
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. B6, PAGES 8729-8735, JUNE 10, 1992 

Variation of the Gutenberg-Richter b Values and Nontrivial Temporal 
Correlations in a Spring-Block Model for Earthquakes 

KIM CHRISTENSEN AND ZEEV OLAMI 

Department of Physics, Brookhaven National Laboratory, Upton, New York 

We show that a two-dimensional spring-block model for earthquakes is equivalent to a contin- 
uous, nonconservative cellular automaton model. The level of conservation is a function of the 
relevant elastic parameters describing the model. The model exhibits power law distributions for 
the energy released during an earthquake. The corresponding exponent is not universal. It is a 
function of the level of conservation. Thus the observed variation in the b value in the Gutenberg- 
Richter law could be explained by a variation in the elastic parameters. We address the problem 
of the boundary conditions and display results for two extreme possibilities. Furthermore, we dis- 
cuss the correlation in the interoccurrence time of earthquakes. The model exhibits the features 
of real earthquakes: the occurrence of small earthquakes is random, while the larger earthquakes 
seem to be bunched. Primarily, the results of our work indicate that the dynamic of earthquakes 
is intimately related to the nonconservative nature of the model, which gives birth to both the 
change in the exponent and the correlations in interoccurrence time. 

1. INTRODUCTION 

In the realm of experimental physics, physicists deal with 
the characteristic behavior of real physical systems. In the 
world where theoretical physics reigns, physicists are con- 
cerned with simplified models. The majority of these mod- 
els are, of course, derived from real physical systems. The 
golden rule, when mapping a physical system into a model 
system, is to grasp only the important features of the rel- 
evant phenomena. Otherwise, the model system can very 
easily turn out to be too complex, so that it will be almost 
impossible to comprehend the mechanism, which is respon- 
sible for the observed behavior. 

Likewise, some insight into the complicated dynamics of 
earthquakes may be derived from simplistic models that con- 
tain the essential features of earthquakes. Such a simple 
model, a spring-block model, was proposed by Burridge and 
Knopoff [1967]. Originally, the model was defined as a two- 
dimensional model, but Burridge and Knopoff had to restrict 
themselves to a one-dimensional version when performing 
experiments and simulations. Models made up of the same 
basic ingredients (still in one dimension) were analyzed by 
several authors [Carlson and Langer, 1989a, b; Nakanishi, 
1990, 1991]. A two-dimensional version of the spring-block 
model was simulated by Otsuka [1972], who also suggested a 
quasi-static analysis of this model. Slightly different models 
were later innovated by Bak and Tang [1989], who suggested 
that the idea of self-organized criticality (SOC), which was 
first introduced in the context of complex dynamical sys- 
tems, might apply to earthquakes. Similar models were sug- 
gested by Brown eta/. [1991], Rundle and Brown [1991], and 
lto and Matsuzuki [1990]. Different models were proposed 
by Feder and Feder [1991] and Olarni et al. [1992]. 

The simplest test for these models is their ability to re- 
produce the Gutenberg-Richter law [Gutenberg and Richter, 
1956] which states that the rate of occurrence of earthquakes 
of magnitude M greater than m is given by the relation 
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log N(M > m) = a - bin, (1) 

where a and b are constants for a given fault. Measurement 
of the parameter b yields a wide range of values for different 
faults. Values of b from 0.80 to 1.06 for small earthquakes 
and 1.23 to 1.54 for large earthquakes have been recorded 
[Pacheco et al., 1992]. The energy E (proportional to the 
seismic moment) released during the earthquake iacreases 
exponentially with the earthquake magnitude, 

log E --' c + din, (2) 

s for small and large earth- where the parameter d is I and • 
quakes, respectively [EkstrSrn and Dziewonski, 1988]. By 
use of (1) and (2) we obtain a power law for the number of 
observed earthquakes with energy greater than E 

N(Eo > E)~ E-• -- E -•. (3) 
Note that B is in the same range for both small and large 
earthquakes, namely, 0.80- 1.05. 

While the models, simulated in the context of earthquake 
dynamics, produce power law for the frequency-energy dis- 
tribution, they do not predict the proper B nor can they 
explain the variability of the B values. 

