
complete deficiency ofMAOA activity and
abnormal aggressive behavior in affected
males. This observation raises a number of
important questions. First, the frequency of
MAOA deficiency in the population has to
be determined. Second, given the wide
range of variation of MAOA activity in the
normal population (18), one could ask
whether aggressive behavior is confined to
complete MAOA deficiency. Third, animal
models could help to determine the various
neurochemical alterations that are induced
by selective MAOA deficiency and their
secondary effects on the organism. Such
studies might also suggest possibilities for
treatment of the metabolic disturbance
caused by the MAOA deficiency state. Fi-
nally, the possibility of hypertensive crises in
selective MAOA deficiency through in-
creased sensitivity to dietary and pharmaco-
logic amines has not yet been investigated.
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Mutations in the Glucose-6-Phosphatase Gene
That Cause Glycogen Storage Disease Type 1 a

Ke-Jian Lei,* Leslie L. Shelly,* Chi-Jiunn Pan, James B. Sidbury,
Janice Yang ChouF

Glycogen storage disease (GSD) type la is caused by the deficiency of D-glucose-6-
phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high
incidence and morbidity, the molecular mechanisms underlying this deficiency have
eluded characterization. In the present study, the molecular and biochemical charac-
terization of the human G6Pase complementary DNA, its gene, and the expressed
protein, which is indistinguishable from human microsomal G6Pase, are reported. Sev-
eral mutations in the G6Pase gene of affected individuals that completely inactivate the
enzyme have been identified. These results establish the molecular basis of this disease
and open the way for future gene therapy.

Glucose-6-phosphatase (E.C. 3.1.3.9),
the key enzyme in the homeostatic regula-
tion of blood glucose concentrations, cata-
lyzes the terminal step in gluconeogenesis
Human Genetics Branch, National Institute of Child
Health and Human Development, National Institutes of
Health, Bethesda, MD 20892.
*Both authors contributed equally to the manuscript.
+To whom correspondence should be addressed.

and glycogenolysis (1-3). Deficiency of
G6Pase causes GSD type la (von Gierke
disease), an autosomal recessive disorder
with an incidence of one in 100,000 to
300,000 (1, 2). This metabolic disease typ-
ically manifests during the first year of life
with severe hypoglycemia and hepatomeg-
aly caused by the accumulation of glycogen.
Individuals with GSD type la exhibit
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growth retardation, delayed puberty, lactic
acidemia, hyperlipidemia, hyperuricemia,
and in adults a high incidence of hepatic
adenomas. Current treatments focus solely
on controlling symptomatic hypoglycemia;
patients receive frequent feedings by mouth
or, in some cases, continuous nighttime
feeding by a nasogastric tube. Despite rec-
ognition for decades that G6Pase deficiency
is the cause ofGSD type la, the enzyme has
eluded molecular characterization as a re-
sult of its tight association with the endo-
plasmic reticulum (ER) and nuclear mem-
branes. Characterization of the human
G6Pase gene and the mutations causing
G6Pase deficiency are essential for under-
standing the molecular basis of GSD type
la and developing therapies for the disease.

Our strategy was first to isolate a murine
G6Pase complementary DNA (cDNA) (4)
from a normal mouse liver cDNA library by
screening differentially (5) withmRNA pop-
ulations representing the normal and the
albino mutant mouse; the mutant mouse
expresses markedly reduced G6Pase activity
(6). With a pair of oligonucleotide primers
derived from the murine G6Pase cDNA, we
isolated a human G6Pase cDNA clone,
phG6Pase-1 (nucleotides 77 to 1156), by

