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additional intervening protein or proteins. 
These experiments may have also uncovered an 
additional role for Estl in telomerase function, 
as the Cdcl3-Est2 fusion was not capable of 
promoting extensive telomere elongation in the 
absence of Estl (Fig. 3C) (26). Because Estl is 
a terminus-specific DNA binding protein (11). 
we speculate that this second role may be to 
promote accessibility of the 3'  terminus to the 
active site of telomerase. 
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Protamine-Induced 
Condensation and 

Decondensation of the Same 
DNA Molecule 

Laurence R. Brewer,' Michele Corzett,' Rod BalhornZ 

The DNA in sperm and certain viruses is condensed by arginine-rich proteins 
into toroidal subunits, a form of packaging that inactivates their entire genome. 
Individual DNA molecules were manipulated with an optical trap to examine 
the kinetics of torus formation induced by the binding of protamine and a subset 
of its DNA binding domain, Arg,. Condensation and decondensation experi- 
ments with A-phage DNA show that toroid formation and stability are influ- 
enced by the number of arginine-rich anchoring domains in protamine. The 
results explain why protamines contain so much arginine and suggest that these 
proteins must be actively removed from sperm chromatin after fertilization. 

Protamine and other polycations have been 
shown to coil DNA into toroidal struch~res 
containing up to 60 kb of DNA (1-3). Indi- 
vidual bacteriophage appear to contain a sin- 
gle toroid folded inside the protein capsid (3). 
whereas a sperm cell contains as many as 
50,000 toroids packed inside its nucleus (1). 
The protamines responsible for inducing 
torus foinlation and packaging DNA in ma- 
turing speilnatids contain a series of arginine- 
rich anchoring domains (4) that bind to the 
phosphodiester backbone of DNA in a base 
sequence-independent fashion (5) .  One pro- 
talnine molecule is bound to each turn [- 11 
base pairs (bp)] of DNA (5, 6), and adjacent 
arginines in the anchoring domains interlock 
both strands of the helix. Arginine-rich se- 
quences are also present in the proteins that 

package DNA in several viruses (7). but the 
viral proteins contain fewer anchoring do- 
mains per molecule. 

In vitro studies using light scattering (8, 
9): electron and atomic force microscopy (1, 
2, 10). fluorescence microscopy (11, 12), and 
DNA elasticity measurements (13) have ex- 
amined how protamine and other polycations 
induce torus formation. The interpretation of 
light-scattering experiments has been compli- 
cated by DNA aggregation, whereas electron 
and atomic force microscopy studies charac- 
terized only the structure of the final product. 
Toroid formation and the kinetics of the con- 
densation process could not be observed by 
fluorescence microscopy because the mole- 
cules were not sufficiently extended. To ex- 
amine toroid formation under conditions that 
preclude aggregation and precipitation and 
allow a detailed analysis of kinetics, we used 

'Electronics Engineering Technologies Division, 'Biol- 
ogy and Biotechnology Research Program, Lawrence 

an optical trap to isolate individual DNA 
Livermore Nat ional  Laboratory, Livermore, CA 94550, and fluorescellce to 
USA. monitor the formation of toroids in real time 
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as they are induced by protamine (or A@ 
binding. 

A-phage DNA concatemers (20 to 80 pm 
long) were tagged at one end with a biotin- 
ylated oligonucleotide attached to a 1-pm 
streptavidin-coated polystyrene bead and 
stained with the intercalating dye YOYO-1 
(14). These molecules were introduced 
through one port of a "bifimated flow cell" 
(Fig. 1A) and the condensing agent prota- 
mine (or Argd through another port so that 
the two solutions flowed side by side with 
minimal mixing. An hfiared optical trap (IS) 
(Fig. 1B) was used to move an individual 
DNA molecule, via its attached bead, h m  
the sample (DNA) side to the condensing agent 
(protein) side of the flow cell. The molecule 
was extended by the force of the flowing buffer, 
and its entire length became visible because of 
the fluorescence of the h t e m h d  dye. Toroid 
formation (condensation) (Fig. 1C) was moni- 
tored in real time by measuring the change in 
length of the molecule as a fimction of time 
after moving it into the b d k  stream containing 
protein (1 6). 

--- "ug 
now - - .% 

Fig. 1. (A) Top view of the flow cell (Z) 
showing how the DNA molecules (attached to 
beads) and protamine enter the cell and form 
an interface (- - -) with little or no mixing. (B) 
Side view of the system showing the optical 
trap (orange) holding a bead attached to a 
single DNA molecule. The cell is illuminated 
from beneath by a 1-mW argon-ion laser, A = 
488 nm, to excite the YOYO-1 dye bound to 
the DNA. (C) Model of a DNA molecule con- 
densing in protamine (protamine molecules not 
shown). The upper molecule show the initia- 
tion of coiling and the lower molecule depicts 
the progression of coiling to form the torus. 