Another important problem, associated with earthquake 
prediction, is the question of spatial and temporal correla- 
tion of earthquakes. It is observed that small earthquakes 
occur randomly in time. That is, the distribution of inte- 
roccurrence time of earthquakes with energy greater than E 
is a Poisson distribution for small E [Johnston and Nava, 
1985]. Larger earthquakes, on the other hand, seem to be 
clustered [Kagan and Jackson, 1991]. Also, the clustered 
earthquakes are strongly correlated in space. 

Though much effort has been addressed to correlations, 
especially for large earthquakes, we are not aware of any sig- 
nificant achievements. We believe that a more fundamental 

approach is required. 
In this paper we map a two-dimensional version of the 

spring-block model for earthquakes into a continuous, non- 
conservative cellular automaton model. This model has sev- 

eral fascinating aspects. First, it exhibits a robust self- 
organized critical behavior over a very wide range of con- 
servation levels. That is, we observe power law distribu- 
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tions for the relevant physical quantities, where the cutoff 
scales with the size of the system. Second, we find that the 
level of conservation has an impact on the power laws ob- 
tained. The level of conservation is a function of the elastic 
constants in the spring-block model. Therefore, the wide 
variances in the Gutenberg-Richter law could be interpreted 
as a result of the variances of the relevant elastic parame- 
ters. Finally, the model exhibits a clustering in the occur- 
rence of large earthquakes, while the small earthquakes are 
distributed randomly in time. 

2. THe. MODEL 

Burridge and Knopoff [1967] simplified the problem by 
discussing the internal dynamics of one single fault rather 
than the dynamics of a complex system of coupled faults. 

springs as well as connected frictionally to a fixed rigid plate 
(see Figure 1 a). The blocks are driven by the relative move- 
ment of the two rigid plates. When the force on one of the 
blocks is larger than some threshold value Fa, (the maximal 
static friction), the block slips. We assume that the moving 
block will slip to the zero force position. Slip of one block 
will redefine the forces on its nearest neighbors. This may 
lead to instabilities in the neighboring blocks and thus, as a 
result, in further slips and a chain reaction (earthquake) can 
evolve. The total number of slips following a single initial 
slip event is a measure of the size (seismic moment) of the 
earthquake 

As a first step, we map the two-dimensional spring-block 
model into a continuous cellular automaton model. We de- 

fine an L x L array of blocks by (i, j), where i, j are integers, 
We consider a two-dimensional version of their model where I _< i, j <_ œ. The displacement of each block from its re- 
the fault is represented by a two-dimensional network of laxed position on the lattice is defined as xi,j. The total force 
blocks interconnected by springs. Each block is connected exerted by the springs on a given block (i, j) is expressed by 
to the four nearest neighbors. Additionally, each block is 
connected to a single rigid driving plate by another set of 

__---- K L 

K2 fixed plate 
(b) 

Xij+l 

Xi'l'J K2 Xi+l,J 

Xij-1 
Fig. 1. The geometry of the Burridge-Knopoff spring-block model. 
(a) The two-dimensional system of blocks connected by springs. 
The stra/n of the blocks increases uniformly as a respond to the 
relative movement of the riS•d plates. (b) A deta/led picture of a 
Siven block (i, •) and its surroundinss. 

(4) 

where K•,K2, and Kr denotes the elastic constants (see 
Figure 1 b). When the two rigid plates move relative to each 
other, the total force on each block increases uniformly (with 
a rate proportional to Kr ß V, where V is the relative ve- 
locity between the two rigid plates) until one site reaches 
the threshold value and the process of relaxation begins (an 
earthquake is triggered). It can easily be shown (see Ap- 
pendix A) that the redistribution of strain after a local slip 
at the position (i, j) is given by the relation 

F•,• --, F•,• + I•F•,• (5) 
Fi,j -• O, 

where the increase in the force on nearest-neighbor blocks is 

K• 
-- .Fi,j = al.Fi,j 5Fi•,• - 2K• + 2K2 + Kz 

= (6) •Fi,j• = 2K• + 2K• + K• 'J' 
For simplicity, we denote the elastic ratios by a• and az, 
respectively. Notice that this relaxation rule is very simi- 
lar to the BTW model [Baket al., 1987]. However, when 
Kr > 0, the redistribution of the force is nonconservative. 
In the context of the spring-block model, Kr > 0; otherwise 
no driving force is possible. Thus, the spring-block model is 
nonconservative in nature with respect to the redistribution 
of force. The level of conservation is 2a• + 2a2. However, 
with respect to energy (e.g., elastic energy) the model is non- 
conservative even if the redistribution of force is conserva- 

tive. Throughout this paper the terminology "conservative" 
and "nonconservative"refer to the redistribution of force. 