reverse transcriptase-polymerase chain reac-
tion (RT-PCR) with human liver polyade-
nylated [poly(A) ] RNA as the template
(7). The phG6Pase-1 cDNA was used to
isolate a genomic clone containing the en-
tire human G6Pase transcription unit (Fig.
1B) (7). The human G6Pase gene spans
-12.5 kb and consists of five exons: I [309
base pairs (bp)], II (10 bp), III (106 bp), IV
(116 bp), and V (larger than 2000 bp,
including a coding region of 509 bp). The
5'- and 3'-untranslated regions of the human
G6Pase mRNA were identified by a combi-
nation of primer extension, sequencing of
the human G6Pase genomic clone, and RT-
PCR (8). ER localization of the human
G6Pase is predicted by the presence of an ER
protein retention signal KK (9), positioned
three and four amino acids from the COOH-
terminus, respectively (Fig. 1A). The hy-
dropathy index analysis (10, 11) predicts
that human G6Pase is an extremely hydro-
phobic protein containing six putative mem-
brane-spanning segments (Fig. IC).

To demonstrate the functional identity
of the human G6Pase cDNA, we performed
biochemical studies (12) of microsomal
preparations isolated from COS-1 cells that
had been transiently transfected with the

Fig. 1. (A) Predicted amino acid A
sequence of human G6Pase cDNA a a a a XN V L * D I 01 Q T Y L 0 V X Y0 D0 Q D W W X L V I V I A D L R 40

and (B) structural organization of the a A V Y V L P PF W r R L 0 * A V3 I0 L L W V A V 1 O D W L X L V P IW 2 L P so

G6Pasetranscriptionunit.ThecDNA 0QRPYWWVLDTDYYULL.EVPLKXQPPVCOFPIPA ZA 120
sequencehas been deposited inT~~~~~~~~~~~~~~~~1EO A a v 7 Y V 1: V S : S L * 1 P Q a £ x : P T Y : 7 * C L : V 1 L L 0 P 16:

sequence has been deposited in ,, L V C L 1SLaa VVaQVLSGA^VQ L V C L IAAF 200

GenBank (accession number IyL..Lu nLPYwLS*PU*aa*YLLL K0LavDL LTLK 240
V01120). (A)Thetranslationtermina- A Q a W C I Q P3 W V *I D FSP P a &L LK *L 0 T LO LG L A L E M Y 280

tion codon is marked by an asterisk, t . . c K 0 X L SK 1W L P P R L U 1 V A SL V L L * V P D L E
P P 0Q V Z L 320

the ER protein retention signal (KK) VvYVL0FCK0AVVPLA3V0VIPTCLA0VLQQP3553i-
is shaded and double underlined,
and potential Asn-linked glycosyla-
tion sites are underlined (29). A B B
search for a signal peptide consen- - _ _ _ _ _ B _ _

sus sequence, by the method of Von R *MR IV V R
Heijne (30) using the PC/Gene Pro- -*- ~ * ~ 4 ___
gram Release 6.5 (IntelliGenetics, C window siz87 Si=Kte-Dooiftte
Inc.), indicates that the G6Pase poly-
peptide does not contain a signal M 2.00 _ rT _0U
peptide. (B) The exon coding re- C 0
gions are indicated by filled boxes -20

and the untranslated regions by - 2J00
open boxes. Arrows illustrate oligo- 50 1 150 200 250 300 350
nucleotide primers used for amplifi- 1 2 3 4 56
cation of exons. B, Bam HI; R, Eco D
RI. (C) Hydropathy plot and trans- Latency Thermal Glucom-P Vanadats
membrane domain structure of the slability lK,(mM) K, (mM)
deduced human G6Pase polypep- phG6Paal1-COS 28.2% 6.0% 1.77 * 0.13 1.68
tide. The hydropathy plot (10) was Humtn liver 75.4% 4.1% 1.71 a 0.11 1.61
analyzed with the MacVector DNA/
Protein Sequence Analysis Program. Negative values indicate hydrophobic residues. Transmembrane-
spanning domains (11) were identified with the PC/Gene Program. Numbers 1 to 6 refer to putative
membrane-spanning segments, diagrammatically illustrated as filled boxes. (D) Characteristics of
microsomal G6Pase phosphohydrolase activity in phG6Pase-1-transfected COS-1 cells and human
liver. Latencies were assessed by mannose-6-P phosphohydrolysis in intact (I) versus detergent-
disrupted (D) microsomes, defined as [1 - (lI/D)] x 100. Two microsomal preparations from phG6Pase-
1 -transfected COS-1 cells or human livers were analyzed. Thermal stability was determined by assaying
glucose-6-P phosphohydrolase activity in deoxycholate (0.2%)-disrupted microsomes before and after
incubation for 10 min at 370C in 50 mM cacodylate buffer (pH 5.0), and the stability values refer to
enzyme activities remaining after heat treatment.

