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A1 B1 , a Steroid Receptor Coactivator Am pi if ied binds to the  transcrlptlonal integrators 
CREB b i n d ~ n g  proten1 (CBP) and the  in Breast and Ovarian Cancer closely related ~ 3 0 0 ,  alllcll lnteract dlrectlv 

Sarah L. Anzick, Juha Kononen, Robert L. Walker, 
David 0. Azorsa, Minna M. Tanner, Xin-Yuan Guan, 
Guido Sauter, Olli-P. Kallioniemi, Jeffrey M. Trent, 

Paul S. Meltzer* 

Members of the recently recognized SRC-1 family of transcriptional coactivators interact 
with steroid hormone receptors to enhance ligand-dependent transcription. AIBl, a 
member of the SRC-1 family, was cloned during a search on the long arm of chromosome 
20 for genes whose expression and copy number were elevated in human breast 
cancers. AlBl amplification and overexpression were observed in four of five estrogen 
receptor-positive breast and ovarian cancer cell lines. Subsequent evaluation of 105 
unselected specimens of primary breast cancer found AIBl amplification in approxi- 
mately 10 percent and high expression in 64 percent of the primary tumors analyzed. 
AIBl protein interacted with estrogen receptors in a ligand-dependent fashion, and 
transfection of AlBl resulted in enhancement of estrogen-dependent transcription. 
These observations identify AlBl as a nuclear receptor coactivator whose altered ex- 
pression may contribute to development of steroid-dependent cancers. 

G e n e  amplification 1s a frequent mecha- 
nism of Increased gene expression In human 
cmcers. In  breast cancer, colnmonlv am~11- , A 

fled chrornosornal regions are derlved from 
17q12, 8q24, and l l q 1 3  and encode erbB-2, 
c - m y ,  and cyclln D l ,  respect~vely (1) .  Xlo- 
lecular cytogenetlc studles of breast cancers 
have revealed the  occurrence of addltlonal 
reglons of lncreased D N A  copy nurnher 
whose target genes are unknown, lncludlng 
20q (2).  Recently, a e  used chromosome ml- 
crodlssectlo~~ and hybrid select~on to clone 

S L Anzck, J Kononen R L W a ' m  D D. Azorsa 
X -Y G ~ a n  C -P Kaonleml. J M Trent P S Meltzer. 
Laborator; of Cancer Genet~cs. Nat~ona I ~ m a n  Ge- 
nome Research l ns t~ t~ te .  Nat~ona l ns t~ t~ tes  of Ieal th 
Bethesda, MD. USA 
M M Tanner Laboratovj of Cancer Genet cs, n s t t ~ t e  of 
Med calTechnology, Un vers ty of Tampere andTampere 
Unlversty kosp~ta' .  Post Off~ce Box 637. FIN-33131 
Tampere, F~nand. 
G Sa~ te r  n s t l t ~ t e  for Pathology Un~j~ersty of Base1 
Schonbe nstrasse 43 4003 Base1. S:vtzerand. 

expressed sequences from 20q In an attempt 
to ldentifj; genes of biological s~gnificance 
(3).  In  this fashion, n-e Isolated partlal cD- 
NAs for a cand~date  target gene termed 
AIB1 iampllfled In breast cancer-11, which 
was ubiqultousl\- expressed In normal 11~1man 
tissues (3).  W e  now report that AIBl  1s a 
member of the  SRC-1 familv of nuclear re- 
ceptor (NR)  coactivators, that it is arnplified 
and overexmessed In breast and ovarlan can- 
cer cell llnes as well as In breast cancer 
biopsies, that ~t Interacts wlth estrogen re- 
ceptor (ER), and that it functions to en- 
hance ER-dependent transcription. 

