
 
 

 

 

 

 

SUPERFLUIDITY 

A SUPER-FLUID, CLOUD-NATIVE, CONVERGED EDGE SYSTEM 

Research and Innovation Action GA 671566 

 

DELIVERABLE D2.2: 

FUNCTIONAL ANALYSIS AND DECOMPOSITION 

 

Deliverable Type: Report 

Dissemination Level: Public 

Contractual Date of Delivery to the EU: 01/06/2016 

Actual Date of Delivery to the EU: 01/06/2016 

Work package Contributing to the Deliverable: WP2 

Editor(s): Bessem Sayadi (Nokia FR) 

Author(s): Bessem Sayadi (NOKIA-FR), Lionel Natarianni (NOKIA-FR), Erez Biton: (NOKIA-

IL), Omer Gurewitz (ALU-IL), Giuseppe Bianchi (CNIT), Nicola Blefari-Melazzi 

(CNIT), Stefano Salsano (CNIT), George Tsolis (CITRIX), Francisco Fontes (ALB), 

Carlos Parada (ALB), Pedro A. Aranda (Telefónica, I+D), Ignacio Berberana 

(Telefónica, I+D), Costin Raiciu (UPB), Dirk Griffioen (Unified Streaming), Philip 

Eardley (British Telecom), John Thomson (OnApp), Julian Chesterfield (OnApp), 

Michael J. McGrath (Intel), Pedro de la Cruz Ramos (Telcaria Ideas S.L.), Juan 

Manuel Sánchez Mateo (Telcaria Ideas S.L.), Raúl Álvarez Pinilla (Telcaria Ideas 

S.L.), Matei Popovici (UPB), Costin Raiciu (UPB). 

Internal 
Reviewer(s) 

Stefano Salsano (CNIT) 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 2 of 77 

Abstract: This document presents an initial assessment of the Superfluidity reusable 
components in different domains, including the NFV, the Cloud RAN and 
mobile edge computing domains. We proceed to decompose existing 
monolithic network functionality into reusable components. The principle of 
Reusable Functional Block is introduced. Example applications of this concept 
are concept are presented in heterogeneous domains: Radio Access 
Networks, Mobile Edge Computing, fixed networking equipment, packet 
processing state machines. A set of use cases are introduced at the end of 
this document, presenting examples of usability of the RFBs. 

Keyword List: Superfluidity, Reusable Functional Block, Decomposition, C-RAN, 
MEC, State Machine 

 

 

 

 

VERSION CONTROL TABLE 

VERSION N. PURPOSE/CHANGES AUTHOR DATE 

1 First release 
Superfluidity
project 

31/05/2016 

1.1 Revision 
Stefano 
Salsano 

01/06/2016 

1.2 Final Revision 
Nicola Blefari 
Melazzi 

01/06/2016 

 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 3 of 77 

Executive Summary 
 

To instantiate services on-the-fly, run them anywhere in the network (core, aggregation, edge) and 

shift them transparently to different locations, Superfluidity introduced the concept of Reusable 

Functional Block (RFB). This capability is a key part of the converged cloud-based 5G future - it will 

enable innovative use cases in the mobile edge, empower new business models and allow almost 

instant roll-out of new services, thus reducing investment and operational costs. In this document, 

we present the work conducted on the concept of RFB and reports the first results. The goal is not to 

build a definitive and exhaustive list of reusable components that should be supported, but rather to 

start understanding the benefits of the concept and identify their most important applications.  

Superfluidity proposes to decompose the architecture into elementary radio and network processing 

primitives and events, which can then be exploited as basic modules of more comprehensive (and 

traditionally monolithic) network functions and services. The decomposition of monolithic functions 

into RFBs permits a flexible placement, as well as the incorporation of adequate virtualization 

techniques like Containers (e.g. Docker), UniKernels, and full Virtual Machines, by considering real-

time constraints.  

It is not possible here to perform the functional decomposition in an exhaustive way, covering all the 

envisaged 5G application areas. In this deliverable, the project has focused on a set of different 

contexts: Cloud Radio Access Networks, Mobile Edge Computing platform, generic NFV 

environments, fixed networking equipment and packet processing state machines. In each of this 

context a (non-exhaustive) functional analysis and decomposition into RFBs has been performed.  

