
brucei (14). This protein belongs to a novel
class of glycan-anchored membrane pro-
teins (15) that are thought to function in
signal transduction (16) and intracellular
targeting (17). The presence of this acidic
repeat domain suggests that the VHL pro-
tein may be localized on the cell membrane
and may be involved in signal transduction
or cell adhesion. Further clues to the func-
tion of the VHL protein may emerge as
more sequence information is obtained.

19.

20.

mative meioses (4). However, we recently detect-
ed one such crossover, which allowed us to place
the VHL locus distal to D3S601 (E. R. Maher et al.,
unpublished results).
M. Orita et al., Genomics 5, 874 (1989); M. Dean
et al., Cell 61, 863 (1990).
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Repression of MHC Class I Gene Promoter Activity
by Two-Exon Tat of HIV

T. Kevin Howoroft, Klaus Strebel, Malcolm A. Martin,
Dinah S. Singer*

Major histocompatibility complex (MHC) class I molecules are the major receptors for
viral peptides and serve as targets for specific cytotoxic T lymphocytes. Human immu-
nodeficiency virus-type 1 (HIV-1) specifically decreased activity of an MHC class I gene

promoter up to 12-fold. Repression was effected by the HIV-1 Tat protein derived from
a spliced viral transcript (two-exon Tat). These studies define an activity for two-exon
Tat distinct from that of one-exon Tat and suggest a mechanism whereby HIV-1 -infected
cells might be able to avoid immune surveillance, allowing the virus to persist in the
infected host.

Major histocompatibility complex mole-
cules play a pivotal role in the initiation
and propagation of immune responses.
Immune surveillance for viral infections is
provided primarily by MHC class I anti-
gens, which bind intracellularly generated
viral peptides and act as targets for antivi-
ral cellular immune responses (1). Many
viruses are known to repress MHC class I
expression, among them a number of ret-
roviruses such as the Moloney leukemia
virus (2). Decreases in MHC class I levels
provide a mechanism for the virus to
evade the host immune response. HIV-1 is
a complex retrovirus that primarily infects
CD4' T cells and monocytes, ultimately
causing a depletion in the CD4' T cell
population and a profound immunodefi-
ciency (3). Because HIV-1 is known to
establish persistent infections, suggesting
a viral mechanism to avoid immune sur-
veillance, we have examined its effect on
MHC class I expression.

To assess the effect of HIV-1 on MHC
class I expression, we transiently trans-
fected human HeLa cells with an HIV-
1LAI-denved construct, pNL-A1, which
expresses all viral gene products except
Gag and Pol (4), and measured cell surface
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class I expression by staining with an
antibody to human leukocyte antigen,
W6/32, 48 hours after transfection. To
distinguish pNL-Al-transfected from non-
transfected HeLa cells, we also stained
cells with an antibody to gp120 (pNL-A1
encodes gp120). Two-color flow cytometry
was performed, and the mean cell surface
level of class I on gp120+ cells was com-
pared with that on gp120- cells in the
same population (5). Whereas gp120-
cells stained with a mean fluorescence
intensity (MFI) of 100 ± 8, gp120+ cells
expressed significantly lower levels of
MHC class I, with an MFI of 49.2 + 2.1
(P < 0.0004, five independent experi-
ments). Thus, one or more HIV-1 gene
products (but not Gag or Pol) are capable
of markedly decreasing endogenous MHC
class I expression. The extent of reduction
observed in the present studies reflects
only the difference that occurs during the
transient 48-hour assay and could be an
underestimate of the actual reduction of
class I expression occurring in transfected
HeLa cells. These results are consistent
with a previous report describing a tran-
sient decrease in class I expression in
HIV-1-infected T cell lines (6). Changes
in class I expression of the magnitude
observed here have been shown to alter
susceptibility of cells to cytolysis by cyto-
toxic T cells (7).

To determine whether the HIV-1-me-
diated reduction of class I expression was
transcriptional, we examined the effect of
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HIV-1 gene products on an MHC class I
promoter ligated to the reporter gene
chloramphenicol acetyltransferase (CAT).
A class I promoter construct containing
313 base pairs (bp) of 5' flanking se-
quences (8) was cotransfected into HeLa
cells with varying amounts of either pNL-
Al or a control construct, pAR, which
expresses only a subset of the pNL-A1-
encoded viral proteins (Tat, Vpu, an ab-
errant Env/Nef fusion protein, and a trun-
cated Gag protein) (4). Cotransfection of
the class I promoter with pNL-A1 mark-
edly reduced promoter-directed CAT ac-
tivity to 11.7 + 1.5% of controls cotrans-
fected with carrier DNA alone. In con-
trast, cotransfection with the pAR con-
struct did not reduce class I promoter
activity (9).