phG6Pase-1 cDNA (Fig. 1D). Hepatic
G6Pase is known to exhibit latency, refer-
ring to the portion of enzymatic activity
that is not expressed unless the microsomes
are disrupted (3, 13). Latency values for
mannose-6-P phosphohydrolase activity re-
ported for human liver microsomes varied
from 23 to 26% (14, 15) to 95% (16).
Human liver microsomes isolated in the
present study exhibited a latency value of
75% (Fig. 1D). Microsomes isolated from
rat hepatocytes or hepatoma cells exhibit
reduced latencies (17), comparable with
that from phG6Pase-1-transfected COS-1
cells which displayed a latency of 28% (Fig.
iD). Cultured cells thus exhibit similar
reduced latencies.

Hepatic G6Pase is completely inactivated
by incubation of the microsomal preparation
at pH 5.0 for 10 min at 370C (18). Incubation
of microsomes isolated from phG6Pase-1-
transfected COS-1 cells or human livers at
37MC for 10 min at pH 5.0 virtually abolished
glucose-6-P phosphohydrolase activity (Fig.
1D), demonstrating that the expressed en-
zyme is indistinguishable from the human
liver microsomal G6Pase. Kinetic studies (Fig.
1D) indicated that Km (Michaelis constant)
values for glucose-6-P and Ki (inhibition con-
stant) values for a competitive inhibitor, van-
adate (19), were indistinguishable between
microsomes isolated from phG6Pase-1-trans-

Normal GSD type 1a
(LP)
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Thr132 [

rc
air

mm 130 [T

veA

[ 11

v~~129[TL

Tyr125[A

2[

Thr127 A

_A1
Vil126 T

_ a
" 2 12 [ O

Ale 124 Lc

Thr123c

12 [

A
c
A

c
T
G
GT

| ] Stop

c] Thr129
T

Thr 126

A
I Tyr 127

T Val126
0172

0 G] ly12S
cI Ale 124

C Thr123

O] Gly122

Exon3 cxon s

Fig. 2. Autoradiograms of Sanger nucleotide se-

quencing reactions of the G6Pase gene from
normal and GSD type 1 a patient LP. The G6Pase
gene of patient LP contains a TA insertion (boxed)
at nucleotide 459 in exon 3 generating a stop
codon at nucleotides 467 to 469. The predicted
mutant G6Pase is a severely truncated protein of
129 amino acids. The genomic DNA of patient LP,
a Mexican American, was isolated from lympho-
blasts (GM09036) obtained from the National In-
stitute of General Medical Sciences Human Ge-
netic Mutant Cell Repository (Camden, New Jer-
sey). The liver biopsy of patient LP contained no

detectable G6Pase activity.
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fected COS-1 cells and human livers. Taken
together, our data demonstrate that this
cDNA encodes human microsomal G6Pase,
the enzyme deficient in GSD type la patients.

