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SUMMARY

Purpose Data mining may enhance traditional surveillance of vaccine adverse events by identifying events that are
reported more commonly after administering one vaccine than other vaccines. Data mining methods find signals as the pro-
portion of times a condition or group of conditions is reported soon after the administration of a vaccine; thus it is a relative
proportion compared across vaccines, and not an absolute rate for the condition. The Vaccine Adverse Event Reporting
System (VAERS) contains approximately 150 000 reports of adverse events that are possibly associated with vaccine admin-
istration.
Methods We studied four data mining techniques: empirical Bayes geometric mean (EBGM), lower-bound of the
EBGM’s 90% confidence interval (EB05), proportional reporting ratio (PRR), and screened PRR (SPRR). We applied these
to the VAERS database and compared the agreement among methods and other performance properties, particularly focus-
ing on the vaccine–event combinations with the highest numerical scores in the various methods.
Results The vaccine–event combinations with the highest numerical scores varied substantially among the methods. Not
all combinations representing known associations appeared in the top 100 vaccine–event pairs for all methods.
Conclusions The four methods differ in their ranking of vaccine–COSTART pairs. A given method may be superior in
certain situations but inferior in others. This paper examines the statistical relationships among the four estimators. Deter-
mining which method is best for public health will require additional analysis that focuses on the true alarm and false alarm
rates using known vaccine–event associations. Evaluating the properties of these data mining methods will help determine
the value of such methods in vaccine safety surveillance. Copyright # 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

The Vaccine Adverse Event Reporting System
(VAERS) is a passive surveillance system to monitor
vaccine safety and is co-managed by the Food and
Drug Administration (FDA) and the Centers for Dis-

ease Control and Prevention (CDC).1 VAERS receives
more than 14 000 reports each year from vaccine man-
ufacturers, healthcare professionals, and the general
public. Each report describes one or more adverse
events that, at least on temporal grounds, appear to
be associated with the administration of a vaccine.
Some of these associations are surely coincidental,
in some cases the relationship is unclear, and in some
cases (e.g., injection site reactions) the relationship is
likely causal.
At the time of this analysis, the VAERS database

included information on about 70 vaccines and 989
adverse event coding terms. The coding terms for the

Received 1 March 2004
Revised 7 March 2005

Copyright # 2005 John Wiley & Sons, Ltd. Accepted 9 March 2005

*Correspondence to: Dr Emily JaneWoo, HFM-222, Food andDrug
Administration, 1401 Rockville Pike, Rockville, MD 20852.
E-mail: wooj@cber.fda.gov
{No conflict of interest was declared.
z
Present address: The Institute of Statistics and Decision Sciences,
Duke University, Durham, North Carolina, USA.



adverse events are known as Coding Symbols for a
Thesaurus of Adverse Reaction Terms (COSTARTs),
and describe signs, symptoms, and diagnoses, such as
headache, swelling at the vaccination site, arthritis,
gastroenteritis, and so forth. A single report may list
more than one vaccine and may generate several
COSTARTs. Since COSTARTs may overlap (e.g.,
apathy and depression), the same condition may be
coded in different ways, according to the judgment of
the person assigning the COSTART codes.
Analysis of VAERS data focuses on describing

clinical and demographic characteristics of reports and
looking for patterns to detect ‘signals’ of adverse
events plausibly linked to a vaccine. While pharma-
coepidemiologists do not universally agree upon what
constitutes a signal,2 a signal can be generally defined
as evidence that suggests an adverse event might be
caused by vaccination and warrants further investiga-
tion or action. Evidence of a signal in case reports and
case series of spontaneous reports may include the
number of reports and any unexpected patterns in
clinical conditions by such factors as age, gender, time
to onset, and dose.
Limitations of spontaneous reporting systems such

