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Linear scaling computation of the Fock matrix. VI. Data parallel computation
of the exchange-correlation matrix
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Recently, early onset linear scaling computation of the exchange-correlation matrix has been
achieved using hierarchical cubature@J. Chem. Phys.113, 10037 ~2000!#. Hierarchical cubature
differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows
for a straightforward domain decomposition in parallel computations; the volume enclosing the
entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel
approach, each box requires only a fraction of the total density to perform the necessary numerical
integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be
exploited to reduce communications between processors as well as to avoid memory and copy
overheads associated with data replication. Although the hierarchical cubature grid is Cartesian,
naive boxing leads to irregular work loads due to strong spatial variations of the grid and the
electron density. In this paper we describe equal time partitioning, which employs time
measurement of the smallest sub-volumes~corresponding to the primitive cubature rule! to load
balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of
mass partitioning, equal time partitioning exploits smooth variation of the density and grid between
iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time
partitioning applied to taxol~62 heavy atoms! attained a speedup of 61 out of 64 processors, while
for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The
efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per
processor increases. With a fine grid and the 6-311G~df,p! basis set, calculations on the 26 atom
moleculea-pinene achieved a parallel efficiency better than 99% with 64 processors. For more
coarse grained calculations, superlinear speedups are found to result from reduced computational
complexity associated with data parallelism. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1568734#

I. INTRODUCTION

Density functional theory~DFT! and its variant, the hy-
brid Hartree–Fock/density functional theory~HF/DFT! have
proven to be accurate and computationally efficient. These
model chemistries are routinely used by conventional
Gaussian-orbital quantum chemistry codes to excellent ad-
vantage. Recently, significant progress has been achieved in
the algorithmic development ofO(N) alternatives to these
conventional methods, where compute times scale linearly
with system sizeN.1,2 These linear scaling methods over-
come a number of bottlenecks of orderO(N2 – 3) associated
with conventional methods, including computation of the ex-
act Hartree–Fock exchange matrix,3–8 the Coulomb
matrix,9–14 the exchange-correlation matrix,15–18and density
matrix alternatives to an eigensolution of the self-consistent-
field ~SCF! equations.19–30

The existence of linear scaling methods has been argued
from the concept of ‘‘nearsightedness’’ or quantum
locality,31,32 which implies that the density matrixn(r ,r 8)
goes to zero asur2r 8u→`. The fundamental reason for this
is the loss of quantum phase coherence between points that

are far apart. It is important to note that quantum locality
also implies data locality, which is an essential property for
scalable parallel algorithms. With parallel linear scaling
methods, ann-fold increase in processors should lead ap-
proximately to ann-fold increase in simulation capability. In
practice, however, this is true only for scalable algorithms.
While there has been continued efforts to parallelize conven-
tional quantum chemistry codes,33–41 taking advantage of
quantum locality to achieve parallel efficiency is a largely
unexplored but important area of research in linear scaling
SCF theory.

One of most computationally demanding parts of a mod-
ern Gaussian-orbital SCF code is numerical integration of
the exchange-correlation potential for DFT or HF/DFT cal-
culations. Linear scaling approaches have been proposed to
solve this problem.15–18 Most works use Becke42 nuclear
weight functions that partition the integrand into a sum of
single-center integrations, each with a nuclear origin. Stan-
dard numerical techniques may then be used to perform one-
center numerical integration in spherical polar coordinates. It
should be observed that this transformation overcomes the
primary nuclear cusp in the electron density. However, there
are additional complexities in the Becke approach. First, thea!Electronic mail: mchalla@lanl.gov
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radial Jacobian cannot suppress cusps at other nuclear cen-
ters. These secondary cusps can be damped to zero with a
sharper partition, but this has the risk of introducing addi-
tional discontinuities in the integrand. Second, increasing
density of the radial grid does not guarantee convergence to
a more accurate result. Third, the overlapping nature of the
Becke weight functions impedes clean spatial partitioning,
which is important for achieving true linear scaling, simple
domain decomposition and data parallelism.

