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An improved thermodynamic energy estimator for path integral simulations
Kurt R. Glaesemann and Laurence E. Fried
Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate,
University of California, Livermore, California 94551

~Received 11 December 2001; accepted 22 January 2002!

A new path integral energy estimator is presented that improves upon the thermodynamic energy
estimator via a free particle projection. This centroid thermodynamic estimator significantly reduces
the numerical noise of the thermodynamic estimator. The debate as to which estimator is better
~virial, centroid virial, or thermodynamic! is partially resolved. The centroid estimators are found to
be significantly better than their noncentroid analogues. The new centroid thermodynamic estimator
has accuracy close to the centroid virial estimator, and may have particular advantages when
derivatives of the potential are expensive to evaluate. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1460861#

I. INTRODUCTION

The path integral Monte Carlo1–3 ~PIMC! method has
found wide application in quantum physics4 and chemistry.5

We consider here a non-relativistic particle of massm, tem-
peratureT, and HamiltonianH5p2/2m1V in one spatial
dimension. The equations are generalizable to multiple par-
ticles in multiple dimensions, either distinguishable or with
exchange statistics. We defineb[1/kBT, wherekB is Bolt-
zmann’s constant. In the path integral technique, the canoni-
cal density matrixr(r 1 ,r 18 ,b)5^r 1ue2bHur 18& is evaluated
by insertingN21 resolutions of the identity:

r~r 1 ,r N11 ,b!5E dr2¯drN)
j 51

N

r~r j ,r j 11 ,b/N!. ~1!

Since the density matrices in the integrand are evaluated at
temperatureNT, a high temperature Trotter approximation is
valid:6

r~r j ,r j 11 ,b/N!'S Nm

2p\2b D 1/2

expH 2
Nm

2\2b
~r j2r j 11!2

2
b

2N
@V~r j !1V~r j 11!#J . ~2!

The path integral approach to the density matrix is applicable
to the canonical partition functionQ[*drr(r ,r ,b), given
by

Q5S Nm

2p\2b D N/2E dr1¯drNe2bVC, ~3!

where the propagator potentialVC is defined by

VC[(
j 51

N F Nm

2\2b2 ~r j2r j 11!21
1

N
V~r j !G , ~4!

with r N11[r 1 . Equation~4! leads to the well-known inter-
pretation that the quantum path integral is the same as a
classical expectation value of the chain potentialVC , which
consists ofN beads bound together by harmonic interactions

and acting with an external potentialV. VC is called the
primitive propagator because it is valid to first order in
Nm/\2b.

II. CURRENTLY USED ENERGY ESTIMATORS

In the present work we consider calculating the expecta-
tion value of the quantum mechanical energyE. The most
straightforward method7 is differentiatingE[2] ln Q/]b:

E5
1

Q S Nm

2p\2b D N/2E dr1¯drNeTe2bVC, ~5!

where

eT5KT1V̄, ~6!

V̄5
1

N (
j 51

N

V~r j !, ~7!

KT5
N

2b
2

Nm

2\2b2 (
j 51

N

~r j2r j 11!2. ~8!

Equation ~5! can be evaluated via the Metropolis Monte
Carlo method.8 eT is called the thermodynamic estimator for
E when r 1¯r N are sampled according toVC . eT is also
known as the Barker estimator.

The eT approach toE can be problematic in practice.
The mean square fluctuations ineT grow asN/2b2 ~hence,
with the accuracy!,9 suggesting that the virial estimatoreV

5KV1V̄ is better behaved:9–12

KV5
1

2N (
j 51

N

r jV8~r j !. ~9!