Finally, a subset of the use cases described in D2.1 has been revisited, having in mind the 

identification of the needed RFBs for their implementation.  

 

 

 

 

 

 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 4 of 77 

INDEX 
EXECUTIVE SUMMARY .............................................................................................................................................. 3 

LIST OF ABBREVIATIONS ........................................................................................................................................... 8 

1 INTRODUCTION ......................................................................................................................................... 11 

1.1 OBJECTIVE OF THE DOCUMENT .................................................................................................................. 11 

1.2 STRUCTURE OF THE DOCUMENT ................................................................................................................ 13 

2 STATE OF THE ART ..................................................................................................................................... 14 

2.1 STANDARDIZATION FORA .......................................................................................................................... 14 

2.1.1 ETSI NFV ............................................................................................................................ 14 

2.1.2 Small Cell Forum ................................................................................................................. 17 

2.1.3 ONF’s OpenFlow approach to decomposing switching functionality ................................. 18 

2.2 RELATED WORK IN PROGRESS ................................................................................................................... 19 

2.2.1 EU Metis .............................................................................................................................. 19 

2.2.2 EU iJOIN ............................................................................................................................. 20 

3 SUPERFLUIDITY INNOVATION AND ARCHITECTURE .................................................................................... 22 

3.1 SUPERFLUIDITY RESEARCH CHALLENGES .................................................................................................. 22 

3.2 SUPERFLUIDITY ARCHITECTURE ................................................................................................................ 25 

3.3 KEY ELEMENTS FOR ACHIEVING SUPERFLUID NETWORK PROGRAMMABILITY ........................................... 26 

3.3.1 A possible RFB Composition Language: NEMO ................................................................ 28 

4 FLEXIBLE NETWORK DESIGN: FROM MONOLITHIC FUNCTIONS TO A SET OF RFBS ..................................... 30 

4.1 DESCRIPTION OF DIFFERENT C-RAN RFBS ............................................................................................... 32 

4.2 DESCRIPTION OF MEC RFBS .................................................................................................................... 36 

4.2.1 MEC Overview .................................................................................................................... 36 

4.2.2 MEC RFBs ........................................................................................................................... 38 

4.3 DESCRIPTION OF DIFFERENT NFV RFBS ................................................................................................... 40 

4.3.1 Load balancer as a functional block ..................................................................................... 41 

4.3.2 Analytics as a functional block ............................................................................................ 44 

4.3.3 State repository as a functional block .................................................................................. 47 

4.3.4 Service Function Chaining ................................................................................................... 48 

4.4 DECOMPOSITION OF A CISCO SECURITY APPLIANCE (ASA 5510) ............................................................. 50 

4.4.1 Overview .............................................................................................................................. 50 

4.4.2 A Click model for ASA ....................................................................................................... 51 

4.5 NANO-DECOMPOSITION WITH STATE MACHINES ........................................................................................ 54 

4.5.1 Abstracting Flow Processing with eXtended Finite State Machines .................................... 55 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 5 of 77 

4.5.2 Identification of Reusable Functional Blocks for XFSMs: the “update functions” ............. 58 

5 REUSABLE COMPONENT ANALYSIS BASED ON USE CASES ......................................................................... 61 

5.1 USE CASE: ON–THE-FLY MONITORING ..................................................................................................... 62 

5.2 USE CASE: S/GI-LAN SERVICES ON THE (MOBILE) EDGE ......................................................................... 63 

5.3 USE CASE: ON-THE-FLY AD REMOVAL OFFLOADING ............................................................................... 68 

5.4 USE CASE: RAPID AND MASSIVELY-SCALABLE INSTANTIATION OF HIGH PERFORMANCE (VIRTUAL) APPLICATION 

INSTANCES .............................................................................................................................................................. 68 

5.5 USE CASE: LOCAL BREAKOUT (LBO) ....................................................................................................... 69 

5.6 USE CASE: VIRTUAL CONVERGENT SERVICES ........................................................................................... 70 

5.7 USE CASE: LATE TRANSMUXING (LTM) ................................................................................................... 72 

6 CONCLUSIONS ........................................................................................................................................... 75 

7 REFERENCES .............................................................................................................................................. 76 

 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 6 of 77 

List of Figures 
Figure 1: High level NFV framework .........................................................................................................................................15 