Additional differences between our new model and the old 

BTW model should be noticed. (1) The strain on the critical 
site is set to zero when relaxed. (2) The redistribution of 
strain to the neighbors is proportional to the strain in the 
relaxing site. (3) If K• •! K• (a• •! a•), this model is also 
anisotropic. In this paper we restrict the discussion to the 
isotropic case K• = K• (a• = a2 = a). 

The definition of the boundary conditions is a very sub- 
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tie problem. There are two extreme possibilities: (1) The 
blocks in the boundary layer are connected only to blocks 
within the faults, the boundary is free. (2) The blocks in 
the boundary layer are coupled to a rigid boundary block 
by springs, the boundary is open. We refer to Appendix B 
for a detailed discussion of the boundary conditions. 

Obviously, neither of the two choices is correct. It is very 
difficult to know what the proper boundary conditions are, 
and they are probably not the same for each fault. However, 
the actual boundary conditions must be somewhere between 
the two extreme limits given above. We will present results 
for both alternatives. 

Brown et al. [1991] considered a model with a different 
geometry, 1 _• i _• œx, 1 _• j _• œ•, œx >> œ•, where œ• is the 
slip direction. They used free boundary conditions in the slip 
direction and periodic boundary conditions in the perpen- 
dicular direction. The elastic constants were chosen to fulfil 

the conditions KL <• K• = K2. It is easy to see that this is 
an almost conservative model (e.g., KL = 1, K• = K2 = 25 
imply a • 0.246). In this case the free boundary conditions 
is almost reflective, since the effective level of conservation 
in the edges is 0.98. We see no physical reason to assume 
that K• • K•, Ks. A more reasonable assumption, is that 
all the elastic constants are in the same order of magnitude, 
K• • K• • K2. This implies that the characteristic value 
of a is 0.20. Rundle and Brown [1991] have investigated a 
square model with free boundary conditions for this particu- 
lar value of a. It should be noticed that in both these models 

some randomness has to be introduced to avoid periodic be- 
havior: the relaxing block does not slip to zero force position 
but rather to zero force position plus a random overshoot. 

I0 o 
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3. SIMULATION OF THE MODEL 

The rules for the driving of our model are motivated by 
the dynamics of earthquakes. There are two time scales 
involved. One is defined by the motion of the tectonic 
plates, and the other is the actual duration of an earth- 
quake. Since the first time scale is much larger than the 
second, we can separate the time scales. We consider the 
earthquake as instantaneous and do not drive the system 
during an avalanche. Thus the algorithm for simulating the 2.5 
system is the following: Define random initial strains in the 

system. Strain is accumulated uniformly across the system 2.0 
as the rigid plates move. When the strain in a certain site is 
above the threshold value Fth this site will relax according 
to (5) and (6). This may cause neighboring site to exceed • 1.5 
the threshold value, in which case these sites relax simul- • 

taneously, and so on. The triggered earthquake will stop • 1.0 when there are no sites left with a strain above the thresh- 

old. Strain starts to accumulate once again. 0.5 
We continue this process to get proper statistics of the to- 

tal number of relaxations in the individual earthquakes. The 0 
total number of slips is proportional to the change in total 
force (which we h•ve check numerically) which in turn is a 
measure of the seismic moment (energy released). Conse- -0.5 
quently, we define the energy released during an earthquake 
as the total number of relaxation involved in the event. 

3.1. Power Law Exponents 
The continuous, nonconservative cellular automaton mod- 

el exhibits SOC behavior for a wide range of a values for 
either boundary conditions. The exponent B depends on 
a and on the chosen boundary conditions. In Figure 2 we 

"' J "•: •:?-'-'-¾'• 
ß 

ß . . . . ...i . ß ß i ß ii.I , ,• 

10 100 1000 

Earthquake energy released E 

Fig. 2. Simulation results for a 35 x 35 system with free boundary 
conditions. Different curves refer to different levels of conserw- 

tion. The slope of the curves become steeper as the • values is de- 
creased. The graphs correspond to • = 0.245,0.20, 0.15, 0.10, 0.05 
and 0.01, respectively. 

show the change of the exponent B as the level of conser- 
vation is changed for the model with free boundary condi- 
tions. In Figure 3 we display the dependence for both kinds 
of boundary conditions. The model has a wide range of 
possible exponents. For the open boundary conditions, B 
is between 0.22 (a = 0.25) and 2.5 (a = 0.05). For the 
free boundary conditions the range is -0.08 (a = 0.245) to 
1.35 (a = 0.01) (notice that at exact conservation the model 
with free boundary conditions is not well defined because the 
boundary is totally reflective). The model by Rundle and 
Brown [1991] with free boundary conditions and a = 0.20 
gave B = 0.6, which is in agreement with our results. 