Images documenting the progression of 
condensation for a 50-pm DNA concatemer 
in protamine (1 7) are shown in Fig. 2. The 
toroid, which appeared as a bright spot at the 
end of the DNA molecule, increased in 
brightness as it moved toward the bead. In 1.1 
FM protamine, the condensation 7 s  was 
completed in -19 s. .The change in length 
versus time for four different DNA molecules 
as they condensed in different concentrations 
of protamine is shown in Fig. 3A. As long as 
the DNA was extended by flow, torus forma- 
tion initiated at the free end of the molecule, 
and its length decreased linearly with  tip^, as 
predicted by Ostrovw and Bar-Yam (18). 
The movement of the toroid often exhibited a 
jerky, start-and-stop motion, but when the 
process was repeated with the same DNA 
molecule (Fig. 4) this motion was not repro- 
duced. Although these spomd~c fluctuations 
in condensation rate cannot be DNA se- 
quence or conformation dependent, they m y  

Fig. 2. Progression of condensation of a 50-pm 
concatemer of A-phage DNA attached to a 
1-fim bead. The bead was hdd stationary by an 
optical trap and the DNA molecule is extended 
by the flow of the incoming buffer containing 
1.1 fiM protamine (v = 17.6 lun/s). Each time 
frame was captured after initiation of conden- 
sation as shown. 

relate to the cooperative nature of protamine 
bindmg and a nonrandom, incomplete cover- 
age of the DNA molecule that develops as the 
protamines bind. Condensation (toroid move- 
ment) should decrease or stop if the toroid 
encountered regions that were not completely 
covered by protarnine. 

w e n t s  conducted at &t prota- 
mine concentrations showed that the rate of 
condensation was limited by the rate of pro- 
tamine binding to the DNA molecule. The 
change in rate (Fig. 3B) was linear, with a 
slope of 2.6 + 0.47 Clm/pM-s. This corre 
sponds to a rate of protamhe binding to DNA 
of 600 + 110 moleculed~M-s. The rate of 
condensation was measured at two different 
concentrations of YOYO-1 (0.1 and 0.02 
)1M) to determine whether interdated 
YOYO-1 molecules affect the condensation 
rate. No statistically significant difference in 
the rates was observed. The potential effect of 
buffer flow and its frictional force on toroid 
movement was also assessed by calculating 
the force that would be exerted on a sphere of 
equivalent volume to the toroid and by per- 
forming an experiment to test the effect of the 
force directly. The force was calculated by 
Stokes' law to be 0.43 pN (19). The effect of 
the force was M e d  experhentally by 
comparing the condensation rates measured 
for 30 DNA molecules condensed in 1.5 pM 
protamhe over a range of buffer flow rates 
(20 to 70 m s ) .  The slope of the fitted line 
through the data points (0.00 + 0.038) indi- 

0 20 40 60 80 100120140 
TIME (sec) 

Fig. 3. (A) Change in length wrsus time mea- 
sured for four different DNA molecules con- 
densed in a different protamine concentration 
(flow speed, v = 50 fimts): (a 3.1 FM (dia- 
monds); (b) 1.6 fiM (squares ; c) 1.2 FM (tri- 
angles); (d) 0.93 p,M (circles 1 )  . Lines are least- 
squares fits to the data points. (8) Conderw- 
tion rates were determined by collecting data 
for about 200 individual DNA molecules con- 
densed by protamine. 
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cated that the condensation rate was not af- 
fected by the velocity of the buffer flow. 

To estimate the off-rate of protamine, we 
measured the decondensation rates of indi- 
vidual condensed DNA molecules after mov- 
ing them back to the DNA side of the flow 
cell. We monitored decondensation, which 
occurs only when protamine dissociates from 
the DNA, for periods up to 25 min and used 
the lengthening (uncoiling) of the molecule to 
estimate the rate of protamine dissociation. 
The measured rate of increase in DNA length, 
3.1 + 1.3 nmls, corresponds to a protamine 
off-rate of 0.71 molecule per second (20). At 
this rate, the complete dissociation of prota- 
mine fiom the sperm genome (1.5 X lo9 bp) 
would require at least 6 years. Because sperm 
chromatin takes only 5 to 10 min to decon- 
dense after f-tion, these results support 
the hypothesis that protamine must be active- 
ly removed h m  DNA (21) once the chroma- 
tin enters the egg's cytoplasm. The protamine 
dissociation constant derived from these mea- 
surements, 1.17 + 0.53 nM, is similar to 
values obtained by others for herring prota- 
mine (1.25 nM and 1.15 nM) with bulk DNA 
(9. 22). 