Figure 2: Graph representation of an end-to-end network service .......................................................................................15 

Figure 3: VNF interfaces and NFV reference points ................................................................................................................16 

Figure 4: Functional splits proposed for Small Cells (source extracted from Small Cell Forum) ..........................................18 

Figure 5: Building Blocks of the overall METIS system. ...........................................................................................................20 

Figure 6: Overall Superfluidity Architecture. ...........................................................................................................................25 

Figure 7: Conceptual model for Reusable Functional Blocks (RFBs) and RFB Composition Execution environments (RCEs)

 ....................................................................................................................................................................................................28 

Figure 8: A service graph composed of virtual network functions and virtual links ..............................................................29 

Figure 9: Different domain considered in Functional block placement:  Central DC, Regional DC, Local DC and Front-end 

DC ...............................................................................................................................................................................................31 

Figure 10: Monolithic version of the RAN and its different layers .........................................................................................32 

Figure 11: Affinity graph between different C-RAN functional blocks. ..................................................................................36 

Figure 12: ETSI MEC architecture. ............................................................................................................................................38 

Figure 13: MEC building blocks .................................................................................................................................................39 

Figure 14: VNF-internal Load Balancer .....................................................................................................................................41 

Figure 15: VNF-external Load Balancer ....................................................................................................................................42 

Figure 16: End-to-End Load Balancer .......................................................................................................................................43 

Figure 17: Infrastructure Network Load Balancer ...................................................................................................................43 

Figure 18: Firewall Load Balancing ...........................................................................................................................................44 

Figure 19: snap decomposition ................................................................................................................................................45 

Figure 20: decomposition of analytics block ............................................................................................................................46 

Figure 21: Service Function Chaining (SFC) architecture ........................................................................................................48 

Figure 22: A simplified ASA pipeline .........................................................................................................................................54 

 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 7 of 77 

List of Tables 
Table 1: Description of different C-RAN Functional Blocks .....................................................................................................34 

Table 2: MEC main building blocks ...........................................................................................................................................39 

Table 3: Formal specification of an eXtended Finite State Machine (left two columns) and its meaning in our specific 

packet-processing context (right column) ...............................................................................................................................56 

Table 4: ALU basic instruction set .............................................................................................................................................59 

Table 5: ALU extended (domain-specific) instruction set .......................................................................................................59 

 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 8 of 77 

List of Abbreviations 
 

ABR Adaptive Bit Rate 

API Application Program Interface 

AR Augmented Reality 

CDN Content Distribution Network 

CRUD Create , Read , Update , Delete 

DDoS / DoS (Distributed) Denial of Service 

DPI Deep Packet Inspection 

DRM Digital rights management 

ETSI ISG European Telecommunications Standards 

Institute Industry Specification Group 

GGSN / P-GW Gateway GPRS Support Node / Packet Gateway 

HARQ Hybrid Automatic Repeat Request 

IDPS Intrusion Detection and Protection System 

IETF Internet Engineering Task Force 

IoT Internet of Things 

ISA Instruction Set Architecture 

KPI Key Performance Indicator 

LCM Life Cycle Management 

LIPA-SIPTO Local IP Access and Selected IP Traffic Offload 

LTE Long Term Evolution 

LTM Late TransMuxing 

M2M Machine to Machine 

MEC Mobile Edge Cloud 

MIMO Multiple-Input Multiple-Output 

NFV Network Function Virtualization 

NFVI NFV Infrastructure 

NDP Neighbour Discovery Protocol 

NIC Network Interface Card 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 9 of 77 

NS Network Service 

ONF Open Networking Foundation 

OSS Operational Support Systems 

OTT Over-the-top 

PDP/PDN Packet Data Protocol/Packet Data Network 

PoC Proof of Concept 

PNF Physical Network Function 

QoE Quality of Experience 

QoS Quality of Service 

RAN Radio Access Network 

RFB Reusable Functional Block 

RNC Radio Network Controller 

RRH Remote Radio Head 

RRM Radio Resource Management 

SDN Software Defined Networking 

SDO Standard Defining Organization 

SFC Service Function Chaining 

S/Gi Reference point defined by 3GPP between the 

mobile packet core and PDN (Gi is between 

GGSN and PDN; SGi is between P-GW and PDN) 

