ is called the

) 3 primitive propagator because it is valid to first order in
The path integral Monte Carlo® (PIMC) method has Nm/%28.

found wide application in quantum physfand chemistry.
We consider here a non-relativistic particle of magstem-
peratureT, and HamiltonianH=p?/2m+V in one spatial
dimension. The equations are generalizable to multiple patl- CURRENTLY USED ENERGY ESTIMATORS

ticles in multiple dimensions, either distinguishable or with In the present work we consider calculating the expecta-

exchange statistics. We defifiz=1/kgT, wherekg is Bolt- tion value of the quantum mechanical enefy The most

zmann'’s constant. In the path integral technique, the canoni-__. L I _ i
cal density matrixp(ry,r},8)=(r.le #"|r}) is evaluated straightforward methddis differentiatingE= —  In Q/33:

by insertingN—1 resolutions of the identity: 1/ Nm \N? Y
" = 6 —ZqTfLZB drl' "drNéTe C, (5)
p(rlarN+1vB):fdrz"'drNjHl p(rj.ri+1,B/N). (1) where
er=Kr+V, ()

Since the density matrices in the integrand are evaluated at

temperaturdN T, a high temperature Trotter approximation is _ 1N
valid:8 == > V(r)), )
N ]:1
Nm |12 Nm N
p(r~,r~+1,BIN)~<—2) eXP{——z(f‘—f‘H)z _ N Nm
) 27h*p 2np ) KT—ﬁ—Tzﬂzj; (rj=rjs0)? t3)
—E[V(rj)JrV(rHl)]]. 2) Equation (5) can be evaluated via the Metropolis Monte
2N Carlo method e is called the thermodynamic estimator for

& whenry---ry are sampled according tdc. er is also
known as the Barker estimator.
The e; approach toE can be problematic in practice.

The path integral approach to the density matrix is applicabl
to the canonical partition functio®@= [drp(r,r,8), given

b
y The mean square fluctuations é grow asN/282 (hence,
[ Nm N2 Ve with the_ accuracy® suggesting that the virial estimater,
Q= 27wh?B f dry---drye e, © =Ky+V is better behaved:'?
N
where the propagator potent} is defined b 1
propagator p E y Ky=ae S 1V (1). )
N 2N =1
Nm 1
VcEJZl W(rj_rj+l)2+ NV, (4) A constant boundary term is sometimes added to properly

treat the transformation of the integral to the virial form,
with ry,,=r,. Equation(4) leads to the well-known inter- depending upon the values of and p at the system
pretation that the quantum path integral is the same as lboundaries® The centroid virial estimatorecy=Kcy+V
classical expectation value of the chain poteriigl, which  has been suggested, although the distinction betwgemd
consists olN beads bound together by harmonic interactionsecy is often ignored.

0021-9606/2002/116(14)/5951/5/$19.00 5951 © 2002 American Institute of Physics
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1 1 N strated by a simple change of variables and using the relation
KcvzﬁﬂL ﬁ,zl y;V'(r)), (100 yy=—3Ny;. We then havéwith dx=dy;---dyy_,dQ)
where y;=r;—q and q is the centroid variableq i:f dAK(yq--yp) e~ AVl In)
= (1/N) Eszlrj . The stretch estimator, the diffusion estima- 2p

tor, and directly applyindd to p have been proposed, but all

have difficulties in usability:** There is an unresolved de- X

bate as to which estimator is better depending upon what

sampling method is used and what chemical system is stud-he integrals in Eq(12) are independent af, allowing us to

ied (with some authors changing sigés:"9-2° arbitrarily choose a weighting function based gnWeight-
There are practical considerations that faggr Calcu-  ing by e AV(@ will dramatically increase the covariance of

lating K+ requires one less order of derivative informationthe free particle energy estimator with the total energy esti-

than Ky or Kqy for a given propagator. For example; ~ mator e (failing to apply this weight makes the method

-1
f dxe AVip(y1yn) ) (12)

when used with the higher order propagateee belowre- ineffective. Thus, we have

quires onlyV’, wherease, and ecy require V”. This is 1

problematic inab initio path integral methods when is _:J dAK (Y --yp) e AVl YN —AV(@)
computed via an electronic structure method, siveis 2p

often computationally expensive or unavailable. Also, for -1

someab initio methodsV' can cost easily an order of mag- x( f dxe AVl yn-AV@ | (13

nitude more thanV, eliminating the speedup gained by

choosing a virial based estimator. Partial averaged Fourier Our next objective is to transform E@13) so that it