as VAERS include lack of verification of reported
diagnoses, lack of consistent diagnostic criteria for all
caseswith a givendiagnosis, wide range in data quality,
underreporting, inadequate denominator data (doses
administered or patients vaccinated), and absence of an
unvaccinated control group. Signals detected through
analysis of VAERS data almost always require
confirmation through a controlled study. Data mining
methods cannot address biases in reporting and should
be used in conjunction with medical judgment. The
lack of denominator data limits the use of VAERS to
discover unforeseen safety problems that may be
associated with particular vaccines. The analyst must
rely on vaccine distribution data to estimate howmany
people receive a given vaccine, and does not know the
demographic or clinical characteristics of the recipi-
ents. Thus, the ability to apply traditional methods of
risk analysis, which depend upon estimation of the
baseline incidence rates, is limited. Calculation of
reporting rates (number of adverse events reported/
number of doses of vaccine distributed) and reporting
rate ratios that compare vaccines has been used to
generate signals.3 Biases in reporting, inadequate
denominator data, and lack of background rates for
some conditions often limit the utility of the reporting
rate approach. For spontaneous reporting systems such
as VAERS, it is natural to worry about the effects of
systematic underreporting or overreporting. Reporting
rates vary from vaccine to vaccine, from adverse event

to adverse event, and from one segment of the
population to another. Many factors may stimulate
reporting, especially media reporting of suspected side
effects, but also FDA and CDC communications.
Moreover, the seriousness of an event is known to
influence reporting: only a small minority of rashes
after MMR vaccine are reported to VAERS, for
example, but the majority of cases of paralytic polio
after OPVare reported to VAERS.4

To address some of these limitations, various data
mining techniques have been developed to help
uncover potential signals in the data.5–7 The methods
permit rapid analysis of large volumes of data that
humans cannot possibly evaluate in detail. Although a
spontaneous reporting system lacks a true control (i.e.,
people are not randomized to receive a placebo), data
mining techniques permit analysis of a vaccine of
interest, with all other vaccines as a quasi-control
group for comparison. Data mining cannot eliminate
reporting bias, but it does account for different
reporting proportions for each vaccine. Specifically,
the methods can identify conditions that comprise a
larger proportion of reported events for a givenvaccine,
compared to other vaccines, but an absolute rate is not
calculated. Moreover, data mining might identify rare
conditions which may not appear during premarketing
trials. We propose to apply a variety of methods to help
shed light on the potential strengths and weaknesses of
the methods with regard to vaccine adverse event data.
There are no ‘gold standards’ for the detection of

vaccine–COSTART associations. The ability to con-
firm retrospectively a known connection between
vaccination and a particular event (e.g., rotavirus
vaccine and intussusception8) helps to validate data
mining methods. Other known associations come from
the Vaccine Injury Table, a list of vaccine–adverse
event associations which the Institute of Medicine has
determined are causal9. Agreement among datamining
methods, i.e., two or more methods signal a given
vaccine–COSTART association, may also be helpful.
Our objective is to extend such empirical work through
an examination of the statistical properties of the data
mining methods that have been proposed.

METHODS

The VAERS database may be viewed as a contingency
table with 70 rows (the vaccines) and 989 columns
(the COSTARTs). Each cell in the table contains a
value nij that gives the number of reports for the ith
vaccine and the jth COSTART.
The usual multinomial model assumes that separate

events are classified independently, and this is probably
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approximately correct. A small deviation from this
model is that sometimes a single report will generate a
handful of different COSTARTs (e.g., both nausea and
headache), but the effect of this is likely to be small.
A second deviation is that sometimes a news story or
popular television show can trigger a burst of reports,
and these reports are not independent. But again, the
overall magnitude of these effects is probably small,
and the authenticity of signals generated in this way
could be evaluated through examination of long-
itudinal trends.
One aspect of theVAERSdata that has not yet played

a substantial role in signal detection research is the
association among COSTART terms. One could
potentially ‘borrow strength’ by pooling signals from
similar COSTART terms. For example, reports of
dizziness and vertigo might be usefully combined to
improve the power of the signal detection algorithm.
However, we do not address this extension.
Instead, this paper focuses upon a statistical

comparison of four signal detection methods that have
been discussed in the literature. We call these methods
proportional reporting ratio (PRR), screened PRR
(SPRR), empirical Bayes geometric mean (EBGM),
and lower-bound of the EBGM’s 90% confidence
interval (EB05). We do not address the relative risk,10

nor do we consider a conditional probability me-
asure developed by Friedman et al.11 and critiqued by
DuMouchel et al.12

There are other methods that can be used for signal
detection in large contingency tables without true
measures of exposure. For example, the U.S. Census
Bureau and the Consumer Product Safety Commission
have explored the use of ‘raking’ to detect interactions
in large tables (cf. Little and Wu13). Bate et al.14

propose using a Bayesian Confidence Propagation
Neural Network for adverse event detection in the
WHO database (but DuMouchel15 argues that this
method is an approximation to EBGM based on beta-
binomial Bayesian estimates). Hauben and Zhou7

review much of this literature.
Although these and other methods could be

considered, this research has focused upon the four
main techniques that have been piloted within the
FDA to date; this paper is not intended to be a
comprehensive overview of all currently available
methods. A key concern is that methods used for
official purposes ideally should be transparent and
sufficiently interpretable that expert knowledge can
guide the evaluation of new signals. Also, it is highly
desirable that the signal detection system used in
VAERS not be radically different from systems
already in place.