SLA Service Level Agreement 

SON Self-Organising Network 

TCP Transmission Control Protocol 

UE User Equipment 

UMTS Universal Mobile Telecommunications System  

vCS virtual Convergent Services 

vHGW virtual Home GateWay 

VM Virtual Machine 

VFN Virtual Network Function 

VNFC Virtual Network Function Component 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 10 of 77 

VNFM Virtual Network Function Manager 

 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 11 of 77 

1 Introduction  

1.1 Objective of the document 

Network Function Virtualization (NFV) is emerging as a new architectural concept for the design and 

implementation of communication networks. Running network functions in software is a departure 

from the current monolithic approach to building and deploying hardware appliances. Such 

appliances are difficult to customise, upgrade and scale and lead to vendor lock-in. The main benefits 

of running network functions completely in software are envisioned to be: 

1. Ease of developing new functionality 

2. Seamless scale-out by adding more resources and load balancing across them. 

3. Easy upgrade and more agile bug fixing. 

Despite being a relatively recent proposal, the specification / standardization of the NFV paradigm 

has already achieved significant results ([1] to [4]) and there are already implemented solutions. The 

current architecture is built around the concept of VNFs (Virtual Network Functions) that can be 

composed to provide Network Services. The VNFs are instantiated and executed over a hosting 

environment denoted as VNF Infrastructure (VNFI).  

In order to fully exploit the NFV potential, re-thinking the way of designing and modelling the 

telecommunication services is needed. Before NFV, the focus of modelling was on interfaces between 

physical boxes, with the identification of reference points and of the protocols exchanged across the 

reference points. The physical boxes were closed; hence, there was no need to specify their internal 

structure. With the advent of virtualization technologies and NFV, services can be realized by 

combining functional blocks that are much like software components. Such components can be 

deployed and executed over a distributed computing infrastructure, composed of a set of big 

Datacentres and a very large number of distributed resources closer to the access networks (this is 

referred to as Fog computing [10] or Mobile Edge Computing [11]). In the 5G context, this scenario is 

extended to the Radio Access infrastructure, which turns in a Cloud-RAN [12]. 

An optimal allocation of processing components in this highly distributed cloud environment is the 

key to optimize performances, reduce costs (operational costs and/or equipment buying costs) and 

achieve higher efficiency. Hence, the desire to decompose functions up to a very high granularity and 

to extend this approach in a unified manner to Radio Access functionality and to Data Plane 

“microscopic” forwarding operations. From an ideal perspective, it should be possible to decompose 

a service in an arbitrary way (from the point of view of the needed resources) and map it in the most 

convenient way into the set of resource providers (e.g. processing hosts) offered by the 

infrastructure. 

An open issue is the definition (and standardization) of a language (or a set of languages) that allow 

expressing the composition of processing entities at different levels, from “high level” VNFs to Data 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 12 of 77 

Plane “microscopic” forwarding operation and to Radio Access functionality. The heterogeneity of 

the platforms at the different levels (from x86 processors based on Unix-like Operating System, to 

specialized boards based on TCAMs and NetFPGAs) makes it difficult to define a consistent unified 

framework. A fundamental step in this direction is the definition of a set of reusable components that 

are common across many network-processing functions. These reusable components will serve two 

main purposes: 

- They will allow more complex functionality to be built by combining small, purpose-specific 

building blocks 

- They will allow each building block to be implemented in a variety of ways, including generic 

software running on x86/ARM, NetFPGA, specialised ASICs, TCAMs, and so forth. 

The element that combines these reusable components is the network programming language. As in 

general purpose programming languages, it is likely there will be a wealth of languages defined and 

used. Existing language examples include the configurations used by the Click Modular Router [13] 

targeted at software routers functionality, and GNU Radio [14] targeted at software radio processing.  

The reusable components will act as the API offered by the network OS to network applications. As 

in all APIs, there is great freedom in the implementation, as long as the API is observed – and this will 

allow software/hardware vendors to compete in offering implementations of the same functionality 

and network operators to decide which solutions it wants to deploy based on requirements, derived 

from its own operations, or taken from its customers.  