To identify the G6Pase gene mutations
in GSD type la patients, we PCR amplified
(20) the coding regions of each of the five
exons and all intron-exon junction regions
of this gene with five pairs of oligonucleo-
tide primers containing intronic sequences
(Fig. 1B). The amplified fragments were
cloned and five subclones of each exon were
sequenced. Sequencing data of the defec-
tive gene were compared with those of a
normal G6Pase gene. Analysis of the
G6Pase gene in a GSD type la patient (LP)
showed that exons 1, 2, 4, and 5 were
normal (21). However, exon 3 of the
G6Pase gene had a TA insertion at nucle-
otide 459 that was identified in each of the
five exon 3 subclones examined (Fig. 2).
The 2-bp insertion alters the reading frame
of the encoded protein such that a stop
codon is generated at nucleotides 467 to
469. The predicted mutant G6Pase is a
severely truncated protein of 129 amino
acids. These results indicate that LP is
homozygous for the TA insertion and pre-
dict that the mother (only parent available)
would be heterozygous for the insertion at
this locus. As expected, a TA insertion at
nucleotide 459 was demonstrated in two of
five exon 3 subclones of the gene from the
mother of LP (21). Duplication of the TA
repeat may be caused by template-directed
misalignment during replication (22).

In a second patient (PC), exons 1, 3,

Normal GSD type la
(PC)

GATC GATC

and 4 were normal (21); however, exons 2
and 5 each contained a C to T mutation at
nucleotides 326 and 962, respectively (Fig.
3). Both mutations were found to convert
an Arg codon to a Cys codon (codon 83 in
exon 2 and codon 295 in exon 5). Our
finding, that only two of the five subclones
from either exon 2 or 5 exhibit the muta-
tion, suggests that patient PC is a com-
pound heterozygote with different muta-
tions in the two G6Pase alleles. We con-
firmed this by sequencing exon subclones
obtained from the G6Pase gene of both
parents. The father had a normal exon 2
and the mother, a normal exon 5. Two of
the five exon 5 subclones from the gene of
the father contained a C to T mutation at
nucleotide 962 converting an Arg to a Cys
at codon 295. Three of the five exon 2
subclones from the gene of the mother con-
tained a C to T mutation at nucleotide 326
converting an Arg to a Cys at codon 83
(2 1). Methylation of the CpG doublet, a hot
spot for mutation in bacteria and eukaryotes,
may be responsible for the two C to T
transitions observed in patient PC (23).

The liver biopsy of patient PC had no
detectable G6Pase activity, suggesting that a
mutation that substitutes either Arg83 or
Arg295 to a Cys residue yields a mutant
G6Pase with undetectable phosphohydro-
lase activity. To confirm our conclusions, we
constructed three G6Pase mutants (24) that
changed either Arg83 to Cys83 (G6Pase-
R83C), Arg295 to Cys295 (G6Pase-R295C),
or both Arg residues to Cys (G6Pase-R83C/
R295C). Phosphohydrolase activities were

Normal GSD type 1 a
(PC)

G A T C

analyzed after transient expression of the
wild-type or mutant G6Pase in COS-1 cells
(Fig. 4A). As predicted, Arg to Cys substi-
tution at either codon 83 or 295 abolished
G6Pase phosphohydrolase activity. North-
em (RNA) hybridization analysis of G6Pase
transcripts from transfected COS-1 cells
showed that wild-type and mutant G6Pase
mRNAs were expressed at similar amounts
(Fig. 4B). Moreover, translation of mutant
G6Pase mRNA indicated that G6Pase-
R83C, G6Pase-R295C, or G6Pase-R83C/
R295C RNA supported the synthesis of
polypeptides of 34.5 and 37.5 kD (Fig. 4C).

There are three potential Asn-linked gly-
cosylation sites in the deduced protein (Fig.
lA). The G6Pase wild-type mRNA support-

A
Phosphohydrolase activity

(nmol/min per milligram of protein)

Mock
G6Pase -WT
G6Pase-R83C
G6Pase-R295C
G6Pase-R83C/R2 95C

9.0 ± 2.5
170.9 ± 6.6

8.5 ± 1.5
10.6 ± 3.5
5.7 ± 0.4
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Fig. 3. Autoradiograms of Sanger nucleotide sequencing reactions of the G6Pase gene from normal
and GSD type 1 a patient PC. Patient PC contains two C to T (boxed) mutations at nucleotides 326
(exon 2) and 962 (exon 5), respectively. The predicted mutant G6Pase of patient PC contains Cys
residues at codon 83 and 295 instead of Arg residues found in normal G6Pase. The genomic DNA
of patient PC was isolated from a blood sample. The liver biopsy of patient LP exhibited no
detectable G6Pase activity.