Analysis

One objective of this comparison is to determine
whether all four methods agree with each other, as
shown by scatterplots and as measured by rank corre-
lation. Comparison is of methods’ sensitivity and spe-
cificity is desirable, but the paucity of gold standards
for vaccine–event causality limits the ability to esti-
mate these properties. The theoretical properties of
the procedures are also an important consideration.
This paper addresses all three bases of comparison;
we measure the agreement between methods, we dis-
cuss performance with respect to a handful of known
adverse effects, and evaluate both kinds of informa-
tion on the basis of the performance differences
expected from theory.
TheVaccine Injury Table is a list of vaccine–adverse

event associations that the Institute of Medicine
has determined are causal.9 By operationalizing these
associations as 32 vaccine–COSTART pairs (Table 1),
we compare the ability of the methods to signal those
pairs. Such operationalization is imperfect, since
COSTARTs are applied without standardized defini-
tions or diagnostic confirmation. For example,
ARTHRITIS may refer to acute or chronic inflamma-
tion of joints. We then evaluate the efficiency of the
methods by comparing the number of vaccine–
COSTART pairs signaled by each method.
Injection site reactions are accepted as being caused

by injectable vaccines. We also look at the methods’
ability to signal injection site reactions, represented by
COSTART codes ABSCESS INJECT SITE, ATRO-
PHY INJECT SITE, CYST INJECT SITE, EDEMA
INJECT SITE, GRANULOMA INJECT SITE, HEM
INJECT SITE, HYSN INJECT SITE, INFLAM
INJECTSITE, INJECTSITEREACT,MASS INJECT
SITE, NECRO INJECT SITE, and PAIN INJECT
SITE. This comparison allows us to evaluate the
methods’ abilities to detect an adverse effect which is
known to be caused by many vaccines.
A given method may be superior in some situations

but inferior in others. There are six possible pairwise
comparisons among the four data mining methods.
Since our primary interest is to determine whether any
method is the most effective for discovering adverse
event risks, we focus on four comparisons that seem
most informative in terms of identifying plausible
vaccine–event pairs.

Data mining methods assessed

Proportional reporting ratio (PRR). The PRR
approach was first described by Finney16 and
further developed recently by Evans, Waller, and
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Davis.17 To describe the method, suppose we are
interested in developing a measure for the strength
of the association between vaccine i and COSTART
j. Let

a. denote nij, the number of reports for a givenvaccine-
COSTART combination;

b. denote the number of times that any other
COSTART is reported for vaccine i;

c. denote the number of times that COSTART j is
reported for all other vaccines;

d. denote the number of reports for any other vaccine–
COSTART combination.

These valuesmay be depicted in a contingency table:

In this contingency table notation, the PRR signal for
vaccine i and COSTART j is

PRRij ¼ a=ðaþ bÞ
c=ðcþ dÞ

This fraction is the proportion of COSTART j reports
for vaccine i divided by the proportion of COSTART j
reports for all other vaccines.A large PRR for a specific
vaccine–COSTART pair indicates that the COSTART
has been disproportionately reported for that vaccine,
compared with all the other vaccines in VAERS
database.
There are several problems with PRR as a metric.

First, it does not account for the number of cases nij. If
this value is small, then the generated signal can have
large variance. Second, an association might not be
statistically significant, but the raw PRR does not
reveal this fact since it lacks a well-defined null
distribution. Third, the PRR is subject to major
distortion due to artifacts in the reporting process.
Nonetheless, PRR is an intuitive measure in the
absence of exposure data.

