Reviews in Medical Dirology

Rev. Med. Virol. 2001; 11: 243-252.
DOI: 10.1002/rmv.321

REDIEW

—

disease outbreaks

‘Norwalk-like viruses’ as a cause of foodborne

Umesh D. Parashar* and Stephan S. Monroe

Viral Gastroenteritis Section, Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial

Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta,

GA 30333, USA

SUMMARY

While outbreaks of foodborne disease remain an important public health concern, their aetiology is not identified
in a majority of instances. In targeted studies, the application of newly developed molecular assays has
demonstrated that a large proportion of these outbreaks may be caused by the ‘Norwalk-like viruses” (NLV), a
genus of genetically related viruses belonging to the family Caliciviridae. NLV outbreaks associated with
consumption of faecally contaminated oysters are frequently reported and can best be controlled by preventing
contamination of oyster-harvesting waters. Infectious foodhandlers are another frequent source of contamination,
and such transmission can be minimised by exclusion of ill foodhandlers and the maintenance of strict personal
hygiene. Molecular assays have greatly refined the epidemiological investigation of foodborne NLV outbreaks,
allowing the linking of outbreaks in different locations and permitting the identification of the virus in the
implicated vehicle. The development of simpler and more sensitive assays and their use on a broader scale will
assist in defining the true burden of foodborne NLV outbreaks and improve strategies for their prevention and

control. Copyright © 2001 John Wiley & Sons, Ltd.
Accepted: 2 April 2001

INTRODUCTION

Despite major advances in preventive health over
the last century, foodborne illnesses remain a
widespread and growing global public health
problem [1]. Each year, an estimated 1.5 billion
diarrhoeal episodes, resulting in 2.5-3.2 million
deaths in children <5 years of age, are reported
worldwide [2,3]. The World Health Organization
estimates that a substantial proportion of these
diarrhoeal episodes may be associated with food
contaminated by microbes. The burden of food-
borne disease is well documented in some
industrialised countries. For example, in the
United States, foodborne pathogens cause an
estimated 76 million illnesses, 325 000 hospitalisa-
tions and 5000 deaths each year [4]. While less
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well documented, it is likely that the burden of
foodborne illness is far greater in developing
countries where levels of hygiene and sanitation
are poorer. Most cases of foodborne disease are
sporadic and are often not reported. Outbreaks
represent only a small tip of the iceberg of
foodborne illness but are a cause for great concern
because of their potential to affect large numbers
of people. A variety of agents — bacteria, viruses,
parasites, toxins, metals and prions — cause
foodborne illness, which can range from mild
diarrhoea and vomiting to life-threatening syn-
dromes with multi-organ involvement. In the past
20 years, many newly identified pathogens (e.g.
Escherichia coli O157:H7, Cyclospora cayetanensis)
have been recognised as causes of foodborne
disease. However, even the most recently avail-
able data from industrialized countries indicate
that an aetiologic agent is not identified in most
outbreaks of foodborne disease [5]. Among the
main obstacles in identifying the causative agent
are the failure to collect appropriate clinical
specimens in a timely manner and the unavail-
ability of simple and sensitive diagnostic tests for
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some agents. Consequently, pathogens that are
difficult to detect or for which assays are not
readily available are under-represented in the list
of known causes of foodborne outbreaks.

The ‘Norwalk-like viruses” (NLVs), previously
called the small round-structured viruses (SRSVs)
because of their morphological appearance, are
clearly one of the under-recognised causes of
outbreaks of foodborne disease. The prototype
agent of this genus of viruses, Norwalk virus, was
first identified in 1972 in stool samples from
volunteers fed faecal filtrates from elementary
school students who were affected by an outbreak
of gastroenteritis in Norwalk, Ohio, in 1968 [6,7].
Progress in the research on NLVs in the two
decades following this discovery was slow
because of the inability to adapt the virus to
grow in cell culture, the unavailability of a useful
animal model for disease and the lack of simple
and sensitive diagnostic assays. In the past
decade, however, breakthroughs in determining
the molecular biology of NLVs [8-11] and the
subsequent development of molecular diagnostic
methods [12-26] and their application to clinical
and epidemiological studies have greatly improved
our understanding of the role of these viruses as
causes of gastroenteritis in humans. In this article,
we present an overview of the role of NLVs in the
aetiology of foodborne disease outbreaks.