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4. (A) Analysis of G6Pase phosphohydro-
lase activity and (B) mRNA expression after
transient expression of wild-type and mutant
G6Pase cDNAs in COS-1 cells. Phosphohydro-
lase activity was assayed in reactions contain-
ing 10 mM glucose-6-P with two independent
isolates of each construct. Total RNA was sep-
arated by formaldehyde-agarose gel electro-
phoresis, blotted onto a Nytran membrane
(Schleicher & Schuell), and hybridized to the
phG6Pase-1 probe labeled by random priming.
Transfection of each construct was done in
duplicate. (C) SDS-polyacrylamide gel electro-
phoresis analysis of G6Pase polypeptides. In
vitro transcription-translation of wild-type (WT)
or mutant G6Pase cDNA in a pGEM-7Zf(+)
vector (Promega) was done with the TnT-cou-
pled reticulocyte lysate system (Promega) and
analyzed in both sense (S, lanes 2, 5, 8, and 1 1)
and antisense (AS, lanes 1, 4, 7, and 10)
orientations. Protein processing was also ex-
amined by in vitro transcription-translation done
in the presence of canine microsomal mem-
branes (S/M, lanes 3, 6, 9, and 12).
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ed the synthesis of two polypeptides of 31
and 34.5 kD that were processed to glycosy-
lated polypeptides of 34.5 and 39 kD in the
presence of canine microsomal membranes
(Fig. 4C). This is in agreement with previ-
ous findings that rat microsomal G6Pase
migrates as. two tightly associated glycopoly-
peptides of 36.5 kD (25, 26). Surprisingly,
all three mutant proteins, G6Pase-R83C,
G6Pase-R295C, and G6Pase-R83C/R295C,
exhibited a higher apparent molecular size
and markedly reduced processing of the
G6Pase polypeptides (Fig. 4C). Our data
suggest that in human G6Pase, mutation of
Arg at either codon 83 or 295 to a Cys
induces conformational changes that inacti-
vate the enzyme.

Currently, there are two proposed models
of G6Pase catalysis. The conformation-sub-
strate-transport model (27) proposes that
G6Pase is a membrane channel protein with
both catalytic and substrate (or product)
transport functions. On the other hand, the
translocase-catalytic unit model (28) sug-

gests that G6Pase is a multicomponent com-

plex consisting of a catalytic unit, G6Pase,
situated on the lumenal surface of the ER
that gains access to substrates in the cytosol
by means of associated translocases. The
latter model has been used to explain the
phenotypic divergence observed in the four
subgroups of GSD type 1 patients (la, lb,
1c, and 1d). These GSD subgroups corre-

spond to defects in G6Pase, the putative
glucose-6-P translocase, phosphate or pyro-

phosphate translocase, and glucose translo-
case, respectively (1-3, 14, 15). This classi-
fication was based on the observations that
GSD type lb or lc patients exhibit normal
glucose-6-P or pyrophosphate hydrolytic ac-

tivity in microsomes from liver samples pre-

viously frozen, but not in fresh liver biopsy
specimens (14, 15). The results are consis-
tent with disruption of microsomes by freez-
ing that abolishes the translocation require-
ment. It is equally possible that activation of
the enzyme after microsomal disruption
could be caused by a conformational alter-
ation of the membrane-bound G6Pase. The
characterization of the G6Pase gene makes it
possible to clearly distinguish between the
models of G6Pase catalysis.

The identification of mutations in GSD
type la patients has established the molec-
ular basis of the type la disorder. Knowl-
edge of the mutations may be applied to
prenatal diagnosis and the design of thera-
pies (including gene therapy).
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