PIMC requires derivatives one higher than the higher ordehas the same Boltzmann factor as E§). This is accom-

propagatof! This is particularly important aab initio path  plished using the umbrella sampling sche%e{G)z

integrals begin to appear in the literatdfe?® =(Ge AAY), I[(e”P2V),, where(O); denotes the classical
Higher order approximation@n #2B/Nm) to the density — expectation value oD according to potentiaj and AV

matrix have been shown to significantly increase the rate of=V,—V;. In our caseV,=V;,+V(q), V,=Vc, G=Kj,

convergence as a function bf 2’ ~3°These methods are im- and(G),=1/283 leads to

portant when the tools available for two-body interactfons PNV

are not applicable, such as @b initio path integrals. The u

next higher order propagator replac¥sin Eq. (4) with 2p

Ver(r)=V(r)+ B VV(r) 124N, where the second term pqp multiple particles in multiple dimensions, the 8/2s

; H 31-33 1y;
is the quantum correction t¥'. Higher order energy simply replaced withMD/283, whereM is the number of

estimators ¢, e, €l%) may also be derived for this den- atoms and is the number of dimensions. Thus we choose
sity matrix, where the derivation is completely analogous to

the one presented aboYeWe should note that for large f=Kse AV, (15
#2BINm, Vo4 may be problematic>3°

=(Kre AV, (14

The integral off can be evaluated at the end of a Monte
Carlo calculation provided that we determine the normaliza-
tion factor(e #2V), as part of the Monte Carlo calculation.

We expect that in thé?8/Nm<1 limit, the quantum
centroid will collapse andt will become highly correlated

We now show that the fluctuations ef can be reduced Wwith f. In the low T limit, f may lose correlation witter,
without significant computational overhead. In this method suggesting that we user— af with o chosen to minimize
we seek a functiori whose expectation valug) is known  the variance. A derivation similar to the one in Ref. 12 shows
or readily calculated. We then calculate a new correlated eghat the optimaky is

IIl. THE CENTROID THERMODYNAMIC ENERGY
ESTIMATOR

timator er— f, with expectation value o —(f). If the co- (exf)—(er)(f)
variance({ ef) is sufficiently large, the variance of the new =T > T . (16)
estimator will be significantly less than thatef. The grow- (9 =()

particle part of the problem, suggesting the free particle enfgctor of a((erf) —(er)(f)).

ergy as a correlated estimator, Let us summarize the resulting algorithm. We conduct a
1 Monte Carlo calculation using the potentid and accumu-
ﬁ:f drl-~~drNKT(r1---rN)e_'Bpr(rl""N) late the averages of estimatarsandf, normalization factor
(e"PAY), and covariancegerf) and(f2). By using the nor-

LBV () -1 mal modes of the chains as the Monte Carlo variables effi-
X f dry---drye PHRUETINT (1) ciency is gained becaus&(q) rarely change2 At the end

of the calculation, we determine The quantum mechanical

whereVy, is defined by Eq(4), but with V=0. e;=Kj for energy is then given by

the free particle, becausé=0. The free particle energy’s
independence of the centroid variabde may be demon- E={(er)— a(f)+ale PAV)/28. (17
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FIG. 1. The normalized fluctuations of the energy estimar for the o Y o )
harmonic oscillator withkgT/%w=0.05 as a functions of beads, The  FIG. 2. The standard deviation ee”"*")/24 divided by standard devia-
symbols in all figures ar®=er, O=ecr, ¢ =€y, andX=ecy. tion of ect, for the system in Fig. 1.

This correction is independent of the sampling scheme: noiin Eq. (10). At 0.5 K, ect and e are indistinguishable as is
mal modes, primitive, PIMD, et A similar correction is expected(highly quantum,a~0). As N increasesgcy re-
likely derivable for noncanonical ensembfés* The new placesect as the better estimator. At 15 K, the factor
estimator is called “centroid thermodynamieg, due to its  provides a correction andq is better thaney. Although
deviation fromer by a centroid projection. Attempts to apply this improvement is marginal angt,, is still better thanec+

this projection toe,, andecy, failed to change the variance in at 15 K, the improvement is significant because computa-
all systems studied and therefore no results for those methional work is proportional to the deviation squared ang

ods are presented. The method is summarized in the Appedoes not require knowledge &f'. As T rises to 50 K,er

dix. suffers from a large divergence, begt and ecy perform
well. The best estimator clearly depends upon the specific
IV. RESULTS conditions. For smalNT (large #28/Nm) the thermody-