THE 1970S AND 1980S — BEFORE THE
AVAILABILITY OF MOLECULAR
DIAGNOSTICS
In the two decades following its discovery, the
detection of Norwalk virus in clinical specimens
relied on electron microscopy (EM), immune
(IEM), solid-phase radioimmunoassays (RIA),
immune adherence haemagglutination assays
(IAHA) and enzyme immune assays (EIA)
[6,27,28]. Direct EM and IEM had relatively low
sensitivity and required skilled microscopists and
expensive equipment. The reagents for immuno-
logic assays were based on clinical samples, with
stools of infected persons providing antigen and
convalescent-phase sera providing specific anti-
bodies. Consequently, methods for detection of
Norwalk virus were available in a limited number
of research laboratories and were not suitable for
large clinical and epidemiologic studies.
Nevertheless, early studies demonstrated the
importance of NLVs as a cause of outbreaks of

gastroenteritis. For example, in 1979, Greenberg
et al. found serologic evidence of Norwalk virus
infection in 32% of 25 separate outbreaks of
nonbacterial gastrointestinal illnesses examined
[29]. Similarly, an aetiologic role for NLVs was
demonstrated in 42% of 74 outbreaks of acute
nonbacterial gastroenteritis investigated by the
Centers for Disease Control (CDC) from 1976 to
1980 [30] and in 82% of 34 non-bacterial gastro-
enteritis outbreaks that occurred in Tokyo during
February 1985 to June 1991 [31]. By reviewing
features of confirmed outbreaks of NLV gastro-
enteritis, Kaplan et al. developed clinical and
epidemiologic criteria predictive of a Norwalk
virus aetiology [32]. These included: (1) stool
cultures negative for bacterial pathogens; (2)
mean (or median) duration of illness 12-60 h; (3)
vomiting in greater than or equal to 50% of cases;
and (4) if known, mean (or median) incubation
period of 24-48h. Of 642 outbreaks of acute
gastroenteritis reported to the CDC between 1975
and 1980, they showed that 23% of waterborne
outbreaks, 4% of foodborne outbreaks, and 67%,
60% and 28% of outbreaks in nursing homes, in
summer camps and on cruise ships, respectively,
satisfied the criteria for Norwalk-like pattern [32].

The potential for foodborne transmission of
NLV disease was first recognised following a
large outbreak of gastroenteritis in Australia in
June and July 1978 that affected at least 2000
persons [33]. The food implicated in this outbreak,
oysters, as well as other shellfish were subse-
quently recognised as common vehicles of NLV
infection and were implicated in several outbreaks
worldwide [34-38]. In some outbreaks [36], the
detection of Norwalk virus by RIA in clam and
oyster specimens confirmed their epidemiologic
link with disease. Investigations of these out-
breaks and laboratory studies also identified
several other features of shellfish-associated NLV
disease that had important implications for pre-
vention: (1) the implicated shellfish were often
consumed raw [33-35]; (2) sewage contamination
of the oyster-harvesting areas frequently preceded
the outbreak [33,37]; (3) persons in widespread
geographical areas could be affected because of
the distribution of contaminated shellfish [33]; and
(4) depuration (practice of holding oysters in tanks
of disinfected water for a period of time) was not
always effective in ensuring the safety of shellfish
for consumption [39].
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Besides shellfish, outbreaks associated with
other food items were also reported [40-55].
Interestingly, in all except one of these outbreaks
[40], cold food items involving bulk preparation
such as salad [41,45-47,48,54], sandwiches [42,52],
frosting [43] and cold meats [44] were implicated
as the vehicles of infection. In the single outbreak
where hot food items were implicated [40], as well
as several other outbreaks associated with cold
foods [42-44,47,49,50,53], contamination by an
infectious food handler was suspected. Often, a
foodhandler reported illness prior to, or while,
preparing food items, but a foodhandler who was
incubating the illness was suspected as the source
of infection in one outbreak [42] and evidence for
transmission from a foodhandler after recovery
from illness was presented in two other outbreaks
[47,50]. Iversen and colleagues suggested that
long-term excretion of Norwalk virus by a
symptom-free foodhandler was responsible for
two outbreaks of gastroenteritis occurring 3 weeks
apart [48], but the evidence supporting this claim
was challenged by others [55]. A single outbreak
was associated with contaminated celery that was
exposed to non-potable water [54].