This variability could serve as an explanation for the vari- 
ances in the observed B. Note that the exponents for the 

I I I I I I 

I I I I I I 

0 0.05 0.10 0.15 0.20 0.25 

Elastic parameter a 

Fig. 3. The power law exponent B as a function of the elastic 
parameter • defined in equation (6). Solid circles correspond to 
the model with open boundary conditions. Below • = 0.05 there 
is a transition to exponential decay. The measured B values for 
the model with free boundary conditions are displayed as open 
circles. The arrows indicate the actual measured B values for 
earthquakes [Pach½co ½t al., 1992]. 
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behavior as c• is decreased. This indeed happens for both 
kinds of boundary conditions but at surprisingly low c•. For 

- the open boundary conditions this occurs at c• ,• 0.05. At 
this value a transition between a power law behavior and 

- exponential decay is observed. For the free boundary con- 
ditions the transition emerges in a different manner. At 
c• • 0.01 the B value is frozen and a length scale, a cutoff 

_ which is proportional to c•, appears. Notice that in this case 
only 4% of the strain is conserved. Those transitions are 

- obviously not relevant for earthquakes but might be related 
to other systems. 

3.2. Spatiotemporal Clustering of Large Earthquakes 
- A very interesting aspect of earthquake is the correla- 

tion in the occurrence time. In Figure 5 we present two 
time sequences of earthquakes derived by our model, with 
c• = 0.20, for earthquakes with energy larger than 20 (small 
earthquakes) and 450 (large earthquakes), respectively. No- 
tice that a quantitative definition of a •large earthquake" is a relative definition, since it depends on the system size. 

However, a qualitative definition would be that the energy 
released during the earthquake is so large that the event is 

- on the edge of the power law distribution (i.e., where the 
distribution begins to show finite size effects). 

It is evident that the two time sequences are dramatically 
- different. The sequence for the small earthquakes seems to 
_ be distributed randomly, while for the large earthquakes it 

is highly clustered. The centers of clustered earthquakes in 

t our model are generafly correlated strongly in space. The distribution function for the interoccurrence time t 

(the time between earthquakes) with energy greater than 

t E, P•(t = ti) provides a measure of those temporal corre- lations. Another possible measure is the coefficient of vari- 
ation. It is defined as the ratio of the square root of the 

10 0 variance of the interoccurrence time and the average of in- 
teroccurrence time: 

Fig. 4. (a) The probability density of having an earthquake of 
energy E as a function of E for c• = 0.20. The different curves 
refer to different system sizes L = 15, 25,35, 50. (b) A finite size 
scaling analysis shows that the cutoff in energy distribution scales 
with L 2'2 . 

tree boundary conditions are much lower than those of the 
open boundary conditions. This is a result of higher correla- 
tions between strains in the lattice. The relevant exponents 
seen for real earthquakes are near the characteristic value of 
a • 0.20 for the open boundary conditions (see Figure 3). 

We simulated the model on various lattice sizes L, us- 
ing up to 5x10 ? avalanches to get accurate estimates of B. 
In Figure 4a we show results of simulations for the open 
boundary conditions with c• = 0.20 for/, = 15, 25,35, and 
50 giving B • 0.91. By examining the scaling of the cut- 
off in the energy distribution as a function of the system 
size ( K. Christensen and 2'. Olarni, manuscript submitted to 
Ph{lsical Review A, 1992) we find that the cutoff scales with 
L2'2; see Figure 4b. This verifies the criticality of the model 
as well as the absence of any characteristic length scale as- 
sociated with nonconservation. Similar results, though with 
different B, are obtained for the free boundary conditions. 

