Journal article Open Access

High-Resolution Infrared Imaging of Neptune from the Keck Telescope

Gibbard, S.

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Gibbard, S.</dc:creator>
  <dc:description>We present results of infrared observations of Neptune from the 10-m W. M. Keck I Telescope, using both high-resolution (0.04 arcsecond) broadband speckle imaging and conventional imaging with narrowband filters (0.6 arcsec resolution). The speckle data enable us to track the size and shape of infrared-bright features ("storms") as they move across the disk and to determine rotation periods for latitudes −30 and −45°. The narrowband data are input to a model that allows us to make estimates of Neptune's stratospheric haze abundance and the size of storm features. We find a haze column density of ∼106 cm−2 for a haze layer located in the stratosphere, and a lower limit of 107 cm−2 and an upper limit of 109 cm−2 for a layer of 0.2 μm particles in the troposphere. We also calculate a lower limit of 7×106 km2 for the size of a "storm" feature observed on 13 October 1997.</dc:description>
  <dc:title>High-Resolution Infrared Imaging of Neptune from the Keck Telescope</dc:title>
Views 391
Downloads 128
Data volume 108.7 MB
Unique views 373
Unique downloads 125


Cite as