The repression mediated by pNL-A1 was
not due to nonspecific effects of HIV-1-
encoded products on the class I promoter,
because expression of CAT under the con-
trol of SV40, Rous sarcoma virus (RSV), or
murine leukemia virus (MuLV) promoters
was not significantly affected when the pro-
moter was cotransfected with pNL-Al into
HeLa cells (Table 1). Because the con-
structs examined were identical except for
the upstream promoter region, the failure of
pNL-A1 to decrease CAT activity other
than in the class I promoter construct also
eliminates possible posttranscriptional ef-
fects. Furthermore, pNL-Al inhibited the
expression of a second reporter gene, lu-
ciferase, directed by the class I promoter
1(10); see also Table 21, indicating that the
pNL-A1 effect did not specifically target the
CAT reporter. These experiments demon-
strate that HIV-1-mediated repression of
MHC class I expression occurs transcrip-
tionally.

To map the target site of the HIV-1-
mediated repression, we tested deletion
constructs of the class I promoter for their
sensitivity to pNL-A1. A variety of regu-
latory elements have been identified be-
tween -209 and -68 bp in the 5' flanking
region of the MHC class I gene (1 1),
including a constitutive enhancer (en-
hancer A), an interferon response ele-
ment, a cAMP (adenosine 3',5'-mono-
phosphate) response element (CRE), and
a weak enhancer (enhancer B). Enhancer
A has been shown previously to bind a
homodimer of the p50 NFKB; alternative
processing of the NFKB precursor after
HIV-1 infection has been reported (12).
Deletion to within 68 bp of the initiation
of transcription did not abrogate repres-
sion by pNL-Al (Fig. 1). Thus, the effect
was not mediated by enhancer A-NFKB,
the CRE, or the enhancer B regions, all of
which are deleted from this construct.
Rather, the HIV- 1-responsive element
maps to within the 68-bp region of the

minimal promoter, a region that is only
known to contain the CAT and TATA
boxes.

Because pNL-A1 but not pAR reduced
class I promoter activity, HIV-1 sequences
responsible for class I promoter repression
map to a region of the proviral genome 3'
of the pol gene (Fig. 2). Contained within
this region are seven genes: vif, vpu, vpr,
rev, tat, env, and nef. Mutations affecting
six of these genes were introduced into the
pNL-A1 construct and cotransfected into
HeLa cells with the class I promoter con-
structs, - 135CAT and -313CAT. Each
of these mutant derivatives of pNL-A1
efficiently repressed the class I promoter
(Fig. 2) (10, 13). Indeed, deletion of nef
significantly augmented the repression of
the class I promoter. Thus, the six HIV-1
gene products-Nef, Rev, Vif, Vpr, Vpu,
or Env-were not responsible for repress-
ing the promoter. The effects of the Nef
and Rev proteins were also tested directly;
expression vectors containing rev or nef
under the control of a cytomegalovirus
(CMV) promoter did not reduce class I
promoter activity over a range of concen-
trations (1 to 6 pg of plasmid DNA) tested
(10). Of the seven gene products encoded
by pNL-Al, the only one not ruled out in
this experiment is Tat (14).

Tat is a viral-encoded regulatory pro-
tein that transactivates HIV long terminal
repeat (LTR)-directed gene expression.
Tat is synthesized as either an 86 (or
somewhat longer)-amino acid protein de-

Table 1. pNLA1 selectively reduces class
promoter activity. HeLa cells were cotrans-
fected (9) with the indicated promoter CAT
construct (5 1g) and with the HIV-1 proviral
constructs pAR or pNL-A1 (5 [Lg). Values (an
average of four duplicate samples) represent
CAT activity normalized to control transfec-
tions without an HIV-1 proviral construct. All
assays were normalized to 0-galactosidase
activity.

Promoter pAR/control pNL-A1/control

Class 1 1.35 ± 0.095 0.46 ± 0.02
SV40 1.29 ±0.13 1.51 + 0.26
RSV 0.99 ± 0.003 1.00 ± 0.003
MuLV 3.16 0.04 1.90 0.135

rived from a spliced mRNA (two-exon
Tat) or a 72-amino acid product contain-
ing only the first coding exon (one-exon
Tat), the latter appearing after the onset
of Rev expression. Whereas pNL-Al di-
rects the synthesis of both forms of Tat,
only the single-exon form is expressed by
pAR. Although both Tat species transac-
tivate the HIV LTR in tissue culture
systems (15), the functional significance
of the two forms of Tat in vivo is not
presently understood. Because pNL-Al
but not pAR inhibited the class I promot-
er, the results obtained in the pNL-Al
mutagenesis experiment (Fig. 2) suggested
that the observed repression was due to
the two-exon species of Tat.

To examine this possibility further, we
cotransfected expression vectors encoding
HIV- 1AI-derived two-exon Tat (86 amino
acids in length) and one-exon Tat (72
amino acids in length) into HeLa cells with
a class I promoter construct (- 135Lu-
ciferase) (16). Two-exon Tat, in the ab-
sence of any other HIV- 1 transcripts, mark-
edly decreased class I promoter activity,
whereas one-exon Tat had only a minor
effect (Table 2). This suggests that the

Table 2. Repression of class promoter activ-
ity by two-exon Tat in the absence of any
other viral gene products. HeLa cells were
cotransfected (9) with a class promoter
construct containing 135 bp of promoter prox-
imal sequence ligated to the luciferase report-
er gene (-135 luciferase; 5 [Lg) and the
indicated Tat expression vectors (5 [.g) or with
a control expression vector consisting of the
SV40 early promoter with a nonfunctional in-
sert (16). The effect of Tat on MHC class
promoter activity is expressed relative to that
of the control expression vector. Luciferase
activity was determined on a Monolight 2010
luminometer (Analytical Luminescence Labo-
ratory) and was normalized to P-galacto-
sidase activity.

