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Genomic Structure of the Human p47-phox (NCF1) Gene
Submitted 01/24/00; revised 02/01/00
(communicated by Bernard M. Babior, M.D., 02/02/00)

Stephen J. Chanock,1 Joachim Roesler,2,3 Shixing Zhan,1,4 Penelope Hopkins,5,6 Pauline Lee,5

David T. Barrett,1 Barbara L. Christensen,1 John T. Curnutte,2,5 and Agnes Go¨rlach5,7

ABSTRACT: The cytosolic factor p47-phox, encoded by theNCF1 gene, is an essential component of
phagocyte NADPH-oxidase system. Upon activation of this multicomponent system, p47-phox translocat
membrane and participates in the electron transfer from NADPH to molecular oxygen. A deficiency or ab
p47-phox is the most common autosomal form of chronic granulomatous disease (CGD). We have clo
characterized theNCF1 gene from four bacteriophage clones, a P1 clone and genomic DNA from n
individuals. The gene is 15,236 base pairs long and includes 11 exons. It is 98.6% homologous in sequ
least one pseudogene that maps to the same region of chromosome 7q11.23. Slightly more than half (5
the wild-typeNCF1 gene consists of repetitive elements. In particular, the density of Alu sequences is h
Alu/kb); there are 21 Alu repeats interspersed through 10 introns. These findings are consistent
observation that recombination events between the wild-type gene and its highly homologous pseudogene
for the majority of potentially lethal mutations in p47-phox-deficient chronic granulomatous disease. Ana
1.96 kb of sequence 59 of the start of translation revealed a high homology (99.6%) between wild-typ
pseudogene clones. Characterization ofNCF1 establishes a foundation for detailed molecular analysis of
phox-deficient CGD patients as well as for the study of the regulation of theNCF1 gene and pseudogenes, b
of which are present as full-length transcripts in normal individuals.
Keywords: gene; NADPH-oxidase; chronic granulomatous disease; respiratory burst.
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INTRODUCTION

In phagocytic cells, the NADPH-oxidase
responsible for the oxidative burst in which el
trons are transported from NADPH to molecu
oxygen according to the reaction

NADPH 1 2O23 NADP1 1 2O2
2 1 H1 (1).

his multicomponent enzyme complex consist

Reprint requests to: Dr. Stephen J. Chanock, Pediatric Oncology Bra
Gaithersburg, MD 20877. Fax: 301-402-3134. E-mail: sc83a@nih.g
Abbreviations used: CGD, chronic granulomatous disease; NADPH
p47-phox, cytosolic protein of the NADPH-oxidase;NCF2, gene enco
p40-phox, cytosolic protein of the NADPH-oxidase;CYBB,gene encod
p22-phox, membrane protein of the NADPH-oxidase; LINE, Lon
Interspersed Elements; SH3,src-homology region #3.
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5 Department of Molecular and Experimental Medicine, Scripps Res
6
 Current address: Sequana Therapeutics, Inc., La Jolla, California.
7 Current address: Institut fu¨r Kardiovaskula¨re Physiologie, Klinikum der JWG
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t least five components, two membrane bo
ubunits (gp91-phox and p22-phox) and three
osolic factors (p40-phox, p47-phox and p
hox) (2). The respiratory burst oxidase is d
ant in resting cells but upon activation is ass
led at the membrane. The cytosolic prote
40-phox, p47-phox and p67-phox translocat

he membrane where they associate with
p91-phox and p22-phox components (3–6). p

ational Cancer Institute, Advanced Technology Center, 8717 Grovecle,

e, nicotinamide adenine dinucleotide phosphate-oxidase;NCF1, gene encodin
7-phox, cytosolic protein of the NADPH-oxidase;NCF4, gene encodin
1-phox, membrane protein of the NADPH-oxidase;CYBA,gene encodin

spersed Elements; MIR, Mammalian Interspersed Repetitive; SI

of Health, Bethesda, Maryland.
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phox, a basic protein, is phosphorylated u
activation of the enzyme complex (7–9). In ad
tion, one or more cytosolic GTP-binding prote
appear to be required for oxidase activity (1
14).