It is clear that if c• = 0, the movement of the blocks will 
become completely uncorrelated due to the lack of interac- 
tion. Therefore, we expect to see a transition to a localized 

Cv(r) = exp•(t) (7) 

I{I II III IIIII II I I II Ill I I Illll IllIll Illllllll Illl Illllll I IllIll 

I I II I I I I Ill II I BIII• I III II 

Fig. 5. A visualized sequence of earthquakes for a 35 x 35 sys- 
tem with open boundary conditions and c• - 0.20. The upper se- 
quence shown is the occurrence of earthquakes with energy greater 
than or equal to 20 in a time interval of length T = 10. The lower 
sequence is the occurrence of earthquakes with energy E •_ 450 
in a time interval of length T.ezp45o(t)/cxp2o(t) •, 2410; that is, 
the time intervals are scaled so that the density of points is the 
s8tne. 
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For a random signal the distribution function is simply 
an exponential function yielding Cv(E) = 1. For a periodic 10-1 
signal, Cv(E) = 0, while clustered earthquakes will produce 

> 
We measured the coefficient of variation for the conserva- 10-: 

tive model a = 0.25 and for the characteristic value a = 0.20 "'- 

in the case of open boundary conditions. The results are 
presented in Figure 6. • 10-8 

No correlations are seen between earthquakes in the con- 
servative model. Indeed, there seems to be some repulsion • 10_ • between earthquakes at intermediate energies (Cv(E) < 
1.0). In the nonconservative model we see a clustering effects 
for large earthquakes, while random behavior is observed for 10-5 
small earthquakes. The decrease in the coefficient of vari- 
ation for very large earthquakes is a finite size effect and 

thus is related to the cutoff in the frequency-energy distribu- 10_6 
tion. Why do small earthquakes not show temporal cluster- 
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Fig. 6. The coefficient of variation Cv(E) defined in equation (7) 
as a function of energy released during an earthquake. The results 
shown are for a 35 x 35 lattice with open boundary conditions. 
(a) The conservative case, c• = 0.25. Notice that Cv(E) _• I for 
all E. Cv(E) = I indicates that the occurrence of earthquakes is 
random. (b) A nonconservative case, c• = 0.20. For small earth- 
quakes, Cv(E) •_ 1. The large earthquakes are characterized 
by a coefficient of variation greater than 1, implying earthquake 
bunching. 

(b) 10-: 

10-8 

10 -• 

10 -5 
10-0 

10 -7 
0.1 1 10 100 

Inter-occurrence time t i 

Fig. 7. The probability distribution of interoccurrence time for 
a 35 x 35 system with open boundary conditions and a level of 
conservation equal 0.80, c• = 0.20. (a) We consider earthquakes 
with energy •_ 20. The probability distribution is an exponential 
distribution. (b) Results for earthquakes with E > 250. The 
distribution function is a power law decaying function. 

ing? The reason is that contrary to large earthquakes, small 
earthquakes can not be correlated in time because they are 
not correlated in space. They can not feel the presence of 
one another: a small event occurring in one part of the fault 
can not influence the occurrence of a small event in a totally 
different part of the fault. This is, of course, not true for 
large earthquakes. 

However, if one does the same type of calculations for sub- 
systems (subfaults), correlations between "smaller events" 
(where smaller refers to the total system) will appear. This 
implies that it might be very useful to pay attention to the 
much more numerous small events to get some statistical 
predictions for the few large events! 

We also present the distribution function for interoccur- 
rence time for small and large earthquakes in Figures 7 a and 
7b respectively. We see a complete change from a random 
exponential distribution function to a power law decaying 
distribution function. 
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The average interoccurrence time expE(t) scales as E s. 
However, the characteristic time between larger earthquakes 
within a cluster is much smaller. It is simply the buildup 
time for the strain in the system which is independent on E. 

The time between the clusters themselves is much larger 
than the average interoccurrence time. Both phenomena 
contribute to the rise in C'v(E). The average interoccurence 
time between large earthquakes is a measure of the buildup 
time for correlations in the system. 

The same kind of temporal correlations is seen in real 
earthquakes. Small earthquakes seem to be uncorrelated; 
see Figure 6 of Johnston and Nava [1985]. Large earthquakes 
display strong clustering; see Kagan and Jackson [1991]. It 
might be very interesting to make the same kind of calcula- 
tion for an earthquake catalog of some fault. 

These results are closely related to the fact that the model 
is nonconservative. The occurrence of large earthquakes in 
such a model is related to creation of correlated strains in 

the fault. Otherwise, the earthquakes would become com- 
pletely localized. Since the correlations are not completely 
destroyed by intermediate shocks, clustering will occur with 
correlated centers. The nonconservative nature of the model 

creates correlations in the strain of a fault, which is an im- 
portant feature in the creation of the relevant power laws 
and temporal correlation. The earthquakes are generated by 
correlated dusters of sites, which in turn are generated by 
the earthquakes themselves. The correlated sites are modi- 
fied by interactions with other clusters through earthquakes. 

