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Abstract—Despite being considered as simple everyday objects,
smartphones have the most innovative sensors and electronics
technology built in. These features make them powerful, non-
intrusive tools for monitoring the user’s physical and cognitive
performance. This study aims at exploiting smartphone-based
physical activity identification, implementing a classification al-
gorithm that makes use of data extracted from in-built smart-
phone’s accelerometer and gyroscope. Data were gathered from
three subjects carrying a standard smartphone equipped with a
devoted application able to acquire data from the smartphone’
sensors and send them to a remote server. We implemented a
specific software that uses K-Nearest Neighbours (KNN) and
Support Vector Machines (SVM) classifiers to recognize the
type of activity performed with 1.5 seconds granularity. We
evaluated the performances of the two classifiers in the cases of 3
(low/medium/high intensity activity) and 4 (rest/walk/stairs/run)
activity levels classification. The 3 levels classification showed ac-
curacy and F-1 scores always >90% for both classifiers, whereas
the 4 levels classification was not effective in distinguishing
between walk and climbing stairs. A reliable classification among
low, medium, and high intensity activity demonstrates to be
a meaningful achievement for overall monitoring of physical
activity level, giving a precise and fairly accurate estimation of
type and duration of the activity.

I. INTRODUCTION

Nowadays, smart devices like smartphones and smart
watches are essential part of our lives, accompanying us
in all our daily activities, from work to entertainment. As
such, we are offered with the possibility of gathering highly
accurate data related to user activity, without altering the
user’s natural behaviour. Our interest is to exploit this po-
tential in the medical field: smart devices can help record-
ing continuous data describing physical activities, keeping
track of any improvements, worsening, or sudden changes
of the user’s motor behaviour. This technology is part of
the user’s routine and therefore offers the unique opportunity
to obtain detailed person-specific lifestyle information in an
ecologic and unobtrusive way. Despite the assessed validity
of the results of phone-based measurement of physical ac-
tivity, smartphone use is a relatively new field of study in
this research area [1]. We want to exploit smartphone-based
activity monitoring adopting a longitudinal approach able to
build a person-specific profile using data generated performing
normal daytime activities, while being transparently sensed

by smart devices. Longitudinal user monitoring may prove
to be a reliable instrument to support tailored home-based
motor rehabilitation. Several smartphone apps claim to be able
to monitor physical activity in free environment, but none
of them provide evidence of a rigorous scientific approach
in design and development. Many scientific papers involving
smartphones for monitoring purposes put constrains on the
device usage [2][3][4][5], whereas we aim at investigating the
performances of an app designed to operate in free conditions.
Using the smartphone’s in-built sensors data, we trained a
robust classification algorithm able to detect different activities
with resolution of few seconds. Among the several machine
learning techniques available, we chose two methods which are
widely used in the field of activity classification: K Nearest
Neighbours (K-NN) [6][5][7][8] and Support Vector Machines
(SVM) [4].

II. PREVIOUS WORK

Mobile devices offer the advantage of unobtrusiveness in
advance data capture and elaboration, with no need for further
equipment. They enable for a fairly accurate estimate of daily
physical activity, making them a valuable tool for monitoring
and for rehabilitation purposes. Lot of research has been
performed in the field of physical activity monitoring using
wearable and portable sensors [1], and a wide range of
experimental design choices have been proposed, in terms of:
device position, type of sensors employed, classification algo-
rithm used, extracted features, and time window for features
extraction [4][9][6][7][5][10]. Several studies implemented
classifiers using data from 3-axial accelerometers mounted
in specific body positions [11][12]. Other works considered
the combination of accelerometric and gyroscopic data from
specific MEMS sensors [9]. Various studies implemented
classification algorithms using data from inbuilt smartphone’s
sensors. Usually, studies for activity classification involving
smartphones put constrains on the smartphone usage, with
different types and levels of constrains: in some cases, the
smartphone was used as a normal sensor unit and mounted
on the subject in a specific position [3], whereas in other
cases limitations were less strict (e.g. in front pocket) [4][6].
Duarte et al. obtained >90% accuracy by positioning the
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smartphone along the waist in the right front pocket [2]. Wu
et al. acquired data from accelerometer and gyroscope using
an iPod positioned in the armband or in shorts’ front pocket
[7]. Lee et al. used only the 3-axial smartphone accelerometer
to classify different activities, having the device hand-grasped
by the user [13]. Ketabdar et al. used accelerometer data to
classify activities acquired from the smartphone positioned in
the user’s pocket [14]. Brezmes et al. proposed a subject-
dependent activity recognition with Nokia N95 in different
positions using only the accelerometer data [8]. Derenbach et
al. evaluated the performances of Multilayer Perceptron, Naïve
Bayes, Bayesian network, Decision Table, Best-First Tree,
and K-star, for activity classification of simple and complex
activity using a Samsung Captivate™ smartphone and data
from accelerometer and gyroscope. They considered different
possible smartphone orientations and obtained a >90% accu-
racy for simple activities classification [15].