A different approach, hierarchical cubature~HiCu! em-
ploys an adaptive telescoping Cartesian grid with primitive
cubature rules at the finest level of resolution.18 In HiCu, the
hierarchical adaptive grid resolves strong variations and mul-
tiple length scales encountered in numerical integration of
the exchange-correlation matrixK xc . The k-d tree43–45 data
structure is used to represent the adaptive grid or CubeTree.
The electron density of the system is also represented by the
k-d tree data structure, called a RhoTree. Each node in ak-d
tree contains a bounding box~BBox! that encloses the spatial
data contained by it and its children~if the node is not a leaf
node!. Because of the hierarchical organization of data in a
k-d tree, a search for all data within a given Euclidean dis-
tance~i.e., a range query! is an efficientO(log2 N) operation.

The CubeTree is constructed through recursive bisection
of a Cartesian domain~i.e., a box! enclosing the electron
density, applying a fixed fully symmetricC3 ~cubature!
rules46 within each BBox. Given a local error thresholdt, the
recursive bisection process stops whend,t, where

d5Dr1 1
3 A~Drx!

21~Dry!21~Drz!
2. ~1!

HereDr is the magnitude of the difference between the exact
electron charge in the BBox and the numerically integrated
electron charge,

Dr5U E
BBox

r~r !dr2(
i 51

Ng

wir~r i !U, ~2!

wherewi are the grid weights andNg is the number of grid
points in the cubature rule. The magnitude of the difference
between the analytic and numerical integrations of thei th
component~i.e., i 5x, y or z) of the density gradient“r,
denoted byDr i , is calculated in a fashion similar toDr.

Unlike the first implementation of HiCu,18 the current
implementation incorporates errors due to the density gradi-
ent, which leads to improved convergence properties for
functionals that employ the generalized gradient approxima-
tion ~GGA!. Following the spirit of direct SCF methods,47,48

the accuracy of HiCu can be systematically improved by
decreasing a threshold~t!. We also note that no fitting func-
tions are employed. The nonoverlapping Cartesian approach
combined with advanced data structures allows maximal ex-
ploitation of quantum locality, leading to an early onset of
true linear scaling even for large basis sets and three-
dimensional~3-D! systems. This nonoverlapping approach to
quantum locality may be leveraged to achieve both data lo-
cality and straightforward domain decompositions.

Our purpose in this work is to describe our development
of data parallel HiCu, with an emphasis on new, efficient and
generally applicable load balancing algorithms. For the first

time, we propose measurement based load balancing~equal
time partitioning! for domain decomposition in quantum
chemistry. Equal time partitioning exploits the smooth varia-
tion of the electron density between SCF cycles~so called
temporal locality49!, to predict an optimal domain decompo-
sition for the next iteration.

The remainder of this paper is organized as follows: In
Sec. II we discuss our strategies to efficiently parallelize the
computation ofK xc using HiCu. In Sec. III we discuss the
issue of data locality to reduce communications between pro-
cessors. In Sec. IV we describe a computational implemen-
tation of data parallel HiCu. In Sec. V we present the results
and discussions of the speedup tests performed on three sys-
tems. In Sec. VI we summarize the main conclusions of the
paper.

II. PARALLELIZATION OF HICU

In this section we describe the parallelization of HiCu
with the goal of obtaining good speedups even for fine-
grained parallelism, which we consider to be one heavy atom
per processor. This is difficult, as the spatial distribution of
the grid-work, which depends on the electron density, is
highly irregular for an inhomogeneous system. We note that
grid points can experience very different work loads depend-
ing on their environment, as the HiCu method will always try
to minimize the work associated with gridding the density.
To obtain a good speedup, we need to reduce both load im-
balance and communications between processors. First we
discuss the issue of load balancing. The issue of communi-
cation and data parallelism is discussed in Sec. III.

Since HiCu is purely Cartesian, spatial decomposition
can be performed by simply sectioning the root BBox of the
RhoTree intoNb nonoverlapping subboxes. The root BBox
encloses the entire electron density, and is constructed by an
upward merge of sub BBoxes in the RhoTree. At the lowest
level, each BBox of the RhoTree is determined by the Gauss-
ian extent.

One approach to load balance is the master-slave ap-
proach, which has been used to calculateK xc in conventional
quantum chemistry programs.37,39,40In the context of HiCu,
a naive approach to master-slave load balancing involves
makingNb larger thanNp ~say,Nb54Np), whereNp is the
number of processors. The master program collects the re-
sults from a slave program which has finished its work on a
particular subbox. The master program then instructs the
slave program to work on a new subbox which has not been
assigned to any of the slave programs before.