Relative
Tat Form Origin promoter activity

(Tat/control)

Tat 86 Two-exon HIV-1,A 0.172 ± 0.009
Tat 72 One-exon HIV-1AA 0.767 + 0.088
Tat 49 Truncation HIV-1,A 0.867 ± 0.089
Tat 101 Two-exon HIV-1SF2 0.412 ± 0.024

Fig. 1. HIV-1-mediated Class I promoter constructs Relativeffe of HIV constructs
negative regulation of the pAR/control pNL-Al/control
class promoter requires -135
only 68 bp of promoter- | -135 CAT 1.26 ± 0.17 0.25 ± 0.05
proximal sequences. Trun-
cated MHC class promot- -95

CAT

.... 95.CAT
er CAT constructs (5 pLg) | - = Lj-95CAT 0.96 +0.03 0.32±0.09
were cotransfected with
pAR or pNL-A1 (5 rg) into -68
HeLa cells, and CAT activ- 68 CAT 1.17 ±0.07 0.25 ± 0.01
ity was determined (9). Results are expressed relative to control values. Figure summarizes data
obtained from two independent experiments performed in duplicate.
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pAR (gag), pol, vf
>I aKnp KnpI vpr, rev, eng,

- NLAgagpol
SD SA DEItenof*~~~~~~DeI-Pf gag, pal, vit

pLA-dVpr gag, PO vpr
SD SA 0-)pXho 1llnkerlingaplvp

Ssp sit
- pNLA-dVpu gg O pSD SA ag, pap vpu

pNLA-dEn gag, po en
SD SA FIiHn of gaplem

Barn HI site poegpNLA-dRv 7___ gag, pal envy
SD SA_ RIHI1 ofv vpr?, vpu,

- NLAF In of rev
SD

A
SA 19ptegag, pol, nef

Clas 1I promoter constructs
.135 -313

(relative to control)

1.030 + 0.140 1.100 ± 0.026

0.097 ± 0.003 0.295 ± 0.005

0.060 ± 0.005 0.084 ± 0.010

0.108 ± 0.010 0.515±0.038

0.084 + 0.024 0.490 ± 0.087

0.086 + 0.002

0.164 ± 0.040

0.012 ± 0.001

0.395 + 0.015

ND

ND

Fig. 2. Repression of class I promoter activity not eliminated by HIV-1 mutations that eliminate the
expression of Gag, Pol, Vif, Vpr, Vpu, Rev, Nef, or Env. Derivative pNL-A1 constructs (5 p9g)
containing the indicated mutations to eliminate expression of specific HIV-1 genes were generated
and cotransfected along with -135CAT or -313CAT (5 1g) into HeLa cells, and CAT activity was
determined (9). Results are expressed relative to control values.

repression of the class I promoter by pNL-
A1 but not by its derivative pAR resulted
from its capacity to express two-exon Tat
and indicates that the COOH-terminal
domain of two-exon Tat is essential for
repression. These experiments define a

function of two-exon HIV-1 Tat distinct
from that of one-exon Tat and indicate
that the HIV-1 Tat protein can act both as

a transcriptional repressor as well as a

transcriptional activator.
A two-exon Tat (101 amino acids in

length) derived from the HIV-1sFK isolate
also repressed class I promoter activity,
but to a lesser extent than the HIV-lLAI-
derived two-exon Tat (Table 2). This may

reflect differences in the amino acid se-

quence between positions 73 and 86 or in
the 15 additional residues in the HIV-1MF2
Tat. The present studies raise the possibil-
ity that differences in the strength of
Tat-mediated repression of class I expres-

sion may influence the persistence and
pathogenicity associated with different vi-
ral strains.

The mechanism by which two-exon Tat
represses class I promoter activity is not

known. Tat may act directly by regulating
class I promoter activity or function indi-
rectly by transactivating a gene that regu-

lates classyI promoter activity. Tat has been
reported to interact with cellular factors
such as Tat-binding protein (TBP)-1 and
mammalian suppressor of sgvl (MSS1) dur-
ing the transactivation of the HIV LTR
(17). Whether these factors are involved in
regulating class I gene expression, either
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alone or in concert with Tat, is not known.
Because MHC class I molecules are the

primary presenters of viral peptides to T
cells, reduction in cell surface levels of class
I might lead to a reduced ability of an

infected cell to be recognized by HIV-1-
specific cytotoxic T lymphocytes. Down-
regulation of class I molecules in an HIV-
1-infected cell could provide a mechanism
for that cell to avoid normal immune sur-

veillance.
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