A constant boundary term is sometimes added to properly
treat the transformation of the integral to the virial form,
depending upon the values ofV and r at the system
boundaries.13 The centroid virial estimatoreCV5KCV1V̄
has been suggested, although the distinction betweeneV and
eCV is often ignored.4
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KCV5
1

2b
1

1

2N (
j 51

N

yjV8~r j !, ~10!

where yj[r j2q and q is the centroid variableq
[ (1/N) ( j 51

N r j . The stretch estimator, the diffusion estima-
tor, and directly applyingH to r have been proposed, but all
have difficulties in usability.4,14 There is an unresolved de-
bate as to which estimator is better depending upon what
sampling method is used and what chemical system is stud-
ied ~with some authors changing sides!.4,5,7,9–20

There are practical considerations that favoreT . Calcu-
lating KT requires one less order of derivative information
than KV or KCV for a given propagator. For example,eT

when used with the higher order propagator~see below! re-
quires only V8, whereaseV and eCV require V9. This is
problematic inab initio path integral methods whereV is
computed via an electronic structure method, sinceV9 is
often computationally expensive or unavailable. Also, for
someab initio methods,V8 can cost easily an order of mag-
nitude more thanV, eliminating the speedup gained by
choosing a virial based estimator. Partial averaged Fourier
PIMC requires derivatives one higher than the higher order
propagator.21 This is particularly important asab initio path
integrals begin to appear in the literature.22–26

Higher order approximations~in \2b/Nm! to the density
matrix have been shown to significantly increase the rate of
convergence as a function ofN.27–30These methods are im-
portant when the tools available for two-body interactions4

are not applicable, such as inab initio path integrals. The
next higher order propagator replacesV in Eq. ~4! with
Veff(r)5V(r)1b2\2@¹V(r)#2/24N2m, where the second term
is the quantum correction toV.31–33 Higher order energy
estimators (eT

(2) ,eV
(2) ,eCV

(2)) may also be derived for this den-
sity matrix, where the derivation is completely analogous to
the one presented above.34 We should note that for large
\2b/Nm, Veff may be problematic.35,36

III. THE CENTROID THERMODYNAMIC ENERGY
ESTIMATOR

We now show that the fluctuations ofeT can be reduced
without significant computational overhead. In this method,
we seek a functionf whose expectation valuêf & is known
or readily calculated. We then calculate a new correlated es-
timator eT2 f , with expectation value ofE2^ f &. If the co-
variance^eTf & is sufficiently large, the variance of the new
estimator will be significantly less than that ofeT . The grow-
ing fluctuations come from the Brownian motion of the free
particle part of the problem, suggesting the free particle en-
ergy as a correlated estimator,

1

2b
5E dr1¯drNKT~r 1¯r N!e2bVfp(r 1¯r N)

3S E dr1¯drNe2bVfp(r 1¯r N) D 21

, ~11!

whereVfp is defined by Eq.~4!, but with V[0. eT[KT for
the free particle, becauseV[0. The free particle energy’s
independence of the centroid variableq may be demon-

strated by a simple change of variables and using the relation
yN52( i 51

N21yi . We then have~with dX[dy1¯dyN21dq!

1

2b
5E dXKT~y1¯yN!e2bVfp(y1¯yN)

3S E dXe2bVfp(y1¯yN) D 21

. ~12!

The integrals in Eq.~12! are independent ofq, allowing us to
arbitrarily choose a weighting function based onq. Weight-
ing by e2bV(q) will dramatically increase the covariance of
the free particle energy estimator with the total energy esti-
mator eT ~failing to apply this weight makes the method
ineffective!. Thus, we have

1

2b
5E dXKT~y1¯yN!e2bVfp(y1¯yN)2bV(q)

3S E dXe2bVfp(y1¯yN)2bV(q) D 21

. ~13!

Our next objective is to transform Eq.~13! so that it
has the same Boltzmann factor as Eq.~5!. This is accom-
plished using the umbrella sampling scheme:37 ^G&2

5^Ge2bDV&1 /^e2bDV&1 , where ^O& j denotes the classical
expectation value ofO according to potentialj and DV
5V22V1 . In our case,V25Vf p1V(q), V15VC , G5KT ,
and ^G&251/2b leads to

^e2bDV&1

2b
5^KTe2bDV&1 . ~14!