Chronic granulomatous disease, CGD, is
inherited disorder of phagocytic cells charac
ized by the inability of phagocytes and B-lymph
cytes to generate superoxide (15,16). Supero
and its toxic oxygen derivatives are essentia
microbicidal activity. CGD patients, who ha
deficient or absent production of superoxide,
susceptible to recurrent and life-threatening b
terial and fungal infections. This heterogene
group of patients is lacking one or more of fo
components of the respiratory burst oxida
gp91-phox, p22-phox, p47-phox and p67-phox
rare cases, the functional activity of one of th
components is significantly decreased, resu
in the CGD phenotype (15,17).

The gene structures of the NADPH-oxid
componentsCYBB, CYBA,andNCF2 have bee
determined (18–20). The genes of the NADP
oxidase have been mapped to Xp21.1 (CYBB),
16q24 (CYBA), 1q25 (NCF2), 22q13.1 (NCF4)
and 7q11.23 (NCF1) (19,21–23). Recently, w
have discovered the existence of a highly hom
ogous pseudogene, which localizes to the s
region of 7q11.23 as the wild-type gene (24).

The identification of the structure of the
genes has permitted detailed molecular ana
of CGD patients deficient in gp91-phox, p2
phox, and p67-phox. Characterization of the
tations in gp91-phox-deficient CGD patients
revealed a wide spectrum including deletion
the entire gene, point insertions, substitution
deletions within exons, splice junctions and th9
upstream regulatory region of the ge
(17,25,26). Similarly, analysis of two of the au
somal recessive forms of CGD due to p22-pho
p67-phox deficiency is notable for a heterogen
group of mutations, including single base de
tions, amino acid substitutions and splice junc
errors (17,19).

Approximately 30% of patients with CGD d
not have detectable p47-phox protein by Wes
blot analysis and an inheritance pattern tha

autosomal recessive (3,27). Interestingly, the first

38
four patients (who were unrelated) were repo
to be homozygous for an identical mutation, a
deletion (DGT) at the start of exon two, resulti
in a frameshift (28). In two subsequent repo
the same GT deletion was detected exclusive
five of six unrelated patients (29,30). One pat
was a compound heterozygote with theDGT and
a single base pair deletion at bp 502 (29). Su
quently, analysis of additional p47-phox-defici
CGD patients has confirmed the importance o
GT deletion in over 85% of reported patients (3
In addition, it has been suggested that recom
nation events between one or more of the hig
homologous pseudogenes and the p47-phox
accounts for this observation (24,31).

Here we report the structure of the wild-ty
NCF1gene which had been previously mappe
chromosome 7q11.23 (23,24). 1960 bp of th9
upstream region has been sequenced and
pared to the sequence corresponding to the p
dogenes. The determination of the map of
gene as well as the 59 upstream region establish
an important foundation for further molecu
analysis of patients with p47-phox-deficient C
and for the investigation of the regulation of
NCF1 gene and pseudogenes.

METHODS

Screening of Genomic Library for NCF1
Genomic Clones

Two separate Sau3A partial digest lam
EMBL 3A bacteriophage libraries prepared fr
human DNA were screened by plaque hybrid
tion using a radiolabeled cDNA probe of the f
length NCF1. The cDNA used to screen the
brary was generated by polymerase chain rea
with primers, 47F-1, ATGGGGGACA CCT
TCATCCGT and 47R-1, CACTCCAAGCAA
CATTTATTG. The first library screened was p
pared from human leukocyte DNA and the sec
was prepared from human sperm DNA (gift of
Jeremy Nathans). Clones corresponding to
wild-type gene (L4A, L-HDLA, L27II, and L24
and the pseudogene (L14, L 25A) from the b
teriophage libraries were plaque purified, and

phage DNA analyzed by restriction digests and
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Southern blot hybridizations using establis
methods.