Sequence analysls of partla1 AIBl  cD- 
NAs  provided the  first evldence of simllar- 
~ t y  between AIBl  and the  SRC-1 family. 
SRC-1 and TIF2 are closely related tran- 
scriptional coactlvators recently Isolated on 
the  basis of their affinity for NRs 14, 5).  
Although the mechan~srn of action of 

-To $,+!horn correspondence shoLd be addressed E.ma 1 SRC-1 h a s n o t  been completely elucidated, 
pme'tzer@nhgr n ~ h  gov in add~ t ion  to interacting with NRs, SRC-1 

1 ~ 1 t h  the  basal iranscrlption mach~nery (6). 
T o  further characterize AIB1, the  full- 

length c D N A  \\.as cloned and sequenced 
(7), revealing a n  open reading frame that 
encodes a proteln of 1420 arnino acids a i t h  
a preci~cted molecular mass of 155 k D  (Fig. 
1) .  Database searches \\.it11 BLASTP d e n -  
tifled a hlghly significant similar~ty of AIB1 
with TIF2 (45% ammo acld ~den t i ty )  and 
SRC-1 (33% anllllo acid identity) (8). Like 
TIF2 and SRC-1, AIBl  contallis a basic 
helix-loop-hellx (bHLH) domain preceding 
a PAS (Per/Amt/Sim) reglon, serlne- and 
threonine-rich regions, and a charged clus- 
ter. There 1s also a glutarnine-rich region 
that,  u n l ~ k e  SRC-1 and TIF2, contains a 
polyglutamlne tract. AIBl  also contains 
three copes  of the  conserved LXXLL motif 
(L = leucme, X = any alnlno acid), ~ ~ h i c h  
r a s  recently demonstrated to be crltlcal to 
the  coactivator receptor interaction (9,  1G). 

Because of thls strong sequence slm~lar- 
ity, we evaluated the  ampllficatlon and ex- 
presslon of AIB1 In a serles of ER-posltlve 
and -negative breast and ovarian cancer cell 
llnes (1  1 ). AIBl  gene copy number was 
determined by fluorescence 111 situ hybrid- 
ization (FISH) (Fig. 2).  Hlgh-level amplifi- 
catlo11 of AIBl  (>20-fold) was observed In 
three ER-positive breast carclnorna cell 
l ~ n e s  (BT-474, MCF-7, and ZR75-1) and in 
one ovarlan carclnonla cell llne (BG-1) 
(Fig. 2, A and B). Overall, AIB1 was am- 
p l ~ f ~ e d  in four of flve ER-poslti\,e cell llnes 
tested and in zero of six ER-nega~ive cell 
lines ( 1  2 ) .  T o  determine xhe the r  AIB1 
a ~ n p l l f l c a t i o ~ ~  also occurred in  ~lncultured 
cells from tumor biopsies, \ye screened 105 
unselected breast cancer specimens for 
AIBl  amplification by FISH. T e n  speci- 
mens ofprirnary tumors (9.5%) demonstrat- 
ed a~nplification ofAIB1,  although the  am- 
plificat~on levels were not as hlgh as in the  
cell lines (1 3) .  

Pre\,ious mterphase FISH studies ha\,e 
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demonstrated that amplification of chromo- analysis (15). Normal mammary epithelium 3B). In addition, AIBl expression was in- 
some 20q in breast cancer is complex and expressed moderate amounts of AIBl creased relative to normal mammary epi- 
involves several distinct variably coamplified mRNA (Fig. 3B). Among the tumors, high thelium in 38 of 65 (58%) of the remaining 
chromosomal segments derived from 20ql1, levels of AIBl expression were observed in tumors or 64% overall. This observation 
20q12, and 20q13 (14). Importantly, in can- all 10 cases with AIBl amplification (Fig. indicates that overexpression of AIBl by 
cer cell lines BG-1 and ZR75-1, amplifica- 
tion of AIBl (which maps to 20q12) has 
occurred independently of both the 20qll 
and 20q13 regions (1 2). A similar pattern of 
amplification with higher copy number at 
AIBl than elsewhere on 20q was also found 
in two tumor specimens (Fig. 2C). Although 
most instances of AIBl amplification were 
observed in conjunction with increased 
20q13 copy number, cases of 20q13 amplifi- 
cation with normal AIBl copy number also 
were identified. These results indicate that 
AIBl defines an independently selected re- 
gion of amplification on 204 that takes part 