This document offers an initial assessment of the reusable components in different domains of the 

networking landscape, including the core network, the Cloud RAN and mobile edge computing. We 

proceed to decompose existing monolithic network functionality into reusable components, and 

report our key observations to date. Our goal is not to build a definitive list of reusable components 

that should be standardised, but rather to start understanding what are the useful functionalities that 

might be the candidates for standard reusable components.  

A fundamental question when decomposing monolithic network functions is to select the right level 

of granularity. There is a direct trade-off between reusability and performance. On the one hand, 

fine-grained functions may be easier to reutilise to build complex applications, but have higher 

instantiation costs and per-flow or global state management across components will become 

complex and create further overheads. Coarse-grained functions are more efficient, however they 

will be difficult to reuse. This work does not seek to dictate the appropriate granularity for reusable 

components; instead, it decomposes monolithic functions using the appropriate building blocks for 

each part of the 5G network, as determined by experts in those areas. The outcome is informative 

rather than normative, and it provides a concrete starting point for the 5G architecture. 

Orthogonal to the granularity of the reusable components, the process of building complex 

functionality depends on ability of all the involved parties’ to understand what each reusable 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 13 of 77 

component is supposed to do: what its allowed inputs are and how the outputs are obtained from 

the inputs. 

1.2 Structure of the document 

Section 1 introduces the objective of this document (section 1.1) and its structure (section1.2). 

Section 2 summarizes relevant state of the art, namely ETSI NFV, where the principle of 

decomposition of a network service into a set of virtual network function is introduced, Small Cell 

Forum where a first functional RAN split is given, and two European projects METIS and iJOIN, where 

different functional split for RAN, including additional parameters such us backhaul is proposed.  

In order to understand the decomposition approach that will be presented in Section 4, Section 3 

introduces the Superfluidity innovation and architectural aspects, representing a joint work with 

WP3. In particular, Section 3.1 summarizes the innovations and research challenges of Superfluidity. 

Section 3.2 presents the status of the Superfluidity architecture design. Section 3.3 introduces the 

concept of Reusable Functional Block. A proposal for an RFB Composition Language is given in section 

3.3.1. 

Section 4 starts by introducing a methodology that can be followed to describe the different RFBs. A 

template is proposed, including the description of the interfaces across different RFBs, their timing 

requirements and their environment execution requirement (Hardware, need for acceleration or 

not...). In sections 4.1, 4.2 and 4.3, we proceed to decompose existing monolithic network 

functionality, related respectively to Cloud-RAN, Mobile Edge Computing and generic NFV 

environments, into reusable components, and report our key observations to date. Our goal is not to 

build a definitive list of reusable components that should be standardised, but rather to start 

understanding what are the useful functionalities that might be considered for each component. In 

section 4.4 we present the example decomposition of a fixed network equipment (in particular a 

security appliance) into RFBs. In section 4.5, to emphasize the RFB concept and go deeply into the 

decomposition principle, a nano-decomposition based on packet processing state machines is 

introduced. 

In Section 5, several RFB chains are considered through example use cases. A detailed description of 

the considered use cases is available in our Deliverable D2.1.  

Section 6 concludes this report. 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 14 of 77 

2 State of the Art  

Network Function Virtualization (NFV) is emerging as a new architectural concept for the design and 

implementation of communication networks. There have been in recent times some European 

projects and standardization forums focusing on addressing this solution for the upcoming 5G 

challenges. 

2.1 Standardization fora 

In this section, we focus on some standardization forums related to the Superfluidity scope. One of 

them is the ETSI Network Functions Virtualisation Industry Specification Group, which works in the 

definition of a consistent approach and common architecture for the hardware and software 

infrastructure needed to support virtualised network functions. The second one, the Small Cell 

Forum, supports the wide-scale adoption of the small cells deployment. The third one is ONF (Open 

Networking Foundation), the body that is standardising the OpenFlow protocol for Software Defined 

Networks. 