We have tested this simple dynamic master-slave load
balancing scheme. Unfortunately, poor speedups are ob-
tained, especially when bothNb and Np are large. This is
because asNb increases, the time to deal with a subbox is
generally small~since the volumes are smaller!, so most
slave programs will finish their work very quickly and they
will spend significant time in contention for the master pro-
gram, a well-known problem with this approach.50,51 In
HiCu, this problem is exacerbated by the fact that the maxi-
mum load does not necessarily decrease linearly withNb due
to the irregular nature of the problem. It is interesting to note
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that Guerraet al.34 preferred a static dynamic load balancing
scheme over master-slave load-balancing because they found
that the repeated distribution of data requires much more
communication.

An alternative is to employ a heuristic work estimate to
guide the domain decomposition. We experimented with a
number of heuristics, including splitting the density into
equal-charge volumes and partitioning by center of mass. Of
these heuristic approaches, the center of mass~CM! method,
explained in the following, was found to have the greatest,
but still unsatisfactory efficiency.

Another approach to load balance is measurement. Mea-
surement approaches have several advantages: First they are
easy to program. Second, they work well with smooth varia-
tion of the work load in the time or iteration space~temporal
locality!, an exploitable feature in the SCF procedure. Third,
they have been employed with great success in tree-code
methods for solving theN-body problem49,52–57—HiCu has
significant homology with the current implementation of the
quantum chemical tree-code~QCTC!11,12,14 for solving the
quantum Coulomb problem.

In the remainder of this work we describe our develop-
ment of a measurement based method for load balancing data
parallel HiCu. Briefly, the overall scheme is as follows: First
the heuristic CM partitioning is used for the parallel calcula-
tion of K xc in the first SCF cycle. This provides a first mea-
surement for repartitioning the root BBox in the next SCF
cycle. As long as the starting guess is reasonable and patho-
logical charge sloshing does not occur, each repartition
should yield good load balance for the next iteration. In this
way, temporal locality49 of the problem is exploited to
achieve a continuously improved load balance. Equal time
repartitioning will be further explained in Sec. II B.

A. Center of mass partitioning scheme

In the center of mass~CM! partitioning scheme, we
make a plausible assumption that the computing time for a
subbox is proportional to the total electron charge in the box.
To partition a BBox~see Fig. 1!, we first calculate the center
of the electron charge, which we have loosely called the
‘‘center of mass.’’ We assume that the electron charge due to
an atomi is smeared out evenly in a sphere of radiusRi ,
which we have taken to be the Bragg–Slater radius58 for the
atom. The Bragg–Slater radius for an atom is the empirical
atomic radius, derived from the fact that two atoms forming
a bond in a crystal or molecule gives an approximate value
of the internuclear distance. It is observed that interatomic
bond lengths in solids and molecules, whether ionic or cova-
lent, are approximately equal to pairwise sums of unique
atomic radii.58 The center of mass~charge! X is given by

X5
( iZeff,iXeff,i

( iZeff,i
, ~3!

whereZeff,i5Zi(LxLyLz/Vi), with Vi54pRi
3/3. The symbols

Lx , Ly , Lz andXeff,i are explained in Fig. 1. The indexi in
Eq. ~3! runs through all atoms which overlap~totally or par-
tially! with the box to be partitioned. In practice, we only
calculate one component ofX, which is along the largest
dimension of the box, since only one cutting plane is passing

throughX. Each of the two subboxes after a CM partitioning
may be subjected to another CM partitioning. For simplicity,
we always partition the root BBox in such a way that the
number of the subboxes is a power of two, even though this
restriction can be dropped easily~see Appendix A for a gen-
eral equal time partitioning!. In a parallel calculation, only
one processor will perform the serial CM partition and
broadcast the dimensions of subboxes to all other processors.
It is important to emphasize that although the CM partition-
ing scheme might not give a good load balance, it does serve
as a cheap and good starting partition for parallel HiCu. This
is not a problem even for a large system because we can use
a reasonably large local error thresholdt and a minimal basis
set to start a calculation while the equal time partitioning
scheme, to be explained in Sec. II B, will improve the effi-
ciency in subsequent SCF cycles. One can then switch to a
better basis set or lower the thresholdt during the iterative
calculations.