Fig. 2. Bicolor FISH analysis 
demonstrates AIBl ampli- 
cation (red signals) in breast 
cancer cell line ZR75-1 (A), 
ovarian cancer cell line BG-1 
(B), and two uncultured 
breast cancer samples (C). 
lntrachromosomal amplifi- 
cation of AlBl (arrows) is ap- 
parent in metaphase chro- 
mosomes of ZR75-1 and 
BG1, and numerous copies 
of AIBl are resolved in the 
adjacent interphase nuclei. 
The Spectrum Orange (Vy- 
sis)-labeled AIBl PI probe 
(3) was hybridized with a bi- 
otinylated reference probe 
for 20q11 (RMC20P037) (A 
and B) or a fluorescein-la- 
beled probe for 20p 
(RMC20C039) (C), which 
appear green. 

in a complex process of amplification 
involving multiple target regions on the 
same a& of thechrom&me.- 

AIBl expression was examined first in 
tumor cell lines with and without AIBl 
amplification and compared with expres- 
sion of ER, SRC-1, and TIF2 by Northern 
blotting. In direct concordance with its am- 
plification status, AIBl was highly overex- 
pressed in the four ER-positive cell lines 
with increased AIBl copy number (BT-474, 
MCF-7, ZR75-1, and BG-1) (Fig. 3A). In 
contrast, expression of TIF2 and SRC-1 
remained relatively constant in all cell lines 
tested (Fig. 3A). AIBl expression was then 
examined in primary breast malignancies by 
mRNA in situ hybridization to 75 of the 
tumor specimens previously used for FISH 

Fig. 1. Deduced amino acid 
sequence and structural mo- 
t i  of AIBl (GenBank acces- 
sion number AF012108) 
(22). Residues highlighted in 
black are identical in AIB1, 
TIF2, and SRC-1; those 
identical with TIF2 (GenBank 
accession number X97674) 
or SRC-1 (GenBank acces- 
sion number U59302) are 
highlighted in gray or boxed, 
r e spec t i .  Three copies of 
the WLL NR interaction 
motif are underlined. Struc- 
tural features of AIBl include 
bHLH and PAS domains 
(with the highly conserved 
PAS A and B regions in dark 
gray), swine- and threonine- 
rich regions, and a group of 
charged residues (+/-). The 
glutamine-rich region and 
the pdyglutamine tract are 
also indicated. The alignment 
was generated with DNAS- 
TAR snftwar~! 
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mechanisms other than amplification also 
occurs frequently in human breast cancers. 
ER status, as determined by immunohisto- 
chemistry, was not strongly correlated 
with either AIBl amplification or expres- 
sion in the unselected tumors (12, 1.5). 
However, both clinical specimens that 
demonstrated independent high-level 
AIBl amplification were from postmeno- 
pausal patients and were ER and proges- 
terone receptor-positive. One of these 
specimens was a metastasis from a patient 
who subsequently responded favorably to 
treatment with tamoxifen. 

We then sought to determine whether 
expression of AIBl increases ER ligand- 
dependent transactivation. T o  accomplish 
this, we performed transient transfection 
assays to examine the effect of increasing 
amounts of AIBl on transcription of an 
ER-dependent reporter (1 6). These results 
conclusively demonstrated that cotrans- 
fection of AIBl led to a dose-dependent 
increase in estrogen-dependent transcription 

Fig. 3. (A) Increased expression of AlBl in the 
AIBl amplified cell lines BT-474,ZR-75-1, MCF7, 
and BG-1 is apparent on Northem analysis. The 
blot was hybridized sequentially with the indicated 
probe to compare AIBl expression with that of 
ER, TIF2, and SRC-1. To avoid cross-hybridiza- 
tion between these related genes and to match 
signal intensities, we used similar-sized probes 
from the 3' untranslated regions of AIB1, TIF2, 
and SRC-1 (23). Each of these probes detected a 
signal in normal mammary RNA (Clontech) on 
longer exposure. Electrophoresis, transfer, and 
hybridization of 15 pg of total RNA was performed 
by standard methods (24). We used a p-actin 
probe as a control for loading error. (B) Dark-field 
microscopic image of AlBl mRNA in situ expres- 
sion demonstrating moderate expression in nor- 
mal breast epithelium (left) and high-level expres- 
sion of AlBl in malignant mammary epithelial cells 
carrying increased copies of the AlBl gene (right) 