namic estimatorgr and et are best. For larghl T the cen-

We define¢=|o/E| to be a normalized measure of fluc- troid estimatorsc, and et are best, because as the system
tuations to compare the stabilities of the estimators, wher@eats up, the chain collapses to the centroid. For shaé,
o? is the variance of the given energy estimator. A compariis the worst because it has no classical Bl/gpe term.
son of the estimators using the harmonic oscillatdr, Clearly, ec, andeqt are the better estimators.
=mw?x?/2, is presented in Fig. 1 witkgT/Aw=0.05. In
these calculations, normal mode sampling was used with the
primitive propagator. The number of Monte Carlo cycles was 0.1
chosen to converge the value §fThe variances shown are
independent of sampling scheme. As expected, the diver-
gence ofer increases witiN. For ect, « increases withN 0.08
and cancels out significant portions of the divergergg.is
clearly superior te,, and some of the reported deficiencies
of e, are significantly reduced by using,,. In Fig. 2, the
standard deviation ofe(e”#2V)/23 divided by the standard
deviation of ec is plotted. The noise in the normalization Y;
term (e~ A2V is clearly small compared to that &. There-

0.06 1

ST . ) : 0.04 - |
fore the noise irkE is not simply being moved over into the
normalization term. This is expected since most of the noise
comes fromK; and notV. 0.02 - |

Our new method was also applied to Lennard-Jones
clusters of Ag in Figs. 3-5 @=6.435a.u., e/kg
=119.8 K.*? At all T studied, e, (but not ec\) performs g . .
poorly. This is because.y, eliminates the divergent behavior 10 100
found in ey as the interatomic distance goes to zero found in
previous work!® because the in Eq. (9) is replaced withy FIG. 3. Ar; at 0.5 K, symbols as in Fig. 1.
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FIG. 4. A at 15 K; symbols as in Fig. 1. FIG. 6. Ars at 20 K. The filled boxes are{2) and crosses aregy .

Assuming that we have onf ande’, but notV” (often  perturbation theory. As an example, we studied the ion radi-
the casg we can use(} but note?). Therefore, because cq|.CH; . The classical potential was calculated with the
e} requires fewer beads thasty, the computational re- .311G* basis séf and unrestrictetf second order many
quirements could be less fef?}. We compare%} andecy  hody perturbation theory using tieamess code?® At 2000
for Arg at 20 K in Fig. 6. To achieve the accuracy €ft K with 16 beads the variance of the mean is 10.1 kcal/mol
with 1, 2, and 3 beads, using requires 3, 6, and 11 beads, for ¢; and 0.8 kcal/mol forecr. This results in a 160-fold
respectively. In each case we find that the deviation is largefeduction in the number of Monte Carlo steps needed to
for ecy than for the equivalently accuraigf?). The ecy  calculate the energy. For 1000 K the step reduction is 55%,

calculation will be longer than the equivales calculation  hile with 32 beads the reduction is 60%. For 300 K the step
by a factor 4.6 for 3 beads, 3.4 for 6 beads, and 4.7 for 1hymber reduction is 5%.

beads. In calculating these factors, the increased autocorrela-

tion time with N, the increased number &f evaluz_;\tions V. CONCLUSIONS

needed per Monte Carlo step with and the evaluations of

V(q) are all taken into account. We have presented a new estimator based on umbrella
The centroid thermodynamic energy estimator may besampling to significantly improve the efficiency of path inte-

particularly advantageous whaéfi is unavailable or expen- gral energy calculations. Our proposed centroid thermody-

sive to calculate. This occurs wheéW is calculated with namic estimator £c1) has smaller fluctuations than the ther-

high level electronic structure methods such as many bodgnodynamic estimatoer. We have appliedecr to analytic

potentials and potentials based aln initio electronic struc-

ture. We have found that the centroid virial estimatgy has

smaller fluctuations than the virial estimatgy. At low NT,

ect has smaller fluctuations thad,, . ec7 also has advan-

. tages at higheNT because it requires one less derivative of

the potential tharec,, . There is an intermediate regin@rg

i at 15 K) whereecy is better, becausg is large enough that

et is noisy, butT is not large enough for the free particle

projection to be more than marginally better. The free par-

ticle projections presented may be applicable to other prop-

erties calculated via estimators, such as pressure and heat

capacity. An energy estimator based on a linear combination

of er, f, andecy would provide the optimal energy estima-

] tor in all cases, with only a little more work than thate, .

This estimator would minimize the numerical noise.
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APPENDIX: SUMMARY OF METHODOLOGY
* Loop over normal modes.
- Attempt a Monte Carlo step.
- If move is accepted then,
* If mode is the centroid motion calculat4q).
* CalculateKt, Vi, Ve, AV.
- End if.
- Accumulatef, er, e #AV,
* End loop.
« Calculate optimakx with Eq. (16).
* Calculate correcte& with Eq. (17).
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