Similar studies conducted with Ac- 
RRRRRR-amide ( A . ,  one of three Arg, 
anchoring domains present in protamine, re- 
vealed that a 68-fold higher concentration of 
Arg, (160 C1M) was required to achieve a 
condensation rate comparable to that mea- 
sured for protamine (4.2 + l. l pds).  This 
suggests that either Arg, has a much lower 

affinity for DNA, or the consecutive 
binding of three individual Arg, molecules is 
statistically much less likely than the binding 
of a single protamine molecule. In contrast 
to the protamine complexes, DNA mole- 
cules condensed by Arg, decondensed rap- 
idly when pulled back across the interface 
and out of the buffer containing the peptide. 
Four successive condensation-decondensa- 
tion measurements performed on the same 

lwfl. (-1 

Fig. 4. Condensation (blue dots) and deconden- 
sation (red dots) of the same DNA molecule in 
107 FM Arg, (flow speed, v = 28 pmls) per- 
formed four successive times (A to D). 

molecule in 107 p,M Arg, are shown in Fig. 
4. The mean condensation rate for these 
four measurements was 9.1 2 2.5 p d s ,  
and the mean decondensation rate was 
21.25 + 2.9 @s. Because the Arg, mol- 
ecule binds to only 3 bp of DNA, these data 
indicate that the off-rate for Arg, is 18 X 
lo3 molecules per second-four orders of 
magnitude higher than the off-rate of pro- 
tamine (23). The dissociation constant, 
0.25 + 0.08 mM, has not been measured 
previously. 

Experiments conducted with concatemers 
of different lengths also indicated that there 
may be a limit to the amount of DNA that can 
be coiled into a tomid. Only one toroid was 
observed during the condensation of single 
A-phage DNA molecules, whereas multiple 
toroids (Fig. 5) were observed when concate- 
mers containing two to four molecules were 
condensed at a low flow rate (v < 10 pds ) .  
Although qdditional experiments must be 
conducted to verifjr the maximum length of 
sequence that can be coiled into a torus, the 
present studies suggest that one torus is 
formed for each length of A-phage DNA 
(48.5 kb). Although it is not clear why such a 
limit should exist, this estimate (-50 kb) is 

TIME (sec) 
r, 0 

Fig. 5. Condensation of a 45-pm concatemer of 
A-phage DNA attached to a 1-pm bead held 
stationary by an optical trap in 1.1 FM prota- 
mine (flow speed, v = 6.1 (~mls). Three toroids 
were observed to form, sequentially starting at 
the free end of the DNA molecule. 

close to the 60 kb derived from toroid vol- 
umes measured by electron microscopy (10). 

By combining the use of an optical trap, a 
dual-port flow cell, and single molecule im- 
aging, we have examined the condensation 
kinetics of individual DNA molecules, ob- 
tained estimates of the binding and dissocia- 
tion rates for protamine and Arg, in the ab- 
sence of competing aggregation reactions, 
and monitored the formation and motions of 
toroids in real time to obtain results that only 
single molecule studies can provide. In addi- 
tion to providing new insight into the mech- 
anism of DNA condensation by protamine, 
this work presents an example of how exper- 
iments with single DNA molecules can be 
used to study the kinetics and biophysics of 
protein-DNA interactions. 
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lmidazole Rescue of a Cytosine 
Mutation in a Self-Cleaving 

Ri bozyme 
Anne T. Perrotta, I-hung Shih, Michael D. Been* 

Ribozymes use a number of the same catalytic strategies as protein enzymes. 
However, general base catalysis by a ribozyme has not  been demonstrated. In 
the hepatitis delta virus antigenomic ribozyme, imidazole buffer rescued ac- 
t iv i ty of a mutant wi th  a cytosine-76 (C76) t o  uracil substitution. In addition, 
a C76 t o  adenine substitution reduced the apparent pK, (where Ka is the acid 
constant) of the self-cleavage reaction by an amount consistent wi th  differ- 
ences in the pK, values of these two  side chains. These results suggest that, in 
the wild-type ribozyme, C76 acts as a general base. This finding has implications 
for potential catalytic functions of conserved cytosines and adenines in other 
ribozymes and in ribonuclear proteins wi th  enzymatic activity. 