P1 clones were obtained from a human libr
by PCR screening with two sets of oligonucl
tides (GenomeSystems, Inc., St. Louis, MO) c
responding to the region in the immediate 59 un-
translated region (using the oligonucleotide prim
TTTTCCTTGTCCCTGCAGGT and GACTGG
GTGGCCTCCAGTGCTCCCT) and the region
tween exon 11 and the 39 untranslated region (usin
the oligonucleotide primers AGACGCAGCG
TCTAAACCGCA and CTATAGAGCCTGGCG
TCTGGA). One of ten contained the wild-type ge
(P42) and nine of ten contained theDGT signature
sequence for the pseudogene (P38, 39, 40, 41,4
48, 49, and 50) previously reported elsewhere

Sequence Analysis of Clones and Control
Genomic DNA

Fragments of bacteriophage and P1 clo
were subcloned into pUC and Bluescript KS1
and directly sequenced for confirmation of intr
exon borders using the dideoxynucleotide ch
termination method. Each intronic seque
length was confirmed by both Southern hyb
ization of restriction digests of the phage, P1
plasmid subclones and polymerase chain reac
generated fragments derived from con
genomic DNA. The full-length gene sequen
was obtained from bacteriophage clone L24
portions of the P1 clone, P42; the latter was u
to complete or verify intronic regions. The s
quence 59 of the start of translation was det

ined for two wild-type clones, L24 and P42, a
wo pseudogene clones, L14 and P43. The co
egion and immediate flanking regions of the
rons were confirmed by direct sequencing
ragments amplified from genomic DNA deriv
rom healthy controls.

NA Amplification and Characterization
f Sequences

PCRs contained 0.5mM of each primer, 5
mM KCl, 10 mM Tris–HCl, 2.5 mM MgCl2, 200
mM dATP, dCTP, and dTTP, 50mM dGTP, and

50 mM 7-deaza-29-GTP. The amplification con

itions were as follows: 94°C for 1 min, 60°C for

39
,

min and 72°C for 2 min, for a total of 30 cycle
n selected circumstances, PCR-generated
ents from genomic DNA were directly s
uenced by cycle sequencing (fmol Sequen
it, Promega, Madison, WI) using the followin
onditions: 7 min denaturation at 98°C, 30 cyc
f 94°C for 30 s, 58°C for 30 s and 72°C for 4
nd a 7-min extension at 72°C.

Sequences were analyzed with MacVector
Oxford Molecular, Madison, WI). Further s
uence analysis utilized Repeat Masker2 (ver
/16/98) and Mat Inspector v2.2 (http
ransfac.gbf-braunschweig.de/cgi-bin/matSea
atsearch2.pl) (32).

ESULTS

solation of Genomic Clones and Mapping
f the NCF1 Gene

Four separate recombinantlEMBL 3A bacte-
riophage clones corresponding to the wild-t
NCF1 gene were isolated from two different h
man genomic libraries by screening with a f
length cDNA probe containing the coding reg
of NCF1 mRNA (Fig. 1). Clones L4A, L-HDLA
and L27AII were obtained from a human geno
DNA leukocyte library and clone L24 was d
rived from a human genomic DNA sperm libra
The P1 clone P42 was isolated from a hum
genomic P1 library as described previously (
and, in addition, used to confirm known seque

Southern blot analysis of the genomic clo
digested with four different enzymes (BamHI,
BglII, EcoRI, andHindIII) confirmed that no larg
rearrangements had occurred during the clo
procedure (data not shown). Based upon the
striction digestion map and direct sequence a
ysis of these clones, a composite map of
p47-phox gene was constructed (Fig. 1). E
positions identified by Southern blot analy
matched exactly with the sequence analysis.

The most 59 bacteriophage clone, L4A, e
tended at least 6 kb upstream of the initia
codon. L24 extended more than 4 kb upstream
exon 1. One clone, L-HDLA, overlapped the th
clones containing the 59 end of the gene an
extended 6 kb beyond the 39 untranslated regio

The restriction map of the P1 clone, P42, and
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sequence analysis confirmed the organizati
structure and sequence of the phage clones
P1 clone extended approximately 45 kb upstr
and 20 kb downstream of the p47-phox gene

Sequence Analysis of the NCF1 Wild-Type G

Sequence analysis of the bacteriophage c
L24, and the P1 clone, P42, revealed that
NCF1 wild-type gene contains 15,236 base p
from the initiation ATG to the start of the poly(A
tail. The GC content is 54.12%. A surprising
high portion of the gene (50.37%) consists
repetitive elements. 41.09% of the gene con
of SINEs (Short Interspersed Elements)