For conservative models, however, large earthquakes in- 
volve a lot of activity inside the fault which completely de- 
stroy any correlations existing in the lattice. This explains 
why the earthquakes in a conservative model can not be 
correlated in time. 

APPENDIX A 

Assume that the strain of a block at position (i, j) is above 
the threshold value, that is, 

F., < F•,• = K•.[2x•,• - •-•,• - x•+•,•] 
+K•-[2x•,• - x•,•_• - x•,•+•] 
+K,..•,•. (S) 

If •i,j denotes the displacement of block (i,j) from the re- 
laxed position after the block has slipped to zero force posi- 
tion, then 

0 = K•-[2•,• - x•_•,• - x•+•,•] 
+K•-[2•,• - x•,•_• - x•,•+•] 
+K•..•,j, (9) 

where we exploits the fact that nearest-neighbor blocks can 
not be supercritical at the same time, why 

The slipping block (i, j) affects the strain on the nearest- 
neighbor blocks. As an example, we calculate the change of 
force on block (i, j + 1). The force on block (i, j + 1) is 

Fi,$+l K1'[2xi,.•+1 -- Xi--l,$+ 1 -- X,+ 1,$+1] 
+K•-[2•,•+• - •,,• - •,•+•] 

(11) 

Thus the change of force due to a slip a position (i, j) is 

5 Fi,• + i = - K2 .dx i,• . (12) 

4. CONCLUSION 

The results presented in this paper indicate very strongly 
that earthquakes are related to nonconservative SOC mod- 
els. The nonconservative nature of the model is induced 

through the relaxation rules. The effects of this dissipative 
nature are quite profound. It creates a variation of the expo- 
nents and the existence of nontrivial temporal correlations 
in the system. Both features seem to be in accord with what 
is observed for actual earthquakes. This introduces a new 
set of ideas which appears to be associated with the problem 
of earthquake temporal and spatial correlations. We believe 
that further theoretical and experimental effort can clarify 
those intriguing problems. 

As to the generality of the model we can only speculate. 
We believe that most nonconservative models which display 
criticality, i.e., power law behavior where the cutoffs scale 
with system size, are, at least qualitatively, similar to the 

Notice that the force on block (i,j + 1) may very well be 
affected by a slip at position (i,j + 2) but that does not 
interfere this argument. An expression for the change in 
displacement of block (i, j), 

is obtained by subtracting (8) from (9)' 

0- Fi,.,, = [2K1 + 2K2 + K•.]-dxi,•. (14) 

Finally, substituting (14)into (12), we find 

K= 
• ' F•,./ß 5F•,•+l 2K1 + 2K• + K•. (15) 

APPENDIX B 

The boundary condition is free if the blocks in the bound- 
ary layer are connected only to blocks within the fault; that 

model presented in this paper. The strong argument for this is, the force on a boundary block, say at site (i, L), is given 
is that in order to create power law distribution functions in by 
a nonconservative model, the model must be able to corre- 
late in space. This will lead to temporal correlations as we 
have demonstrated in this model. 

We may be able to improve our ability to estimate the 
probabilities of occurrence of large earthquakes, even with 
the limited information available about the history of earth- 
quake occurrence and existing faults by utilizing the infor- 
mation hidden in the numerous small events! 

Fi,L Kl-[2xi,• - Xi-l,• - Xi+l,•] 
+K•-[z•,, - 

If this block slips, we find 

0 - Fi,•. = [2K1 + Ks + K•.]. dx•,•., 

(16) 

(17) 
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resulting in 

K1 
/•F•ñi,L = 2K• + K: + KL .F•,• = a•-F•,•. (lS) 

If the model is isotropic, K: = K: = K, then 

K 

a = 4. K + K,•' 
We can express the elastic ratio abe used when boundary 
blocks slips in terms of a 

- . abe 1 - a 

If a block in one of the corners slips, we use 

= . &•c 1-2-a 
For a simulation of the model with open boundary condi- 

tions we use the same a all over the lattice. That is, if block 
(i,L) slips we still increase the force on the three neighbor- 
ing blocks (i • 1, L) with an amount equal to a- F•,L, where 
a is defined in (6). 
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