For multiple particles in multiple dimensions, the 1/2b is
simply replaced withMD/2b, where M is the number of
atoms andD is the number of dimensions. Thus we choose

f 5KTe2bDV. ~15!

The integral of f can be evaluated at the end of a Monte
Carlo calculation provided that we determine the normaliza-
tion factor^e2bDV&1 as part of the Monte Carlo calculation.

We expect that in the\2b/Nm!1 limit, the quantum
centroid will collapse andeT will become highly correlated
with f . In the low T limit, f may lose correlation witheT ,
suggesting that we useeT2a f with a chosen to minimize
the variance. A derivation similar to the one in Ref. 12 shows
that the optimala is

a5
^eTf &2^eT&^ f &

^ f 2&2^ f &2 . ~16!

The variance ofeT2a f is always less than that ofeT by a
factor of a(^eTf &2^eT&^ f &).

Let us summarize the resulting algorithm. We conduct a
Monte Carlo calculation using the potentialVC and accumu-
late the averages of estimatorseT and f , normalization factor
^e2bDV&, and covarianceŝeTf & and^ f 2&. By using the nor-
mal modes of the chains as the Monte Carlo variables effi-
ciency is gained becauseV(q) rarely changes.38 At the end
of the calculation, we determinea. The quantum mechanical
energy is then given by

E5^eT&2a^ f &1a^e2bDV&/2b. ~17!
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This correction is independent of the sampling scheme: nor-
mal modes, primitive, PIMD, etc.4,5 A similar correction is
likely derivable for noncanonical ensembles.39–41 The new
estimator is called ‘‘centroid thermodynamic’’eCT , due to its
deviation fromeT by a centroid projection. Attempts to apply
this projection toeV andeCV failed to change the variance in
all systems studied and therefore no results for those meth-
ods are presented. The method is summarized in the Appen-
dix.

IV. RESULTS

We definej5us/Eu to be a normalized measure of fluc-
tuations to compare the stabilities of the estimators, where
s2 is the variance of the given energy estimator. A compari-
son of the estimators using the harmonic oscillator,V
5mv2x2/2, is presented in Fig. 1 withkBT/\v50.05. In
these calculations, normal mode sampling was used with the
primitive propagator. The number of Monte Carlo cycles was
chosen to converge the value ofj. The variances shown are
independent of sampling scheme. As expected, the diver-
gence ofeT increases withN. For eCT , a increases withN
and cancels out significant portions of the divergence.eCV is
clearly superior toeV , and some of the reported deficiencies
of eV are significantly reduced by usingeCV . In Fig. 2, the
standard deviation ofa^e2bDV&/2b divided by the standard
deviation ofeCT is plotted. The noise in the normalization
term ^e2bDV& is clearly small compared to that ofE. There-
fore the noise inE is not simply being moved over into the
normalization term. This is expected since most of the noise
comes fromKT and notV.

Our new method was also applied to Lennard-Jones
clusters of Ar6 in Figs. 3–5 (s56.435 a.u., e/kB

5119.8 K!.42 At all T studied,eV ~but not eCV! performs
poorly. This is becauseeCV eliminates the divergent behavior
found ineV as the interatomic distance goes to zero found in
previous work,19 because ther in Eq. ~9! is replaced withy

in Eq. ~10!. At 0.5 K, eCT andeT are indistinguishable as is
expected~highly quantum,a'0!. As N increases,eCV re-
placeseCT as the better estimator. At 15 K, thea factor
provides a correction andeCT is better thaneT . Although
this improvement is marginal andeCV is still better thaneCT

at 15 K, the improvement is significant because computa-
tional work is proportional to the deviation squared andeCT

does not require knowledge ofV8. As T rises to 50 K,eT

suffers from a large divergence, buteCT and eCV perform
well. The best estimator clearly depends upon the specific
conditions. For smallNT ~large \2b/Nm! the thermody-
namic estimatorseT andeCT are best. For largeNT the cen-
troid estimatorseCV andeCT are best, because as the system
heats up, the chain collapses to the centroid. For smallN, eV

is the worst because it has no classical 1/2b type term.
Clearly, eCV andeCT are the better estimators.