Screened proportional reporting ratio (SPRR).
Evans, Waller, and Davis17 proposed screening
criteria to define SPRR: nij� 3, PRR� 2, and Yates-
corrected chi-square �4. (The Yates correction is a

Table 1. Vaccine–event associations from vaccine injury table, operationalized as vaccine–COSTART pairs

Association from vaccine injury table COSTART Vaccine code(s)

Anaphylaxis or anaphylactic shock after any of
the following: tetanus toxoid-containing vac-
cines; pertussis antigen-containing vaccines;
measles, mumps and rubella virus-containing
vaccines in any combination; polio inactivated-
virus containing vaccines; hepatitis B antigen-
containing vaccines

Anaphylaxis DT, DTAP, DTAPH*, DTP, HEP, IPV, MMR, TD

Chronic arthritis after rubella virus-containing
vaccines

Arthritis MMR, MR, MUR, R

Brachial neuritis after tetanus toxoid-containing
vaccines

Brachial neuritis DTAP*, DTAPH*, DT*, DTP*, TD*, TTOX

Encephalitis after any of the following: pertussis
antigen-containing vaccines; measles, mumps
and rubella virus-containing vaccines in any
combination

Encephalitis DTAP, DTAPH*, DTP, MMR

Encephalopathy after any of the following:
pertussis antigen-containing vaccines; measles,
mumps and rubella virus-containing vaccines in
any combination

Encephalopathy DTAP, DTAPH*, DTP, MMR

Intussusception after rotavirus vaccine Intussusception RV

Paralytic polio after polio live virus-containing
vaccines

Poliomyelitis OPV

Thrombocytopenia purpura after measles virus-
containing vaccines

Thrombocytopenic purpura M, MM*, MMR, MR

*VAERS did not contain any reports of these vaccine–COSTART pairs.

COSTART j All Other COSTARTs

Vaccine i a b

All other vaccines c d

604 d. banks ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2005; 14: 601–609



continuity adjustment to improve the accuracy of the
chi-squared approximation to the distribution of the
Pearson’s test for independence in a contingency
table18). These requirements help to address the first
two of the three concerns about use of the raw PRR
score. The formula is

Yates-correctedX2 ¼
X

ðjOrs � Ersj � 0:5Þ2=Ers

Here Ors is the observed number in cell (r,s) for
r¼ 1,2 and s¼ 1,2 and thus takes the values a, b, c, and
d, as in the contingency table in 2.1. The Ers are the
numbers expected in those cells under the assumption
that the adverse events are independent of the vaccine,
and this is given by the row sum times the column sum
divided by the total, so

E11 ¼ ðaþ bÞðaþ cÞ=ðaþ bþ cþ dÞ

E12 ¼ ðaþ bÞðbþ dÞ=ðaþ bþ cþ dÞ

E21 ¼ ðaþ cÞðcþ dÞ=ðaþ bþ cþ dÞ

E22 ¼ ðbþ dÞðcþ dÞ=ðaþ bþ cþ dÞ
Under the null hypothesis of no relationship between

vaccine and COSTART, the Yates-corrected X2-
statistic follows a chi-squared distribution with one
degree of freedom.Avalue of 3.84would be significant
at the 0.05 level, which agrees closely with the
screening criterion of Yates-corrected X2� 4.

Empirical Bayes geometric mean (EBGM).
DuMouchel15 developed the empirical Bayes
approach to analysis of spontaneous reporting sys-
tems such as VAERS. The empirical Bayes model
assumes that the counts nij in each cell are random
variables from Poisson distributions with unknown
means �ij where the �ij are themselves random vari-
ables with a common distribution. Usually this com-
mon distribution is taken to be a mixture of two
gamma distributions, one of which is centered at
the null value corresponding to a coincidental
adverse event, and the other of which is more dis-
persed and centered at a value corresponding to a
true causal relationship between the vaccine and
the adverse event. There are many alternative mod-
els that lead to similar results; this is a simple mix-
ture model with two gamma components, one of
which is highly dispersed and the other of which is
concentrated near 1. Simple alternative models
assume a mixture of different distributions and use
the observed counts nij to estimate the parameters,
but one could also consider nonparametric techni-

ques that allow the data to determine the shapes of
the mixture components.
This kind of framework, called a hierarchical model,

is widely used in Bayesian practice (see Carlin and
Louis19 for details). It allows one to exploit a
simple Bayesian computational structure for inference
while avoiding the need to choose a subjective prior for
the unknown distribution of mij. Formally, the measure
corresponding to vaccine i and COSTART j is given by