2.1.1 ETSI NFV  

The NFV architectural model is based on the concept of Virtualised Network Functions, which 

envisages the implementation of network functions as software-only entities. The NFV 

standardisation in ETSI has considered the use cases for NFV in [1] and the architectural aspects in 

[2][3]. In particular, the overall architectural framework for NFV is described in [2], while [3] provides 

further details on the architecture of VNFs. The environment that hosts the VNFs is called NFV 

Infrastructure (NFVI). The orchestration aspects, i.e. how VNFs can be chained and how their life cycle 

can be managed, are dealt with in [4] and are commonly referred to as NFV Management and 

Orchestration, in short MANO. It is interesting to note that moving from the overall framework 

definition ([2]) to the VNF architecture ([3]) and finally to the management and orchestration aspects 

([4]), the level of description changes from a general one to a concrete and detailed one. The last one 

includes a set of restrictions in its models so that the specification is much closer to the 

implementation. Figure 1 shows, at a high level of abstraction, the whole architecture proposed by 

NFV ETSI Industry Specification Group. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 15 of 77 

 

Figure 1: High level NFV framework 

The interface or reference point between VNFs and the NFV Infrastructure is called Vn-Nf. The Vn-Nf 

is a special kind of reference point. In fact, a typical interface or reference points describes the 

information exchanged between two functional entities and may provide details of the related 

protocols. On the other hand, the Vn-Nf needs to describe how the NFV Infrastructure can host a 

VNF, which resources it can provide and several other non-functional characteristics. In short, the 

Vn-Nf interface needs to describe the execution environment offered by the NFVI to a VNF. 

VNFs can be chained with other network functions, both VNFs and Physical Network Functions (PNFs), 

to realize a Network Service (NS) that achieves the desired overall functionality or service that the 

network is designed to provide. Most current network services are defined by statically combining 

network functions. This combination can be expressed using an NF Forwarding Graph, which focuses 

on the relations that express connectivity between network functions. This allows different VNFs to 

be deployed over the virtualised infrastructure to support End-to-End (E2E) network services and be 

applicable to diverse use cases and operator network scenarios with minimal integration effort and 

maximum reuse. Figure 2 illustrates the representation of an end-to-end network service that 

includes a nested NF Forwarding Graph. 

 

Figure 2: Graph representation of an end-to-end network service 

According to [3], VNFs can be decomposed into VNF Components (VNFCs), which are software 

modules defined by the VNF Provider in order to structure a VNF according to many factors, e.g. the 

prioritization of performance, scalability, reliability, security and other non-functional goals, the 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 16 of 77 

integration of components from other VNF Providers, operational considerations, the existing code 

base, etc. VNFs are implemented with one or more VNFCs and it is assumed that VNFC Instances map 

1:1 to the NFVI Vn-Nf interface. The assumption is that the NFV Infrastructure offers a single type of 

support for running VNFs, which is a Virtualised Container. Figure 3 shows an evolving view of the 

NFV architecture framework, clarifying the situation when two or more VNFCs are instantiated. 

 

 

Figure 3: VNF interfaces and NFV reference points 

The main contribution of MANO part is the definition of descriptors that can be used to characterize 

Network Services, VNFs, VNF Forwarding Graphs, Virtual Links, and Physical Network Functions in a 

consistent model. A MANO compliant orchestrator implementation takes these descriptors in input 

and it is able to deploy the VNFs and the Network Services over the NFV Infrastructure. An open 

source implementation of MANO, called OpenMANO, provides a nice explanation and some 

examples of the most important descriptors in [5]. Recently, ETSI has formed a group called Open 

Source Mano (OSM) whose goal is to deliver an open source MANO stack using accepted open source 

tools and working procedures. 

The conceptualization of VNF and of VNFC defined in current architecture of ETSI NFV can be 

generalized into the RFB concept of the Superfluidity architecture. RFBs are envisaged as a way to 

decompose high-level monolithic functions into reusable components. They facilitate the 

Superfluidity goal to allocate resources (processing, networking, storage…) dynamically and 

efficiently. An RFB can be executed on what we call “hosting environment”. For example, using the 

ETSI terminology, VNFC entities can be executed on a so-called “Virtualization Container”, which 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 17 of 77 

constitutes its hosting environment. In the current model, VNFs and VNFCs correspond to Virtual 

Machines running in hypervisors. The Superfluidity architecture extends this state of the art in two 

directions. On one hand, it includes the concept of very lightweight Virtual Machines supporting RFBs 

with fine granularity. In this case, the hosting environment is a hypervisor specialized in supporting 

tiny Virtual Machines. On the other hand, the Superfluidity architecture will support heterogeneous 

hosting environments that can be used to support the RFBs. Examples of such environments are the 

like the click modular router, or extended finite state machines (XFSM) based on OpenFlow, or 

modular Software Radio processing platforms. 