FIG. 1. The normalized fluctuations of the energy estimator (j) for the
harmonic oscillator withkBT/\v50.05 as a functions of beads,N. The
symbols in all figures ares[eT , h[eCT , L[eV , and3[eCV .

FIG. 2. The standard deviation ofa^e2bDV&/2b divided by standard devia-
tion of eCT , for the system in Fig. 1.

FIG. 3. Ar6 at 0.5 K, symbols as in Fig. 1.
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Assuming that we have onlyV andV8, but notV9 ~often
the case!, we can useeCT

(2) but not eCV
(2) . Therefore, because

eCT
(2) requires fewer beads thaneCV , the computational re-

quirements could be less foreCT
(2) . We compareeCT

(2) andeCV

for Ar6 at 20 K in Fig. 6. To achieve the accuracy ofeCT
(2)

with 1, 2, and 3 beads, usingeCV requires 3, 6, and 11 beads,
respectively. In each case we find that the deviation is larger
for eCV than for the equivalently accurateeCT

(2) . The eCV

calculation will be longer than the equivalenteCT
(2) calculation

by a factor 4.6 for 3 beads, 3.4 for 6 beads, and 4.7 for 11
beads. In calculating these factors, the increased autocorrela-
tion time with N, the increased number ofV evaluations
needed per Monte Carlo step withN, and the evaluations of
V(q) are all taken into account.

The centroid thermodynamic energy estimator may be
particularly advantageous whenV8 is unavailable or expen-
sive to calculate. This occurs whenV8 is calculated with
high level electronic structure methods such as many body

perturbation theory. As an example, we studied the ion radi-
cal •CH2

1 . The classical potentialV was calculated with the
6-311G** basis set43 and unrestricted44 second order many
body perturbation theory using theGAMESS code.45 At 2000
K with 16 beads the variance of the mean is 10.1 kcal/mol
for eT and 0.8 kcal/mol foreCT . This results in a 160-fold
reduction in the number of Monte Carlo steps needed to
calculate the energy. For 1000 K the step reduction is 55%,
while with 32 beads the reduction is 60%. For 300 K the step
number reduction is 5%.

V. CONCLUSIONS

We have presented a new estimator based on umbrella
sampling to significantly improve the efficiency of path inte-
gral energy calculations. Our proposed centroid thermody-
namic estimator (eCT) has smaller fluctuations than the ther-
modynamic estimatoreT . We have appliedeCT to analytic
potentials and potentials based onab initio electronic struc-
ture. We have found that the centroid virial estimatoreCV has
smaller fluctuations than the virial estimatoreV . At low NT,
eCT has smaller fluctuations thaneCV . eCT also has advan-
tages at higherNT because it requires one less derivative of
the potential thaneCV . There is an intermediate regime~Ar6

at 15 K! whereeCV is better, becauseT is large enough that
eT is noisy, butT is not large enough for the free particle
projection to be more than marginally better. The free par-
ticle projections presented may be applicable to other prop-
erties calculated via estimators, such as pressure and heat
capacity. An energy estimator based on a linear combination
of eT , f , andeCV would provide the optimal energy estima-
tor in all cases, with only a little more work than that ofeCV .
This estimator would minimize the numerical noise.
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APPENDIX: SUMMARY OF METHODOLOGY
• Loop over normal modes.

- Attempt a Monte Carlo step.
- If move is accepted then,

* If mode is the centroid motion calculateV(q).
* CalculateKT , Vf p , VC , DV.

- End if.
- Accumulatef , eT , e2bDV.

• End loop.
• Calculate optimala with Eq. ~16!.
• Calculate correctedE with Eq. ~17!.
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