Transphosphoesterification reactions cata- 
lyzed by self-cleaving and self-splicing 
RNAs (ribozymes) require loss of a proton 
from the participating 2'- or 3'-hydroxyl 
group to promote its nucleophilic attack on 
the cleavage-site or splice-site phosphate (1, 
2). Metal ions can assist in this reaction, and 
metal-ion catalysis is one of several strategies 
that ribozymes share with protein enzymes 
(1, 2). Enhanced nucleophilicity of the hy- 
droxyl group could also result from base- 
catalyzed deprotonation (1-3). The pKa val- 
ues of the nucleoside side chains (pK, - 3.5 
to 4 3 ,  however, appear to be too low to 
provide efficient general acid-base catalysis 
at physiologic pH (4). Although pKa values 
can be shifted closer to neutrality in particular 
RNA sti-uctures (2, 5), it has not been dem- 
onstrated that an RNA side chain car, act as a 
general base in catalysis (1, 2). 
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The two hepatitis delta virus (HDV) ri- 
bozyrnes are structurally related self-cleaving 
RNAs (6, 7) that require a 2'-hydroxyl group 
on the ribose located immediately 5' of the 
cleavage site phosphate (8) and that generate 
products containing a 2',3'-cyclic phosphate 
and a 5'-hydroxyl group (9). Thus, implied is a 
cleavage mechanism that involves nucleophilic 
attack of the 2'-hydroxyl or 2'-alkoxide on the 
cleavage-site phosphon~s (Fig. 1). In the HDV 
ribozymes, a specific cytosine (C75 in the 
genornic ribozyme, designated yC75, and its 
counterpart C76 in the antigenomic ribozyme) 
has been hypothesized to accept the proton 
from the attacking 2'-hydroxyl group (10, 11). 

To establish that the cytosine base at po- 
sition 76 was essential for cleavage in the 
antigenomic ribozyme, we tested whether ex- 
ogenous cytosine could rescue activity of 
C76 mutants. We introduced mutations at 
C76 into the PEXl antigenomic ribozyme 
sequence (12); consistent with previous find- 
ings (13), self-cleavage activity of C76u and 
C76g was undetectable under standard con- 
ditions (Fig. 2A). At 37"C, the rate constants 

at the same speed with a single syringe pump. The 
depth of the flow cell was 40 y m  and the molecule 
was typically held 20 p m  beneath the coverslip. 
Flow velocities were maintained at -50 ymls. 
Using a computer-controlled stage with 0.1-pm 
resolution to manipulate the position of the flow 
cell relative t o  the optical trap, we moved the DNA 
molecule to the protein side of the flow cell t o  
initiate condensation. 
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were down by a factor of lo6. Cleavage 
activity of the C76u ribozyme was partially 
restored when cytosine was added to the re- 
action mixture (14). Rescue of activity by 
exogenous bases and base analogs has previ- 
ously been demonstrated in hammerhead ri- 
bozymes containing abasic residues (15). In 
those studies, rescue occurred through com- 
pensation of structural changes introduced by 
the abasic residue. To test whether cytosine 
rescue of the C76u mutant might reflect a 
catalytic role for the base, we substituted 
imidazole for cytosine. For C76u and C76g, 
addition of 200 mM imidazole (pH 7.4) to the 
reaction mixtures enhanced cleavage activity 
at least 250- and 25-fold, respectively (Fig. 
2A and Table 1). The 3' product band in these 
reactions was the same size as the normal 3' 
product, which suggests that imidazole-de- 
pendent cleavage occurred at the wild-type 
cleavage site in the 101-nucleotide (nt) pre- 
cursor. We tested several other buffers, but 
only imidazole and 4(5)-methylimidazole en- 
hanced cleavage activity (14). A divalent 
cation (Mg2+, Ca2+, or Mn2+) was required 
for cleavage of all constructs (Fig. 2A) (16). 

Imidazole would inost likely be acting as 
either a general base (pKa - 7.0) or a nucleo- 
phile in the cleavage reaction. If imidazole 
acted as a nucleophile in a single-displace- 
ment reaction, it should show up in one of the 
products. However, a 2',3'-cyclic phosphate 
would be generated if the adjacent 2'-hydrox- 
yl was the nucleophile. Therefore, we char- 
acterized the 5' cleavage product. For this 
analysis, the sequence 5' to the cleavage site 
in both PEXl and C76u was shortened from 
8 to 3 nt. Wild-type and mutant precursor 
RNAs were 5'-end-labeled and allowed to 
cleave in the absence and presence of imida- 
zole, respectively. The 5' cleavage products 
for both ribozymes comigrated on polyaciyl- 
amide gels under denaturing conditions in 
which short fragments containing 3'(2')-ter- 
minal phosphates were resolved from frag- 
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