III. METHODOLOGY

A. Data collection

Data collection was performed on three 26-year-old sub-
jects, one male and two females. Acquisition was not limited to
a specific smartphone brand and model, the only requirement
being that the device had to have accelerometer and gyroscope
sensors. Each subject installed an ad-hoc application designed
to send the data collected to a remote server. Subjects had to
select the activity to be performed before the recording session.
In this preliminary phase, we selected 5 main categories of
activities which, at our knowledge, represent the main subset
of activities naturally performed using a smartphone, and
namely: resting, typing, walking, running, and climbing stairs.
By furthering differentiating the acquisition by the position
of the device (holding the smartphone in the hand, keeping
it in the pocket - with tight and non-tight pocket for walk
and climbing stairs - or in a bag), the overall number of
activities scales up to twelve. Each recording session was set
to last one minute, as a good compromise between physical
demand of the task and wideness of the data set. Indeed,
longer acquisition time would generate more data, but it would
affect the uniformity of the performance and would make the
tasks more physically demanding (in particular, thinking about
applications in pathological conditions). On the other hand,
a shorter acquisition time would have generated a reduced
data set that would have not been large enough for future
features extraction in the frequency domain. The subjects were
asked to perform the one-minute acquisition for each activity,
for at least 6 times, and were free to perform each task at
any time within their daily routine, without any additional
constrain on smartphone position and orientation. All the
data from the accelerometer and gyroscope were sent from
the application to a remote server, from which they were
downloaded and processed by a devoted Java software for
elaboration and classification. Data were sampled at 10Hz and,
for the accelerometer data, the gravity component was filtered
using a digital high pass filter with 0.25Hz cut-off frequency
[11][12][3]. The 10Hz sampling frequency allows to obtain

low computational load and, at the same time, it preserves the
main frequency content of the signal [16].

B. Feature extraction

We extracted temporal features onto 3-second time-windows
with 50% overlap. To improve computational speed, we
chose only temporal features. For each time-window, both
for accelerometer and gyroscope, we extracted the mean and
standard deviation of the signal amplitude which is computed
as: amplitude =

√
x2 + y2 + z2 [9][10][12][3][14]. Prior

to classification, all features were normalized [4][12].

TABLE I
TABLE OF ALL THE FEATURE COMPUTED AND THE CORRESPONDENT

NUMBER

feature name feature number
accelerometer amplitude mean (1)

accelerometer amplitude standard deviation (2)
gyroscope amplitude mean (3)

gyroscope amplitude standard deviation (4)

C. Classification

We implemented two classification algorithms: a K-NN
(K=5) and a SVM. For each subject, we built a training set
using at least 3 one-minute acquisitions for each of the 12
activities previously defined, for a resulting total of about
40 minutes of recording. The test set was built accordingly,
using a different set of one-minute acquisitions. For each
subject, the training set was used to train the algorithms,
whereas the test set was used to evaluate the performances
of the classification. The ad-hoc mobile phone application
requires the subject to annotate the performed activity. This
means that, together with the accelerometer and gyroscope
data used for features extraction, we also save an identifier
of the activity, which is used, in the training phase, for the
algorithm training, and, in the test phase, as the reference
to quantify the classification performance. An example of
amplitude and class value extraction from row data acquired
during different activities is shown in Fig.1.

Fig. 1. Amplitude (red line) and class value (blue line) extraction on few
seconds acquisition.