log2 EBGMij ¼ E½log2ð�ij=EijÞjnij�
where the right-hand side of the equation denotes
the expectation operator and Eij is the value
(aþ b)(aþ c)/(aþ bþ cþ d) in the notation in the
SPRR section, and for the vaccine–COSTART pair
of interest, i and j correspond to cell E11). This expres-
sion calculates the expected value of the base 2 loga-
rithm of the ratio between the estimated reporting
ratio and that under the assumption of no causal rela-
tionship, given the observed count of the spontaneous
reports for that vaccine and that COSTART. Large
values suggest that vaccine i might provoke the
adverse event described by COSTART j.
The practical effect of this hierarchical model

framework is that it ‘shrinks’ the estimates of the
reporting ratio parameters in the Poisson distributions
towards each other, thereby reducing the effect of
sampling variation in the data. The shrinkage is
greatest when Eij is small and/or nij/Eij is small, which
typically occurs when a or b is small. Another
advantage is that the model preserves the interpret-
ability of the parameters and their estimates. The main
drawback of this approach is that it is computationally
intensive, taking several minutes to run and requiring
investment in well-tested, special-purpose code. The
computational burden depends upon the number of
rows and columns in the matrix, not the number of
reports—so from the standpoint of scaling concerns,
this performance is adequate for all foreseeable
VAERS applications.

Lower-bound of EBGM’s 90% confidence interval
(EB05). The EB05 is the lower-bound of the 90%
confidence interval of EBGM. DuMouchel and
Pregibon20 recommend that one use the 5th percen-
tile point of the posterior distribution of the ratio as
the metric. If the 5th percentile is large, then the
association is unlikely to be due to chance alone
and warrants further exploration. The rationale
for selecting the 5th percentile point is based upon
a loose analogy with frequentist inference, in
which one wants to indicate associations that are
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significant at the 0.05 level. The EB05 signal is con-
servative and this quality should minimize false
positives, but because it represents the lower bound
of the confidence interval, it is theoretically less sen-
sitive than EBGM.
A small modification of the EBGM method takes

better account of the uncertainty in the posterior
distribution of the ratio mij/Eij. As part of the EBGM
computation, one finds the distribution of this ratio.
This distribution can be asymmetric and highly
dispersed, in which case use of the expected value
could overemphasize the apparent relationship
between the vaccine and the COSTART.

RESULTS

Of 69 230 theoretical vaccine–COSTART pairs,
14 800 actually occurred in VAERS at the time of this
analysis. Figure 1 illustrates the number of vaccine–
COSTART pairs versus the total number of occur-
rences in VAERS, for these 14 800 pairs. The point
at (1, 4857) indicates that 4857 vaccine–COSTART
pairs each occurred only once in VAERS. The pairs
that occurred most frequently, at the far right of
Figure 1, correspond to pairs in which the COSTART
is a common and expected event (such as fever)
that occurs after many vaccines. Many vaccine–
COSTART pairs occurred rarely and some pairs
occurred at high frequency, but overall the curve is
very smooth.

Comparison of EBGM and PRR

Figure 2 displays the natural logarithm of the EBGM
signal versus the natural logarithm of the PRR signal
(175 points for which PRR is infinite are omitted from

Figure 1. Frequency of occurrence of vaccine–COSTART pairs. This scatterplot illustrates the number of vaccine–COSTART pairs versus
the total number of occurrences of a particular vaccine–COSTART pair, for the 14 800 pairs that occurred at least once in VAERS. For each
of 4857 pairs, only one occurrence has been reported to VAERS (far left of graph). The pairs that occurred most frequently (far right of
graph) correspond to pairs in which the COSTART is a common and expected event (such as fever) that occurs after many vaccines

Figure 2. Scatterplot of ln EBGM vs ln PRR. This plot
demonstrates a filament (arrow) that consists of vaccine–COSTART
pairs for which only one report was received. For these singleton
reports, the range of the PRR scores is large compared to that of the
EBGM scores, suggesting that PRR gives undue weight to singleton
reports relative to EBGM. EBGM: Empirical Bayesian Geometric
Mean. PRR: Proportional Reporting Ratio
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the graph). The logarithmic plot demonstrates a strong
filamentary structure. The lowest filament consists
entirely of cases for which nij¼ 1, which accounts
for most of the largest (rightmost) values of the
PRR scores. In fact, of the 175 vaccine–COSTART
pairs with infinite values of PRR, 146 have nij¼ 1,
confirming that PRR gives undue weight to singleton
reports, and thus is highly susceptible to sampling var-
iation. Only two of these 175 vaccine–COSTART
pairs are also in the top 100 EBGM. The known asso-
ciation of rotavirus vaccine and intussusception is not
in the top 100 PRR scores, because the value—while
very large—is finite.