B. Equal time partitioning scheme

Next, we discuss measurement approaches to domain de-
composition, with the goal of repartitioning the root BBox
based on workload information collected during CubeTree
construction in the previous SCF cycle. By analogy with
other parallel methods for computation ofK xc , we first con-
sidered distributing an equal share of grid points, naively
reasoning that the work load would be proportional to their
number. If we evaluated the density using conventional
methods, this would certainly be so. However, this is not a
reliable tack because each leaf node interacts with the
RhoTree in a different way, always attempting to minimize
the total work load. Also, because each interaction of a leaf
node with the RhoTree is so nonuniform, the simple interac-

FIG. 1. A schematic diagram to explain the center of mass~CM! partition-
ing scheme. A sphere of Bragg–Slater~Ref. 58! radiusRi centered on the
atom i is drawn for each atom~for simplicity, only one atom is considered
in this case!. The volume of the box–sphere intersection is approximated by
LxLyLz , where theLx is the range of intersection between the sphere and
the box in thex direction.Ly and Lz are calculated in a similar way. For
simplicity we have assumed that the effective chargeZeff,i is centered at
Xeff . Also shown is a cutting plane C passing through the center of massX.
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tion counting mechanisms employed by parallelN-body
methods49,52–57are not a viable alternative. This line of rea-
soning led us in the development of equal time~ET! parti-
tioning, which uses the elapsed wall time associated with
Cartesian sub-volumes~here the leaf nodes! to predict a good
load balance in the next iteration.

In the ET partitioning of HiCu, the leaf-node time is
stored along with other attributes in a variable of type
CubeNode.18 With all processors holding leaf-node times in
their respective local CubeTrees, ET creates a new domain
decomposition by recursively partitioning a box into two
subboxes such that each subbox carries approximately the
same total leaf-node time~hence ‘‘equal time’’!. At the end
of the decomposition we are left withNp ET BBoxes in
which to construct a HiCu grid. The astute reader will by
now realize that this construction requiresNp to be a power
of two, and that errors made early in the decomposition will
propagate to the lowest level. The inconvenience associated
with the restriction of a power of two for the number of
processors is addressed in Appendix A. We have used a ro-
bust bisection method59 to find the plane which equally~to
some threshold! divides the workload in half~see Fig. 2!.
Notice that the cutting direction may be varied at each level
of the recursion to avoid elongated ET BBoxes which could
lead to poorly-balanced workloads. Our decomposition al-
ways chooses a direction which cuts along the largest box
dimension, since the cubature rules will work best for leaf
nodes close to cubic.46

The application of ET to HiCu centers around interaction
of the CubeTree leaf nodes with the RhoTree. This imple-
mentation does not account for the time taken to build each
matrix element by traversing the CubeTree. This is because
of the close homology between basis function products and

the electron density; they visit nearly identical portions of the
CubeTree. However, if this homology did not exist, ET could
associate primitive basis function products with Cartesian
sub-volumes and wall times, using the combined information
to load balance.

A working hypothesis of ET partitioning applied to
HiCU is that the sum of leaf-node times for the root BBox is
constant irrespective of sectioning. In practice this assump-
tion is only approximately true, as the total number of leaf
nodes and their times may fluctuate if the cutting planes are
shifted. This is because with each new partitioning the
CubeTree will readjust, potentially using a different number
of leaf nodes to satisfyd,t. Also, as the time to create each
leaf node depends on its size and position, readjustments will
lead to leaf-node times that are somewhat different. Finally,
variation of the density and hence the grid will occur in all
but the last few SCF cycles. All of these factors work against
ET partitioning. The magnitude of these factors depends on
the granularity of the partition, as will be seen in Sec. V.

III. DATA PARALLEL APPROACH

Data parallelism is essential for scalable algorithms, as
data replication stands to exhaust local memory and throttle
communications with increasingN and Np . For parallel
HiCu, each of the ET BBoxes requires only local information
about the electron density. By building alocally essential
RhoTree, which is just sufficient to create the grid in an ET
BBox, redundant replication of data is avoided. Another ad-
vantage is that the smaller locally essential RhoTree is more
efficient to traverse relative to the entire RhoTree that would
be encountered in a replicated data scheme. This reduced
complexity due to data parallelism can lead to superlinear
speedups as shown in Sec. V.