THE 1990S — THE MOLECULAR ERA

A breakthrough occurred in the early 1990s with the
cloning and sequencing of the Norwalk virus [8]
and Southampton virus [11] genomic RNAs.
Knowledge of the genetic organisation of NLVs
allowed the development of sensitive detection
methods based on reverse transcription-polymerase
chain reaction (RT-PCR) amplification and nucleo-
tide sequencing of RT-PCR products provided an
opportunity to study the similarity of viral strains
[12,17]. When expressed in a recombinant bacu-
lovirus vector, the single capsid protein of Nor-
walk virus self-assembles into virus-like particles
(VLPs) that have provided important tools for
studying the immunology, structure, and, to some
extent, the replication cycle of NLVs [20,22,24-26].
Expressed VLPs from Norwalk and several other
NLV strains have been used as antigens to measure
serum antibody responses to NLV infection
[20,22,24-26,56,57] and as immunogens to generate
hyperimmune animal sera.

The widespread availability and application
of these molecular assays has clearly demon-
strated that NLVs are a leading cause of out-
breaks of foodborne gastroenteritis worldwide.

For example, NLVs were detected by RT-PCR
assays in approximately 90% of 348 outbreaks of
non-bacterial gastroenteritis that occurred bet-
ween January 1996 and November 2000 in the
United States and for which specimens were sent
for testing to the CDC in Atlanta; of the outbreaks
with available data, 39% were transmitted by food
and 39% occurred in restaurants (Figures 1A and
1B) [58, CDC unpublished data]. Similarly, in
England and Wales, NLVs accounted for more
than one-third of all outbreaks of gastroenteritis
reported between 1992 and 1995 [59]; foodborne
transmission was documented in 14% of all NLV

A
Waterborne
3% Parson-to-person
12%
Foodbome
39%
Unlinown
18%
No data
28%
B
Vacation
10%
School
12%
Restaurant
39%
Other / Not given

9%

Mursing home
30%

Figure 1. Mode of transmission (A) and settings (B) of 348
outbreaks of gastroenteritis reported to the CDC between
January 1996 and November 2000
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outbreaks. In the Netherlands, of the 184 out-
breaks of suspected viral gastroenteritis that
occurred between 1991 and 1998, 82% were
confirmed by laboratory testing to be caused by
NLVs [60]; 77% of outbreaks labelled as foodborne
were caused by NLVs. In Japan, NLVs accounted
for 68% of 387 outbreaks of non-bacterial gastro-
enteritis reported between January 1997 and
March 1999 [61]; foodborne transmission was
documented in more than two-thirds of outbreaks.

Molecular assays have also greatly refined the
investigation of outbreaks of foodborne viral
gastroenteritis. Assays have been developed to
detect NLVs directly from shellfish [62-69], and
their value is well illustrated by the investigation
in 1993 of 23 clusters of acute gastroenteritis
affecting several hundred people in six different
US states [70,71]. In this investigation, the detec-
tion of viral genome with identical sequence in
a 123-bp region from stools of patients in differ-
ent states as well as the detection of a similar
sequence in the implicated oysters confirmed the
epidemiologic link between the cases and the
source of the outbreak [70-72]. Molecular assays
have also been used to study the kinetics of NLV
accumulation in shellfish and the effect of depura-
tion on the reduction of NLV titres in tissues of
shellfish [73], as well as to demonstrate that
seasonal physiological changes undergone by
oysters affect their ability to accumulate viral
particles from estuarine waters [74].