Comparison of EBGM and SPRR

The screened version of PRR is intended to repair the
deficiencies noted in the previous comparison. The
SPRR drops cells for which nij< 3 and additionally
requires both statistical significance and a raw
PRR� 2; there are 1596 vaccine–COSTART pairs
for which SPRR is defined. Figure 3 shows a plot of
the natural logarithm of the EBGM score against the
natural logarithm of the SPRR score, for the cells for
which both SPRR and EBGM are defined (nine points
for which SPRR is infinite are omitted from the graph).
In comparison with Figure 2, the figure is left-trun-
cated at 0.693, the natural logarithm of 2, because
SPRR does not generate a score for cells with PRR less

than 2. The lower filament, which consisted of cells for
which nij¼ 1, has disappeared. Several of the upper
filaments are also gone, since they corresponded to
cells in which Yates-corrected X2 was not statistically
significant. Note that because of the large number of
points, there is considerable overplotting.
Among the top 100 vaccine–COSTART pairs from

EBGM and SPRR, 54 appear in both, including nine
pairs for which SPRR is infinite. Of those cells flagged
by both methods, the Pearson correlation coefficient
for the signal ranks is 0.543 ( p< 0.0001). Among the
top 100 EBGM scores (EBGM� 7.16, ln EBGM�
1.97), there are nine cases in which the SPRR method
does not signal because nij< 3. There are 37 cases in
which all criteria are met, but the rank is simply greater
than 100. Among the top 100 SPRR scores (SPRR�
20.08, ln SPRR� 3.0), there are 46 cases in which the
EBGM score is not in the top 100 of scores by that
method. The top 100 EBGM scores include the
rotavirus–intussusception and rubella–arthritis asso-
ciations, whereas the top 100 SPRR scores include the
rotavirus–intussusception and oral polio vaccine–
poliomyelitis associations. The top 100 SPRR scores
include three injection site reaction COSTARTs, two
of which are also among the top 100 EBGM scores.

Figure 3. Scatterplot of ln EBGM vs ln SPRR. SPRR eliminates
the overweighting of singleton reports, as evidenced by the absence
of the lower filament seen in Figure 2. Lines indicate the cutoff for
the top 100 pairs in each method (EBGM� 7.16, ln EBGM� 1.97;
SPRR� 20.08, ln SPRR� 3.0). Fifty-four vaccine–COSTART
pairs appear in the top 100 of both methods (upper right quadrant).
EBGM: Empirical Bayesian Geometric Mean. SPRR: Screened
Proportional Reporting Ratio

Figure 4. Scatterplot of ln EBGM vs ln EB05. Lines indicate the
cutoff for the top 100 pairs in each method (EBGM� 7.16, ln
EBGM� 1.97; EB05� 3.98, ln EB05� 1.38). There is greater
agreement between EBGM and EB05 (67 vaccine costart pairs
appear in top 100 of both) than between any of the other methods
compared. The natural logs of the two scores generally have a linear
relationship, but there is divergence from this linear relationship for
some vaccine–costart pairs (upper left quadrant) indicating that
these methods are not interchangeable EBGM: Empirical Bayesian
Geometric Mean. EB05: Lower-Bound of the 90% Confidence
Interval of the Empirical Bayesian Geometric Mean.
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Comparison of EBGM and EB05

As shown in Figure 4, the natural logs of EBGM and
EB05 generally have a linear relationship, as is
expected since the posterior distributions are reason-
ably symmetrical. Sixty-seven vaccine–COSTART
pairs appear in the top 100 scores of both EBGM
and EB05. The top 100 EBGM scores (EBGM� 7.16,
7.16, ln EBGM� 1.97) include the rotavirus–intus-
susception and rubella–arthritis associations; the top
100 EB05 scores (EB05� 3.98, ln EB05� 1.38)
include these two, as well as the oral live polio vac-
cine–poliomyelitis association. The top 100 EBGM
scores include two injection site reaction COSTARTs,
one of which appears among the top 100 EB05 scores.