Figure 1. Gene structure for the wild-typeNCF1gene bas
lones (L24, L4A, L27, L-HDLA) were isolated from two
he P1 clone P42 was obtained as described in the tex
lements are shown underneath. These include 21 Alu
ne LTR. Also shown are the Chi sequences; exact
hereas the up arrows indicate sites with a one-base
6.33% of sequence consists of LINEs. (Long In- t

40
terspersed Elements). Notably, there are 21
elements and 3 MIR elements (Mammalian In
spersed Repetitive) elements throughout the g
The density of Alu sequences is very high,
every 0.69 kb of sequence and 66% of the
sequences are biased in the 39 to 59 orientation
nterestingly, all 9 Alu sequences in intron 1 a
, which flank exon 2 (where theDGT is presen

n the p47-phox pseudogenes) are in the 39 to 59
rientation.

Sequence analysis of 1,960 bases upstrea
he start of translation is presented in Fig.
nterestingly, there is 99.6% homology betw
he gene and pseudogene sequence, derived

on sequence analysis of clones L24 and P42. Bacter
rate human genomic libraries using a full-lengthNCF1probe
on sizes are indicated and the approximate positions o
ences, three L1 type LINEs, two L2 type LINEs, four
es with the consensus sequence are indicated by d
atch.
ed up
sepa

t. Intr
sequ

match
wo clones, L14 and P43 (24). There are two
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insertions in the pseudogene 59 upstream se
uence, an insertion of two adenosines at2830
p and an insertion of three adenosines a
903. Three single base pair changes were fo
t bp21895, bp21783, and bp21690.

The region is also notable for a high degre
repetitive sequences, including three Alu
quences, two of which, (bp21115 to2821 and
bp 2819 to2543) are back to back and flank
on both sides by LINE sequences. There is
consensus site for a TATA or CCAAT box
close proximity to the start of transcription (s
below) at221 bp. A PU.1 binding site which h
been shown to be myeloid specific, is loca
between bp261 and266 (33). Further upstrea

TA

Intron/Exon Borders

Intron 59 boundary

72
I. AGC CAG CAC TAT gtgagtagctgctggagggcatcccc

153
II. TAC GAG TTC CAT gtgagtgtggggacggaggagggac

229
III. CC CAC CTC CCA G gtgagcacggggctgagccgcctgt

395
IV. ACG GAC AAC CA gtgagtgaacttttcaccctgccaggtg

451
V. GT ACC GCG ACA G gtgagaggacggggggcagccggc

574
VI. G AGC GAG AGC G gtcagacctcccaccttacggggctc

682
VII. CC AAC TAT GCA G gtgccccctgccctccgaggctgtagg

800
VIII. TGG GTC ATC AG gtaggagggcccctctccatccagag

905
IX. G CCG CCC CGC AG gtaagcgggggtccccggggctgg

1051
X. GG AGC CCG CTC G gtgagtgcagctgagagagggcag

Figure 2. Comparison of the 59 upstream sequence of
pseudogene but not including the initiation ATG codon.
locations from the wild-type (wt) clones (L24 and P42),
base pair changes (at21895, 1783 and21690 of thewt seq
(for single base changes) and with bars for insertions. A
the wild-type and pseudogene sequences. The major s
40). Repetitive sequence elements are underlined, thre
to 2543) and two LINE/L2 elements (bp21246 to2111
transcription factors are indicated by underlined and ita

Oct-1 site. The PU.1 binding site, shown by Liet al., 1997 is a

42
in the sequence are a number of potential bin
sites for transcription factors, seven SP-1 sites
292 to2100, bp2476 to2484 and bp2670 to
2678, bp21061 to21069, bp21200 to 1208
bp 21687 to21693 and bp21695 to21703),
four AP-1 sites (bp2175 to 2181 (one mis

atch) bp2266 to2272, bp21301 to21307,
bp 21503 to21510) and an Oct1 site (bp2291
to 2299).