Data parallelism begins with a distributed atom-blocked
compressed sparse row~DBCSR!60 density matrixPp, which
is used by program MAKERHO to create an intermediate dis-
tributed Hermite–Gaussian~HG!14,18,61 densityrp. The in-
termediate density consists of primitive distributions associ-
ated with only the rows spanned byPp. MAKERHO writesrp

to the local disk in parallel, avoiding IO and network bottle-
necks. As an aside, this is the same density also used by
program QCTC.11,12,14The intermediate densityrp is gener-
ally insufficient to build a CubeTree in an ET BBox. Com-
munication involving all processors now occurs to construct
the locally essential densityrLE

p . Ultimately, sophisticated
ordering and scheduling techniques could be used to reduce
complexity of this step. So far, however, we have found
no degradation of performance due to this redistribution.
The construction ofrLE

p involves all processes going through
their local primitive density distributions, performing box–
box overlap tests as described in Ref. 18 to determine the
exchange of data. After this redistribution of densities, the
construction of the locally essential RhoTree, local
CubeTree, and local partially summed exchange-correlation
matrix ~denoted byL xc

p ) proceeds independently. The local,
partially summed exchange-correlation matrix results from
numerical integration of all primitive basis function products

FIG. 2. A schematic diagram to illustrate the equal time~ET! partitioning
scheme. For simplicity a two-dimensional analog is used. The rectangles
represent the bounding ‘‘boxes’’ of the leaf nodes in a CubeTree. Different
shades are used for different rectangles to indicate that the leaf-node times
are different in general. The distance of the cutting line C from the left edge,
x, is determined by the condition that the sum of the leaf-node times on both
sides of the partition line C is equal~i.e., TL5TR). Notice that we have
chosen the direction for partitioning as the direction which gives the largest
dimension.
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in the ET BBox, and is related to the full exchange-
correlation matrixK xc by

K xc5 (
p51

Np

L xc
p , ~4!

although the summation in Eq.~4! is not explicitly carried
out. Rather,L xc

p is redistributed and resumed to yield a non-
overlapping row-distributedK xc

p .
As Np becomes large, the ET BBox will become small

and the corresponding local exchange-correlation matrix will
become very sparse. During matrix construction there can be
significant overheads associated with simple box–box testing
of primitive basis function product BBox overlaps with the
ET BBox. This problem is also encountered for periodic
HiCu,62 where a double sum over lattice vectors leads to a
substantial fraction of basis function products that are out-
side the root BBox. Our solution, described in detail
elsewhere,63 is to perform a high level test between basis
function products in an atom–atom pair and the ET BBox
using a cylinder-box overlap test.

Another potential complexity encountered with fine
grained parallelism involves the redistribution and resumma-
tion of L xc

p . If one uses sparse-matrix data structures related
to the standard CSR64,65data structure such as the DBCSR or
BCSR constructs,60 the resummation of very many small
sparse matrices can lead to large copy overheads. We have
developed the Fast Matrix66 ~FastMat! data structure to ad-
dress this problem, in which all rows are connected by a
linear linked list, while each row is represented by a binary
tree. This new construct has a low overhead for random in-
sertions and updates of atom–atom blocks. It also allows
many operations such as matrix–matrix addition and matrix
truncation to be done in-place, reducing both memory and
copy overheads.

IV. IMPLEMENTATION

We have implemented the parallel HiCu algorithm in
MONDOSCF,67 a suite of programs for linear scaling elec-
tronic structure theory andab initio molecular dynamics.
Figure 3 shows the general flow of an SCF cycle, with ex-
panded detail of parallel HiCu. MONDOSCF has been written
in Fortran 90/95 with the message-passing library MPI.68

Leaf-node times are calculated with theMPI–WTIMEMPI
function.

V. RESULTS

We have performed scaling tests on taxol, a cluster of
110 water molecules, anda-pinene with 2n processors,
where n typically ranges from 1 to 7. These systems are
chosen because they are highly inhomogeneous, three-
dimensional systems posing a challenge to parallel HiCu. All
runs on the first two systems were performed on a single SGI
Origin 2000 with 128~250 MHz MIPS R10000 MIPS! pro-
cessors. For the calculations ona-pinene, we used a cluster
of 256 4 CPU HP/Compaq Alphaserver ES45s with the
Quadrics QsNet High Speed Interconnect.