During the 1970s and the 1980s, the association
of food items with illness in NLV outbreaks relied
primarily on demonstration of an epidemiologic
association and, sometimes, the detection of
bacterial indicators of faecal contamination in the
implicated food item. Methods were developed in
the late 1990s to detect NLV contamination of
other food items besides shellfish [63,75,76]. The
utility of these assays is well illustrated by a recent
outbreak that affected students at a university in
Texas [77]. lllness in this outbreak was epidemio-
logically linked with eating sandwiches at the
university’s main cafeteria deli bar, and the RT-
PCR analysis of samples of the deli meat detected
NLV genome with the same sequence in the
capsid region as that of virus from stools of the ill
university students, confirming that the sand-
wiches were the vehicle of infection.

The application of molecular diagnostics has also
better defined the role of foodhandlers in NLV

outbreaks. Previously, foodhandlers were linked as
the source of an outbreak through circumstantial
evidence of illness [40,42-44,47,49,50,53] and, some-
times, evidence of infection [48,50]. With molecular
assays, infection in foodhandlers can be detected
with greater sensitivity and their association with
illness can be further evaluated by comparing the
nucleotide sequence of the viral genome obtained
from specimens of foodhandlers and the persons
affected by the outbreak [77,78]. The greater
sensitivity of these assays has also provided
new insights into the infectiousness of food-
handlers. Previously, based on the findings of
epidemiologic investigations and a study that
examined by IEM shedding in volunteers chal-
lenged with Norwalk virus [79], it was believed
that foodhandlers were infectious during and up
to 48-72 h after recovery from illness. In a more
recent outbreak investigation [78], viral genome
was detected by RT-PCR in two foodhandlers,
one of whom was free from disease and another
sick foodhandler whose specimen was obtained
10 days after resolution of illness. These patterns
of shedding are consistent with those observed in
more recent studies of human volunteers that
used recombinant-antigen based EIAs for viral
detection [80,81].

DISCUSSION

In the past decade, the development and applica-
tion of molecular diagnostics for NLVs and the
consequent understanding of the viral genome has
considerably improved our understanding of the
biology and epidemiology of these viruses.
Sequence and genetic analysis has shown that
the NLVs, previously called SRSVs, are indeed
genetically different from the other genus of
caliciviruses that infect humans, ‘Sapporo-like
viruses” (SLVs), which were previously distin-
guished from NLVs based on the observation of
typical cup-shaped depressions on the virion.
Nucleotide sequence analysis has further allowed
the classification of NLVs into three genetic
groups — genogroup I, genogroup II and gen-
ogroup Il — and phylogentic classification has
defined clusters within genogroups. The antigenic
diversity of NLVs has also been recognised and
this diversity in general has correlated with
phylogenetic clusters [82]. Understanding these
complex antigenic and genetic relationships
between NLVs has allowed constant refinement

Copyright © 2001 John Wiley & Sons, Ltd.

Rev. Med. Virol. 2001; 11: 243-252.



Norwalk-like viruses

247

of molecular assays, but these assays still have
many limitations.

Antigen-detection EIAs for NLVs are quite
specific and in studies of outbreaks of gastro-
enteritis in different populations, the overall
detection rates using these assays [19,83,84] were
substantially lower than those using RT-PR
[58,60,85,86]. Antibody detection EIAs are more
broadly reactive and perform well when the
outbreak strain is genetically identical to the
strain used in the assay [56,82], but heterologous
antibody responses are difficult to interpret. The
occurrence of dual infections of NLVs from
different genetic groups and natural viral recom-
binants further complicates the diagnostic picture
[87-89]. Recognition of a greater number of NLV
strains, improved understanding of the genetic
relationship among these strains, expression of
more recombinant proteins representative of the
different genetic types, and the detection of
common epitopes shared by several strains of
NLVs should allow further improvement of these
assays. The utility of these assays in particular
settings could be further improved by monitoring
the prevalent genetic types of NLVs, which may
assist in the selection of an appropriate panel of
ElAs.

RT-PCR assays provide a sensitive and broadly
reactive tool to detect NLV genome in faecal
specimens, and, in the absence of commercial
EIAs, have been widely used for the detection of
NLVs in clinical and environmental specimens.
However, no universal primers to detect all NLVs
are available. Primers based on the most con-
served polymerase region of the NLV genome
have been widely used worldwide, and the results
of these studies indicate that it may not be
possible to develop universal primers that can
detect all the different genotypes of NLVs.
Alternative approaches, such as developing
several sets of primers that detect the polymerase
region of different NLVs, degenerate primers, or
primers from another regions of the genome such
as capsid primers, may be required to broadly
detect all strains of NLVs.