Exon–Intron Structure of the Coding Region
of NCF1

Exon positions were identified based
Southern blot analysis of restriction-diges

1

Wild-TypeNCF1 Gene

Intron
ngth (Kb) 39 boundary

73
3.2 ggtcccccgatgtggctttcccccag GTG TAC

154
1.7 cacgtcttcttgtctttttaatgtttag AAA ACC

230
0.099 cttgacctcatgttctctggtgccag CT CCC

396
1.4 tctcacccagactggttctctcctcag G ACA

452
2.0 ctcaccctgccctccctcttgccccag AC ATC

575
0.5 gtcacattcccgcacctctggcacag GT TGG

683
1.5 tgctctgtgcccctgccgtggaccag GT GAG

801
2.2 gcctcaagggctgcctctgttgcag G AAA G

906
0.5 cgacgccccgtcccgctgggccag G TCG

1052
0.3 actcggccccgctctctgcccgcag AG GAG

nucleotides of the wild-typeNCF1 gene and 1965 bp of th
seudogene (ps) clones (L14 and P43) differ at only five differe
sertions of AA at2830 and AAA at2903 and three sing
). Differences in the pseudogene sequence are shown
gle symbol is indicted underneath the noted difference
f transcription is indicated in boldface type, the A at bp221 (33,
elements (bp21960 to21856, bp21116 to2821 and bp2819
d bp2542 to 2270). Consensus sequences for bindin
d bases. These include seven Sp-1 sites, four AP-1 sit
BLE

of the

le

gtg

agg

cagg

gg

ggg
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ggt
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cloned genomic DNA. Consecutive seque
analysis of the restriction fragments revealed
exon/intron boundaries (Table 1). Polymer
chain reaction amplification of genomic DNA e
tracted from normal individuals followed by d
rect sequence analysis of the amplicons confir
the junctions. The gene is divided into 11 ex
(Fig. 1). The predicted product of translation
390 amino acids, which corresponds to the
ported size of the isolated protein (4,6). All spl
junction sequences conformed to the GT/AG
(see Table 1). The sizes of individual exo
ranged from 55 to 165 bp corresponding to 1
55 amino acids.

Several features are notable in the organ
tion of the gene. The intron between exon 3
exon 4 is only 99 bases long and lacks a te
nation codon. If translated in frame with exon
an alternatively spliced form ofNCF1could exist
However, this sequence has not been observe
direct sequence analysis of cDNA derived fr
healthy controls or p47-phox-deficient CGD
tients nor from cDNA clones from a range
libraries of hematopoietic origin (neutroph
monocyte or lymphocyte) (data not shown). F
thermore, using this 99 bp fragment as a prob
has not been possible to identify an expres
mRNA species containing this sequence
Northern blot analysis or RT-PCR (data
shown). The two functionally important SH3 d
mains, corresponding to amino acid residues 1
211 and 231–281, are distributed between co
uous exons; SH3-#1 lies in exons 6 and 7
SH3-#2 lies in exon 8 and 9.

DISCUSSION

The complete wild-typeNCF1 gene has bee
sequenced and analyzed. TheNCF1 gene is
15,327 bp long, contains 11 exons and has
intron/exon structure identical to the recen
identified highly homologous pseudogenes (
Sequence comparison of theNCF1 gene an

seudogenes revealed several remarkable
ures. First, there is a greater than 98% homo
n regions sequenced. Secondly, a set of sign
ifferences distinguishes wild-type clones fr

seudogene clones, including the presence or ab-t

43
-

sence of theDGT sequence at the start of exon
hirdly, the NCF1 gene (and pseudogenes) c

ains a high density of repetitive sequenc
0.37% of the sequence between exon 1 and
oly(A) tail and 59.03% of the first 1960 bp of t
9 region contain repetitive units.

Determination of the structure and comp
equence of the wild-typeNCF1gene provides a

important foundation for further investigation
the molecular basis of p47-phox-deficient CG
This autosomal recessive form of CGD is fou
five times more common than the other autoso
forms of CGD (due to a deficiency of eith
p22-phox or p67-phox) and bears the unu
feature of an overrepresentation of a single m
tion, the GT deletion at the beginning of exon
Recently, we have discovered the existenc
highly homologous pseudogenes, which co-lo
ize to the same region of chromosome 7q11.2
the wild-type,NCF1gene (23,24). Localization
the gene and pseudogene to the same regio
chromosome 7q11.23 is particularly important
analyses of patients with p47-phox-deficient C
because it has been proposed that recombin
events between the gene and pseudogenes
in p47-phox-deficient CGD patients who poss
only theDGT sequence at the start of exon 2 (3