(Fig. 4A). This increase was not observed 
when the estrogen antagonist 4-hydroxyta- 
moxifen (4-OHT) was substituted for 17P- 
estradiol or when the estrogen response ele- 
ment (ERE) was removed from the reporter 
plasmid (Fig. 4A). The degree of coactiva- 
tion was not as pronounced as that reported 
for SRC-1 and TIF2, but it was comparable 
to that observed with the very recently de- 
scribed murine SRC-1 family member p/CIP 
(1 0). Further evidence of ER-AIB1 interac- 
tion was provided by a glutathione S-trans- 
ferase (GST) pulldown assay (17), which 
demonstrated that a GST fusion protein that 
contains the region predicted to contain the 
NR interaction domain (residues 605 to 
1294 of AIBl) associates with ER in a li- 
gand-dependent fashion (Fig. 4B). These re- 
sults demonstrate that AIBl interacts direct- 
ly with ER and increases estrogen-dependent 
transcriptional activity. 

This study has identified AIBl as a 
member of the SRC-1 family of transcrip- 
tional coactivators that is frequently am- 

AlBl 

with marked cell to cell heterogeneity. 

Fig. 4. AIBl increases estrogen- A 
dependent transcription from an ER 

B 

reporter plasmid in vivo and inter- k GST GST 
acts with the ER in GST pulldown GST AIB.TI AIB.Nl 
assays. (A) CV-1 cells were tran- I-+lm+II-+I E2 
siently transfected with 250 ng of 3 --- --* r - - 
ER expression vector (pHEGO- 
hyg), 1.0 pg of luciferase reporter ER 
plasmid (pGL3.lucSERE or pGL3 2 5 
lacking ERE), and increasing 
amounts of pcDNA3.1 -AIB1 and in- 
cubated in the absence (open bars) ' : 1 25 o 2 5  

or presence of 10 nM 17p-estradiol 
( ~ 9 )  

-ERE 
(E2) (solid bars) or 100 nM 40KT 
(hatched bars). Luciferase activlty is 
expressed in RLU. Data are means of three determinations from one of four replicate experiments. Error 
bars indicate 1 SD. (B) AlBl protein binds to ER in a ligand-dependent fashion. To examine the 
interaction of ER with AlBl in vitro, we incubated unliganded or estradiol-treated ER with glutathione- 
Sepharose beads containing GST, GST-AIB.Tl (amino acids 605 to 1294), or GST-AIB.Nl (amino acids 
1 to 194). Note that interaction is specific for the AIBl .TI fragment that contains the W L L  motifs. 
Bound ER was visualized by SDS-PAGE, immunoblotting, and chemiluminescence. 

plified and overexpressed in breast cancer. 
Its amplification, effect on estrogen-de- 
pendent transcription, and interaction 
with ER implicate AIBl as an important 
component of the estrogen-response path- 
way. O n  the basis of the observation that 
GRIP1, the mouse ortholog of TIF2, is a 
coactivator of multiple NRs (18) and the 
presence in AIBl of the newly described 
LXXLL NR interaction motifs (9, lo), we 
do not expect that AIBl coactivation is 
confined to ER alone. It is likely that ER 
is a major but not exclusive target of 
AIB1-NR interaction in mammary epi- 
thelial cells. Accumulation of excess 
quantities of the usually limiting AIBl 
protein could have a profound effect on 
the expression of numerous genes that are 
normally regulated by NRs. Additionally, 
interaction with CBP/p300 is important in 
the function of SRC-1, TIF2, and p/CIP; it 
also is likely to be important for AIBl 
function (6, 10). Thus, AIBl overexpres- 
sion could potentially perturb signal inte- 
gration by CBP/p300 and affect multiple 
signal transduction pathways. Our obser- 
vations of AIBl amplification suggest that 
the resulting dysregulation of gene expres- 
sion provides a selective advantage for 
tumor growth. 
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tivities w~th the dualluciferase reporter assay system 
(Promega) and the results are expressed in relative 
luminescence units (RLU) (IuciferaselReniIla ucif- 
erase). We obtaned pRL-CMV and pGL3-promoter 