We start the calculations with the STO-3G basis set and
a large thresholdt, switch to the 3-21G basis set using our
mixed integral approach, and run for three SCF cycles. The
density matrixP is saved to disk and scaling tests of parallel
HiCu are performed. Timings for parallel HiCu are taken at
the fourth cycle where the center of mass partition is used,
and at the fifth cycle where the equal time partition is used.
The procedure of switching the basis set and iterating for a
few SCF cycles places the electron density in the middle of
convergence. This is not really necessary, as performance is
quite insensitive to the SCF cycle.

The result of taxol scaling tests is shown in Fig. 4, where
the center of mass partitions perform rather poorly past 16
processors, with a speedup of only 22.4 obtained at 64 pro-
cessors. However, the equal time partitions give good scal-

FIG. 3. The general flow of MONDOSCF, with the par-
allel HiCu subroutine expanded. Refer to the text for
more details.
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ing results compared to the ideal speedup, obtaining a
speedup of 60.8 with 64 processors. We note that our result
of a speedup of 7.03 with 8 processors compares favorably
with the speedup of about 6.0 of Sosaet al.,38 which is for an
entire single-point energy calculation.

Similar scaling tests have been performed on a cluster of
110 water molecules. Figure 5 shows that the center of mass
partition gives a better speedup than in the case of taxol.
Equal time repartitioning is highly effective. The speedup is
almost ideal up to 64 processors. We observe a superlinear
speedup at 32 processors, which is a medium-grained calcu-
lation. We attribute the superlinear speedup to a good load
balance and to reduced complexity associated with data par-
allelism, where the memory access time has been greatly
reduced with a smaller RhoTree. The speedup with 128 pro-
cessors degrades slightly to 112.64~an efficiency of 88%!.
Still, this is an encouraging result as the 128-processor run
corresponds to very fine-grained parallelism, with less than
one heavy atom per processor. The reason for this degraded
efficiency is not due to communication overhead but to in-
trinsic limitations in the ET scheme associated with fluctua-
tions in the leaf-node count and small nonconservation of

total times, as explained in Sec. II B. While there are almost
certainly ways to overcome/compensate for these effects, we
feel that the overall performance of ET for parallel HiCu
is outstanding. To explore the behavior of the current imple-
mentation with Np;1024 will require a fully parallel
MONDOSCF, which we are actively pursuing.

A well studied system in parallel quantum chemistry is
6-311G~df,p! a-pinene (C10H16).

37,38To date, the most com-
petitive rate for this system is 37.3 out of 64 processors,
achieved by Furlaniet al.37 over a complete SCF cycle. Scal-
ing results for a medium accuracy grid corresponding tot
51.031026 are shown in Fig. 6, with HiCu achieving a
competitive rate of 45.11~70% efficiency! out of 64 proces-
sors. More impressively, with a high accuracy grid (t51.0
31028) equal time partitioning delivers an unrivaled 99.5%
efficiency with Np564 as shown in Fig. 7. These results
demonstrate that the efficiency of ET improves when the grid
work per processor is increased. This is not surprising as
increasing the grid work decreases the effective granularity,
reducing sensitivity to fluctuations in leaf-node times and
leading to a more predictive equal time partition.

FIG. 4. Scaling of parallel HiCu on taxol (C47H51NO14) RPBE/3-21G, with
t51.031026. Speedups are relative to a 2-processor calculation.

FIG. 5. Scaling of parallel HiCu on (H2O)110 RPBE/3-21G, witht51.0
31026. Speedups are relative to a 2-processor calculation.

FIG. 6. Scaling of parallel HiCu ona-pinene RPBE/6-311G~df,p!, with t
51.031026. Speedups are relative to a 2-processor calculation.

FIG. 7. Scaling of parallel HiCu ona-pinene RPBE/6-311G~df,p!, with t
51.031028. Speedups are relative to a 2-processor calculation.
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VI. CONCLUSIONS

We have developed an efficient and general load balanc-
ing technique, equal time~ET! partitioning, and used it in
data parallel implementation of the linear scaling hierarchical
cubature~HiCu! algorithm for numerical integration of the
exchange-correlation matrix. In the ET approach, strong spa-
tial irregularities in the work load are overcome by exploit-
ing temporal locality between iterations. We expect ET to
also exploit this effect between geometry steps in an optimi-
zation or molecular dynamics run. In this data parallel imple-
mentation, quantum locality has been used to reduce com-
munications between processors, to lower memory usage and
to reduce the computational complexity associated with tra-
versal of the RhoTree. In some cases, this last effect can lead
to superlinear speedups for medium grained calculations.