IV. RESULTS

In order to evaluate the classification performances of
the two algorithms, we extracted the confusion matrix and
computed classification accuracy and F-1 score:

accuracy =
TP + TN

total

F-1= 2 · precision·recall
precision+recall

where:

TP: true positive
FP: false positive
TN: true negative
FN: false negative

precision =
TP

TP + FP

recall =
TP

TP + FN

Figure 2 shows the results obtained with the 3-level clas-
sification experimental design, deployed in order to correctly
classify low, medium, and high activity using only feature(1).
For low activity, we considered the person still, holding
the mobile phone or typing (standing or sitting). Medium
activity included walking and climbing stairs, while for high
activity we considered only running: for both medium and
high activity, the mobile phone could have been placed in all
possible positions.

Fig. 2. Above: confusion matrices for the two classifiers using feature(1) in
the 3 classes experimental design, where “low”, “mid”, and “high” state for
low, medium and high intensity activity. Below: tables for Accuracy and F-1
score for 3 classes experimental design.

We also tested the classifiers with a 4-class experimental
design, considering four possible activities: resting, walking,
climbing stairs, and running; the fourth class was obtained by
splitting in two the middle activity group of the previous exper-
imental design. The results are shown in Fig. 3, which shows
an optimal classification performance for resting and running,

Fig. 3. Above: confusion matrices for the two classifiers using feature(1) in
the 4 classes experimental design. Below: tables for accuracy and F-1 score
for 4 classes experimental design.

whereas discrimination between walking and climbing stairs
was not well identified.

Accuracy and F-1 score slightly increase training and testing
the algorithm using different subsets of features, as shown in
Fig. 4.

Fig. 4. Accuracy and F-1 values for walk and stairs classification using
different subsets of features.

V. CONCLUSIONS

Results obtained for the low/medium/high intensity activity
classification show that using smartphones’ in-built sensors
data to discriminate between user’s activities is feasible. Accu-
racy and F-1 score are always >90% for both K-NN and SVM,
where SVM always performs slightly better. Using a 3-second
time-window with a 50% overlap, we computed activity values
every 1.5 seconds, obtaining a really high granularity, allow-
ing for an accurate estimation of the activity’s duration. In
the 3-class experimental design, walking and climbing stairs
were merged in the medium activity class. In a study of
Knaggs et al. on the metabolic cost of different activities
for older adults in terms of Metabolic Equivalent of Task
(MET) and Oxygen consumption, climbing stairs reported
values similar to walking briskly [17]. According to Ainsworth
et al., walking downstairs implies the same MET of walking
on level ground at moderate pace, whereas walking upstairs
implies greater MET level, still lower than running at medium
and high intensities [18]. Having similar temporal features
in terms of accelerometric and gyroscopic values, walking
and climbing stairs cannot be safely distinguished, leading



to a poor performance of a four-level classification with
regards to these two specific activities. This problem has been
detected also in previous works [3][5], and it could suggest, for
future development, the need of computing other features or
extracting data from other sensors (e.g. the barometer), as we
are aware that walking upstairs has an important informative
content in particular pathological conditions. The best result
we obtained for walk/stairs classification was with K-NN using
all the 4 features (mean and standard deviation for both ac-
celerometer and gyroscope). Classification performances could
be improved by widening the set of extracted features (e.g.,
features in the frequency domain and composite features) and
performing a subset selection using a specific scoring function
[3][9]. Considering that the main aim of this work was to build
a software able to give an estimation of the user’s overall
activity for monitoring purposes, we found that the reliable
recognition of low, medium, and high activity is a suitable
achievement. A classification of movement capabilities, in
terms of motor levels, demonstrates to be a robust index in
home rehabilitation design, in order to obtain a continuous
and transparent assessment of the end user’s progress all along
the rehabilitative path. In our opinion, the subset of activities
considered in this study represents the main subset of activities
performed naturally using a smartphone, but we are aware
that it is not comprehensive of all the possible activities that
can be performed. Improvement of this aspect is on-going,
through acquisitions of additional activities (cycling, driving,
etc.) and evaluation of the classification results. A limit of
the smartphone-based approach is in the nature of the device
itself, that does not imply continuous usage. Depending on
the subject attitude and habits regarding smartphone usage,
the amount of significant data could greatly vary. The results
shown in this paper are extracted from data acquired on healthy
subjects; the performance on pathological subjects with motor
impairment is under testing.
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