While the application of RT-PCR assays to
detect NLV genome in food, water and other
environmental specimens [62-68,63,75,76,90-97]
provides opportunities to study patterns of trans-
mission and implicate vehicles of infection during
outbreak investigations, the low concentrations of

virus and the presence of inhibitory substances in
these specimens often requires the concentration
and purification of virus prior to amplification
assays. The efficiency of such assays can also be
improved by first identifying the NLV strain from
stools of patients and designing strain-specific RT-
PCR primers. At the present, the relative insensi-
tivity of RT-PCR methods for detection of virus in
food and environmental methods allows only the
interpretation of positive results and precludes
their routine application in foodborne NLV out-
break investigations and use for food quality
monitoring.

The improvement of diagnostic methods will
not only enhance our understanding of the role of
NLVs in foodborne disease outbreaks, but will
also assist in developing strategies for prevention
and control. While shellfish are clearly recognised
as a common vehicle for NLV infection, currently
available laboratory assays cannot be readily used
for monitoring contamination of either the waters
in shellfish-harvesting areas or the shellfish
supplies. Until such assays are developed or
better indicators of viral contamination become
available, measures to avoid contamination of
waters in shellfish-harvesting areas (e.g. surveil-
lance of shorelines to identify possible sites of
contamination of water, prohibiting overboard
dumping of faecal wastes from boats) remain the
most effective means of preventing outbreaks. It is
likely that thorough cooking will also reduce the
risk of illness, but outbreaks have been associated
with cooked shellfish [98,99], and the stability of
NLVs to heat is presently difficult to study
because human volunteer studies are required to
study the viability of the virus. The adaptation of
NLVs to growth in cell culture will allow simpler
laboratory studies and remains a high priority.

While foodhandlers clearly play an important
role in the aetiology of NLV outbreaks, several
important issues concerning NLV transmission by
foodhandlers remain unclear. In the 1970s and
1980s, based primarily on epidemiologic data, the
hypotheses that foodhandlers may transmit virus
with asymptomatic infections, before the onset of
clinical disease, or for prolonged periods after
recovery were presented [42,47,48,50] and were
sometimes challenged [55]. These hypotheses have
been supported by data from more recent mole-
cular studies showing that volunteers challenged
with NLVs can shed viral antigen even in the
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absence of symptoms and that viral antigen can be
recovered in stool for more than a week after
recovery from clinical illness [80,81]; however, it is
not known whether the detected antigen is simply
soluble viral antigen or the entire infectious virus.
Similarly, while outbreak investigations have
implicated as the source of infection food-handlers
without clinical disease or before the onset of
clinical symptoms [78], it is difficult to definitively
exclude in these circumstances other unrecognised
sources of contamination or inadequate recall on
the part of the food-handler. Careful epidemio-
logic and laboratory studies are needed to
determine the duration a foodhandler remains
infectious. The development of quantitative assays
will allow assessment of the timing of maximal
viral shedding, which will help determine the
period during which a foodhandler is most
infectious.

CONCLUSIONS

The application of molecular diagnostics for
detection of NLVs has clearly demonstrated that
these viruses are among the leading causes of
outbreaks of non-bacterial gastroenteritis world-
wide. While these assays are being increasingly
used worldwide, the development of simple,
sensitive, specific and broadly reactive assays
that can be routinely used in microbiology
laboratories remains a high priority. Improving
assays for detection of NLVs in environmental
specimens and refining them to permit quantita-
tive evaluation of viral contamination will be
valuable for the prevention and control of food-
borne NLV disease. Success in adapting NLVs to
grow in cell culture will allow assessment of the
viral replication cycle, immunologic correlates of
protection against illness, and the stability of
NLVs to temperature and disinfectants. The past
decade has seen remarkable progress in research
on NLVs which is likely to continue and accelerate
in the coming years, leading to a better under-
standing of their role in the aetiology of foodborne
disease outbreaks and improved approaches for
prevention and control.
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