Journal article Open Access

Refined Structure of αβ-Tubulin at 3.5 Å Resolution,

Löwe, J.; Li, H.; Downing, K. H.; Nogales, E.

Citation Style Language JSON Export

  "DOI": "10.1006/jmbi.2001.5077", 
  "author": [
      "family": "L\u00f6we, J."
      "family": "Li, H."
      "family": "Downing, K. H."
      "family": "Nogales, E."
  "issued": {
    "date-parts": [
  "abstract": "We present a refined model of the \u03b1\u03b2-tubulin dimer to 3.5 \u00c5 resolution. An improved experimental density for the zinc-induced tubulin sheets was obtained by adding 114 electron diffraction patterns at 40-60 \u00b0 tilt and increasing the completeness of structure factor amplitudes to 84.7 %. The refined structure was obtained using maximum-likelihood including phase information from experimental images, and simulated annealing Cartesian refinement to an R-factor of 23.2 and free R-factor of 29.7. The current model includes residues \u03b1:2-34, \u03b1:61-439, \u03b2:2-437, one molecule of GTP, one of GDP, and one of taxol, as well as one magnesium ion at the non-exchangeable nucleotide site, and one putative zinc ion near the M-loop in the \u03b1-tubulin subunit. The acidic C-terminal tails could not be traced accurately, neither could the N-terminal loop including residues 35-60 in the \u03b1-subunit. There are no major changes in the overall fold of tubulin with respect to the previous structure, testifying to the quality of the initial experimental phases. The overall geometry of the model is, however, greatly improved, and the position of side-chains, especially those of exposed polar/charged groups, is much better defined. Three short protein sequence frame shifts were detected with respect to the non-refined structure. In light of the new model we discuss details of the tubulin structure such as nucleotide and taxol binding sites, lateral contacts in zinc-sheets, and the significance of the location of highly conserved residues.", 
  "title": "Refined Structure of \u03b1\u03b2-Tubulin at 3.5 \u00c5 Resolution,", 
  "type": "article-journal", 
  "id": "1229896"
Views 526
Downloads 549
Data volume 539.2 MB
Unique views 509
Unique downloads 523


Cite as