Comparison of EB05 and SPRR

Figure 5 plots the natural log of EB05 against the nat-
ural log of SPRR for the cells for which both SPRR
and EB05 are defined (nine points for which SPRR
is infinite are omitted from the graph). From the plot
of the natural logs of the scores, it is clear that many of
the top-ranked signals from one method are not the
same as the top-ranked signals from the other method.
We have examined the top 100 vaccine-COSTART

pairs flagged by the SPRR method and the EB05
method. Among these, 42 are in common, including
one infinite value of SPRR. The discrepancies are due

purely to differences in score ranks (top 100 or not) and
not due to restrictions on count, Yates-corrected chi-
squared, or SPRR value. Of those cells flagged by both
methods, the Pearson correlation coefficient for the
signal ranks is 0.416 ( p< 0.0001). The top 100 SPRR
scores (SPRR� 20.08, ln SPRR� 3.0) include the
rotavirus–intussusception and oral live polio vaccine–
poliomyelitis associations; the top 100 EB05 scores
(EB05� 3.98, ln EB05� 1.38) include these two, as
well as the rubella–arthritis association. The top 100
SPRR scores include three injection site reaction
COSTARTs, one of which appears among the top
100 EB05 scores.

DISCUSSION

Data mining methods have been proposed as screen-
ing tools for improving the efficiency of adverse event
reports. This is the first analysis comparing several
proposed methods using the VAERS database. Several
data mining methods exist, and our purpose is to com-
pare four approaches that have been piloted within the
FDA. The qualitative features of the comparisons are
as follows. The PRR signal appears less useful for
postmarketing safety surveillance than SPRR, EBGM,
and EB05. The large number of PRR signals for sin-
gleton reports could result in many false alarms and
divert resources from more consequential relation-
ships. Because of these limitations, PRR was removed
from further consideration in the analysis.
Even the best method for detecting clinically

important signals among spontaneous report data is
subject to limitations. First, if nearly all vaccines are
associated with the same adverse event, such as
injection site reactions, then automatic signal detection
systems are unlikely to discover this association from
VAERSdata. No single vaccinewould likely emerge as
markedly different from others, with regard to this
event, even if the eventwere extremely common. Some
vaccines are commonly administered simultaneously,
e.g., Hemophilus influenzae type B vaccine, inacti-
vated polio vaccine, pneumococcal conjugate vaccine,
and diphtheria and tetanus toxoids with acellular
pertussis vaccine in children. Determining whether a
given adverse event results from one of several
simultaneously administered vaccines (thereby exon-
erating the ‘innocent bystanders’), from the simple
additive effects of multiple vaccines, or from the
synergistic effect of multiple vaccines, is a topic for
further research.
We found that the SPRR method was generally

competitive with the EBGM method. In com-
paring EBGM versus SPRR, one should consider the

Figure 5. Scatterplot of ln EB05 vs ln SPRR. Lines indicate the
cutoff for the top 100 pairs in each method (EB05� 3.98, ln
EB05� 1.38; SPRR� 20.08, ln SPRR� 3.0). Forty-two vaccine–
COSTART pairs appear in the top 100 of both methods (upper right
quadrant). EB05: lower-bound of the 90% confidence interval of the
empirical Bayesian geometric mean. SPRR: screened proportional
reporting ratio
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bias-variance tradeoff.21 SPRR estimates have large
variance; EBGM estimates are shrunk towards a
common mean, which reduces variance at the expense
of a small bias. From a public health standpoint, good
methods will agree on the strongest signals; close
correlation among the other signals is not as helpful.
EB05 is designedwith statistical principles inmind and
takes explicit account of the asymmetry in the
distribution of signals. However, these properties
may not ensure superior performance. We have
evaluated the ability of the different methods to detect
some well-known adverse effects. The causal relation-
ship of the vast majority of vaccine–event pairs is
unknown, making estimates of sensitivity and speci-
ficity unreliable. This paper brings together the
comparative information that is currently available,
relying on both theory and some empirical work. The
number of vaccine–COSTART pairs that ranked in the
top 100 by each of two methods (EBGM, EB05, or
SPRR) ranged from 42 to 67. Few known associations
were in the top 100 scores of any of themethods that we
studied, but the known associations that were signaled
overlapped and were more similar than different.
Under the limitations described above, our research
finds that each method has strengths and limitations,
and knowledge of these differences has practical value.
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