2.1.2 Small Cell Forum 

Small Cell Forum supports the wide-scale adoption of small cells and the delivery of integrated 

Heterogeneous Networks (HetNets). Its mission is to accelerate small cell deployment to change the 

shape of mobile networks and maximise the potential of the mobile internet. The term small cells 

refers to low-powered radio access nodes that operate in licensed and unlicensed spectrum and 

typically have a range of 10 metres to several hundred metres. These contrast with a typical mobile 

macrocell that might have a range of up to several tens of kilometres. The term covers femtocells, 

picocells, microcells, metrocells and public Wi-Fi. 

It works to remove barriers, drive standards, ensure interoperability and support the deployment of 

small cells worldwide. Currently their members are driving solutions that include small cell/Wi-Fi 

integration, SON (Self Organizing Network) evolution, virtualisation of the small cell layer, driving 

mass adoption via multi-operator neutral host, ensuring a common approach to service APIs to drive 

commercialisation and the integration of small cells into 5G standards evolution. 

SCF splits small cells into two components, a central small cell where functions are virtualized, and a 

remote small cell with non-virtualized functions [26]. The central small cell will serve multiple remote 

small cells. The small cell layers and functions are investigated with a top-down approach where 

gradually more functions are moved from the remote small cell to the central small cell. These small 

cell split points progressively result in: Centralized services, Centralized RRC, Centralized PDCP, 

Centralized RLC, Centralized MAC and Centralized PHY. A summary of the split architectures for the 

use cases is given in Figure 4. Functions to the left of the split are virtualized in the central small cell 

(VNF), while functions to the right reside in the remote small cell (PNF).  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 18 of 77 

 

Figure 4: Functional splits proposed for Small Cells (source extracted from Small Cell Forum) 

2.1.3 ONF’s OpenFlow approach to decomposing switching functionality 

In this section, we discuss how the networking community has worked in the direction to decompose 

the switching functionality in order to offer programmability of the network elements. The OpenFlow 

protocol is under standardization by the Open Networking Foundation (ONF). In OpenFlow, some 

level of switch programmability is accomplished by providing the operator with the ability to associate 

a set of (pre-implemented) very elementary and stateless actions (forward a packet, drop a packet, 

rewrite a header field, encapsulate the packet, etc.) to the outcome of a matching process which 

broadly identifies the flow. We refer to this as OpenFlow “match/action” abstraction. The most 

interesting (and winning!) feature of this abstraction is its independence on the underlying platform: 

as long as two switches support the same header matching facilities and the same set of well-defined 

OpenFlow actions, an OpenFlow configuration can be ported from a switch to another, irrespective 

on how the matching process and the set of actions is implemented (be it in HW or in SW). 

However, OpenFlow was designed with the desire for rapid adoption [23], i.e., as a pragmatic attempt 

to address the dichotomy between i) flexibility and ability to support a broad range of innovation, 

and ii) compatibility with commodity hardware and vendors' need for closed platforms. Ultimately, 

OpenFlow provided “only” an abstracted model for a flow table, insufficient to permit “true” network 

programmability and stateful operation.  

The aftermath is that most of the network programming frameworks proposed so far in the SDN 

arena circumvent OpenFlow limitations by promoting a “two-tiered” programming model: any 

stateful processing intelligence of the network applications is delegated to the network controller, 

whereas OpenFlow switches limit to install and enforce stateless packet forwarding rules delivered 

by the remote controller. Getting back to the previous load balancer example, an OpenFlow-based 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 19 of 77 

implementation of a load balancer requires to involve an external controller in the load balancing 

decision. 

2.2 Related work in progress 

In this section, we focus on two European projects whose work is related to Superfluidity’s objectives. 

Both projects METIS and iJOIN address the problems expected for future mobile technologies from 

the perspective of wireless communication, RAN and backhaul network. 

2.2.1 EU Metis 

METIS is among the largest coordinated efforts worldwide dedicated to 5G wireless technologies. Its 

main objective is to generate European consensus on the future global mobile and wireless 

communication systems. METIS also aims to provide an overall system concept as a technical 

objective. 