Analysis of the exonic regions is consist
ith the reported cDNA sequence at the geno

evel (4,6). The size and distribution of exons
nremarkable. Analysis of the complete
uences for each of the ten introns is remark

or several reasons. The shortest intron, numb
s only 99 bases long and its predicted transla
roduct is in frame with the flanking exons. Ho
ver, we have been unable to identify an alte

ively spliced form ofNCF1 that contains this 9
ase fragment by Northern blot analysis nor
T-PCR. Overall, the intronic sequence is
arkable for a high density of repetitive
uences, including 21Alu sequences resulting in
ensity of 1.4Alu repeats every kilobase of intr
equence. Moyziset al. have estimated the ave
ge density forAlu sequences to be at least o
very four kilobases (34). Furthermore, it is
arkable that all nineAlu sequences in introns

and 2 are in the 39 to 59 orientation. In this region

here is oneAlu sequence every five hundred
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bases. A high density ofAlu sequences, partic
larly oriented in one direction, has been ass
ated with recombination mutational events in
LDL receptor (35) and the complement C1q
hibitor gene (36). Therefore, it is interesting
note that the most common form of p47-ph
deficient CGD results from recombination eve
that exchange theDGT of the pseudogene for t

ild-type GTGT signature sequence in exo
31).

The identification of the 59 upstream region
otable because the primary sequence has se
C-rich regions in close proximity to the start

ranscription; in particular, there is a G1 C
ontent of 58.5% in the region between bp1200
o 2400 and no consensus sequence for eith
TATA or CAAT box. The absence of these mo
differs from the gp91-phox upstream reg
which has a well defined CCAAT region and
region where the CAT displacement factor bi
(18,37,38). However, the PU.1 site has b
shown to be critical for myeloid-specific expr
sion of NCF1 (33) and the site is conserved
both the wild-type and the pseudogene 59 up-
stream sequence. A PU.1 binding site has b
identified as an important myeloid-specific tr
scription factor for the expression of theCYBBin
neutrophils, monocytes and B lymphoblast
cells (39).

Comparison of the sequence between
wild-type and pseudogene sequence in the v
ity of the start of transcription, reveals no diff
ences, particularly in the region of the start
transcription, mapped by others to within 21–
bases of the start methionine (33,40). It is not
that the wild-type and pseudogene transcripts
easily detected in all normal healthy contr
(24,31). This implies that expression of b
genes is regulated by elements common to
the wild type and pseudogene, perhaps prese
this highly homologous region. Although o
base pair substitution in the pseudogene 59 up-
stream sequence is situated within an SP-1
sensus site, the high homology between the
and pseudogene 59 upstream sequence over
first 1,960 bp suggests that any major differe
in expression between gene and pseudogene

scripts, if it exists, lies elsewhere. Ongoing stud- c
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l

-

ies may further delineate additional cis-acting
ements in the transcriptional regulation of
NCF1 gene.

In conclusion, a complete map of the wi
typeNCF1gene is now presented and establis
a foundation for further characterization of
sites of recombination responsible for p47-p
CGD. In addition, this sequence will also be u
ful in mapping the 7q11.23 region, a comp
region that has eluded linear mapping becaus
the high density of large blocks of sequence. T
region has also been of interest to groups stud
the molecular basis of Williams syndrome, wh
maps to the same region (41,42). A prelimin
model for this region suggests that the wild-t
gene is telomeric and at least two pseudogene
closer to the centromere. The Williams locus
interposed between the wild-type and pseudo
loci (41–44).

Lastly, knowledge of the wild-type genom
structure will also permit further investigation
the regulation ofNCF1 expression in hematopo
etic cells, such as myeloid and B lymphoid ce
The sequence of the promoter region might
be important for lineage specific expression
NCF1 in future gene therapy (45,46). In additio
this data might be potentially useful for the stu
of the regulation and function of the p47-ph
gene in non hematopoietic cells, including fib
blasts, mesangial cells, HepG2 cells, neuroep
lial cells and type I cells of the carotid bo
(47–51).
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