from Promega and pHEGO-hyg from ATCC. ER re- 
porter pGL3.luc.3ERE, whlch contans three tandem 
copies of the ERE upstream from the simian vlrus 40 
promoter dr~v~ng the luc~ferase gene, was the k~nd glft 
of Fern Murdoch, Uniformed Serv~ces University of the 
Health Scences. 
We constructed GST fusion protens by generating 
PCR fragments of AIBI encoding amino ac~ds 1 to 
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prote~n-gutathone-Sepharose mixture In b~nding 
buffer containing 0.1 % bovne serum albumin for 1 
hour at room temperature. Gutathone-Sepharose 
beads were washed five times in binding buffer, and 
bound proteins were eluted in SDS-polyacrylam~de 
gel electrophoresis (SDS-PAGE) sample buffer and 
separated by SDS-PAGE. Separated proteins were 
transferred to nylon membranes, incubated sequen- 
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Pain Affect Encoded in Human Anterior 
Cingulate But Not Somatosensory Cortex 

Pierre Rainville, Gary H. Duncan, Donald D. Price, 
Benoit Carrier, M. Catherine Bushnell* 

Recent evidence demonstrating multiple regions of human cerebral cortex activated by 
pain has prompted speculation about their individual contributions to this complex 
experience. To differentiate cortical areas involved in pain affect, hypnotic suggestions 
were used to alter selectively the unpleasantness of noxious stimuli, without changing 
the perceived intensity. Positron emission tomography revealed significant changes in 
pain-evoked activity within anterior cingulate cortex, consistent with the encoding of 
perceived unpleasantness, whereas primary somatosensory cortex activation was un- 
altered. These findings provide direct experimental evidence in humans linking frontal- 
lobe limbic activity with pain affect, as originally suggested by early clinical lesion studies. 

Affective aspects of pain, such as perceived 
unpleasantness, have been classically con- 
sidered to be distinct from the simple sen- 
sory dimensions of pain, which include the 
perception of location, quality, and inten- 
sity of noxious stimulation ( 1  ). Largely on 
the basis of indirect evidence, separate neu- 
ronal pathways have been postulated to un- 
derlie these different asnects of the nain 
experience (2) .  For example, involvement 
of frontal lobe regions, particularly the an- 
terior cingulate cortex (ACC),  in pain af- 
fect is suggested by clinical reports that 
uatients with frontal lobotomies or cineu- 
lotomies sometimes still feel pain but report 
it as less distressing or bothersome 13). On  
the other hand, primary and secondary so- 
matosensory cortices (SI and SII) have 
been considered plausible candidates for the 
processing of sensory-discriminative aspects 
of uain, on the basis of their anatomical 
connections to subcortical and spinal re- 

gions, which encode discriminative proper- 
ties of somatosensory stimuli (4). Recent 
neuroimaging studies in humans document- 
ed pain-related activation in limbic sites, 
such as ACC and rostra1 insula (IC),  and in 
the primary sensory regions SI and SII (5). 
In addition, anatomical and electrophysio- 
logical data show that these regions receive 
direct nociceptive input in the monkey (6). 
However, the extent to which these differ- 
ent cortical structures contribute to suecific 
dimensions of the human pain experience is 
largely unknown and untested. 

In the present study we used hypnosis as 
a cognitive tool to reveal possible cerebral 
mechanisms of uain affect in normal human 
volunteers. A perceptual dissociation of 
sensory and affective aspects of the pain 
experience was achieved with hypnotic sug- 
gestions to both increase and decrease pain 
unpleasantness, without changing the per- 
ceived intensity of the pain sensations (7). 
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