To the best of our knowledge, equal time partitioning is
the first measurement based load balancing strategy applied
to quantum chemistry. While ET partitioning shares some
commonalities with partitioning schemes for parallelN-body
tree-code solvers such as orthogonal recursive bisection
~ORB!52 and Costzones,55 ET differs by ~i! using exact load
timing information rather than counting the number of inter-
actions as in the ORB and Costzones methods, and~ii ! asso-
ciating this load with rectilinear partitioning of Cartesian
space rather than particle groupings~ORB! or nodes in a tree
~Costzones!. These are important distinctions for quantum
chemistry. Often methods are much more complicated than
the simpleN-body problem. Measured loads encompass ir-
regularities associated with different Gaussian extents, non-
uniform access patterns, etc. that cannot be accounted for by
counting interactions. Also, because we are often doing sev-
eral complicated things at once, attaching work loads to a
portion of 3-D space is a convenient catch-all that can be
associated with most objects and processes: basis function
products and matrix construction, electron densities and grid
construction, etc.

Our parallel approach to construction ofK xc differs fun-
damentally from other all-electron approaches in that~i! we
do not employ Becke weights and~ii ! we employ measure-
ment based load balancing. It is also different from many
implementations in that~iii ! it is data parallel. In addition to
the numerical issues discussed in the Introduction, we be-
lieve the nonoverlapping Cartesian subdivision used by HiCu
enables a more straightforward approach to data locality and
domain decomposition. Both the replicated data and the
master-slave approach have well known shortcomings for
fine grained massive parallelism, which have been avoided
here.

With Np<128, the predominant cause of deviation from
ideal scaling is due to basic nonlinearities in ET partitioning
of the HiCu grid, rather than overheads associated with inef-
ficient data structures or communication. These deviations
increase as the processor to grid work ratio increases, i.e.,
with finer granularity. The main factors that determine grid
work are the number of atoms andt, the threshold control-
ling grid accuracy. For example, calculations on (H2O)110

with a medium accuracy grid and;1 heavy atom per pro-
cessor are fine grained, achieving a parallel efficiency of
88% with Np5128. Even withNp /NAtoms.2 it is possible

achieve excellent scaling by loweringt. This was demon-
strated by 6-311G~df,p! calculations ona-pinene (C10H16)
with Np564, achieving a parallel efficiency of 99.5%. Ap-
parently, this is the first time this effect has been demon-
strated in the context of parallel quantum chemistry. More
importantly, because HiCu continues to achieve early onset
linear scaling even with tight numerical thresholds,18 these
results suggest the potential for very large, high quality cal-
culations through a combination of massive parallelism and
scalableO(N) algorithms.
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APPENDIX: A GENERAL EQUAL TIME
PARTITIONING SCHEME

In this Appendix a general equal time partitioning
scheme is described where the number of subboxes, denoted
by m, is not restricted to a power of two. To facilitate this
general partitioning, first create a binary tree withm leaf
nodes, with the condition that the depth between any two leaf
nodes differs by no more than one. Next, associate the edges
connecting a parent node to its left and right child nodes with
edge weights equal tonL /(nL1nR) and nR /(nL1nR), re-
spectively. HerenL (nR) is the number of left~right! leaf
nodes of the parent node. Figure 8~a! shows a binary tree and
all the edge weights for the case ofm55. With these edge
weights, it is a fairly simple matter to partition a total work-
loadW into m equal workloads. Starting from the root node,
recursively divide the workload in a parent node according to
the ratio of the edge weights, i.e.,nL :nR . At the end of this
procedure, all leaf nodes will have a workload ofW/m. Fig-

FIG. 8. An illustrative example to show the general equal time partitioning
scheme for the case ofm55.
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ure 8~b! shows the detailed workload information in all
nodes for the case ofm55. In a domain decomposition of a
root BBox, a bisection search may be used to partition a box
into two subboxes with a workload ratio equal tonL :nR ,
which can be easily read off from the edge weights of the
binary tree. It should be noticed that the ‘‘power-of-two’’
equal time partitioning scheme explained in Sec. II B is a
special case of this general partitioning scheme.
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