The essence of the system concept developed to address the 5G challenges consists in three generic 

services: extreme Mobile BroadBand (xMBB), ultra-reliable Machine-Type Communication (uMTC) 

and massive MTC (mMTC); and four main enablers: lean system control plane, dynamic RAN, localized 

traffic flows and a spectrum toolbox. xMBB provides increased data rates, as well as improved QoE 

for moderated rates. mMTC allows connectivity for a large number of devices with energy and cost 

restrictions. uMTC provides reliable communication to time-critical services and applications. A lean 

system control plane provides control information necessary to guarantee latency and reliability, 

dynamic RAN allows the rapid deployment of nomadic access points, localized content flows reduce 

the load of the backhaul and finally, the spectrum toolbox is a set of tools that allow 5G systems to 

operate with great spectrum flexibility. 

The functional architecture of METIS is explained in [27]. Four high-level building blocks have been 

identified: Central Management Entities (they cover network overarching functionalities), Radio 

Node Management (the BBs that provide radio functionalities that affect more than one node), Air 

Interface (per node radio functionality) and Reliable Service Composition (self-explanatory). The first 

three high-level BBs contains a number of smaller building blocks Building Blocks that can be Common 

or Horizontal Topic Specific depending on its functionality as seen in Figure 5. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 20 of 77 

 

Figure 5: Building Blocks of the overall METIS system. 

METIS approach to the 5G challenges is oriented to wireless access networks, unlike Superfluidity, 

which aims for a new architecture for the whole network. In addition, despite the similarity in the 

terminology between MEITS’ BBs and Superfluidity’s RFBs, it is important to note that the BBs refer 

to specific parts and functionalities of the METIS architecture, while RFBs could be any virtualized 

network service component. 

2.2.2 EU iJOIN 

iJOIN is a European project that has received funding from the EU’s 7th Framework Programme. It 

aims to address the problem of rapidly increasing traffic volume in mobile networks. It does so, 

introducing a new concept “RAN as a Service”. In RANaaS, RAN functionality is centralised through an 

open IT platform based on cloud infrastructure. This platform integrates smaller cells and 

heterogeneous backhaul, including a wireless one that connects antennas located in places where a 

wired connection cannot be provided. The IT platform and backhaul are optimized taking into account 

the possibility that antennas may not be connected to the control station through an optic fibre. 

 

The iJOIN functional architecture described in [28], is divided in three layers that interact between 

each other: the physical layer, the MAC layer and the network layer. The physical layer is responsible 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 21 of 77 

for the actual transmission of messages over the wireless channel. It also exploits the interference of 

signals by means of cooperative uplink detection and downlink transmission schemes. The MAC layer 

is concerned with the MAC, RRC and RRM in RAN and in the backhaul network. This includes resource 

allocation, QoS scheduling, interference coordination and connection control, e.g. for handovers. The 

network layer is responsible for the efficient operation of the network in terms of cost, energy 

consumption, mobility support and latency. The interaction between the physical layer and the MAC 

layer focuses on the exchange of channel information such as SNR. The network layer provides 

information about the backhaul configuration and measurements to the other two layers. 

Like METIS, this project takes a RAN and backhaul centric approach to the problems 5G will 

encounter, while Superfluidity aims to achieve the possibility to instantiate services on the fly in any 

part of the network. 

  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 22 of 77 

3 Superfluidity innovation and architecture 

3.1 Superfluidity research challenges 

Superfluidity project focuses on three innovative pillars, namely: 

- Converged architecture design: The main objective here is to provide an architecture that is 
location, time, and platform independent while providing high performance, ease-of-use, and 
security mechanisms to prevent the deployed services from harming each other or the 
network as a whole. 

- Platform-Independent Block and Function Abstractions: Superfluidity targets to decompose 

(1) heterogeneous hardware and system primitives into block abstractions and (2) network 

services into basic functional abstractions. It will design a provisioning framework that 

matches function abstractions with the available hardware/block abstractions in order to 

automatically derive high performance and meet end-user SLA requirements, i.e., without 

forcing developers to understand low-level system details.  

- High Performance Block Abstractions Implementation: This pillar consists of deriving block 

abstractions for each of the underlying hardware components, and to optimize their 

performance. 

These three pillars allow us to move from the current architectural approach based on monolithic 

network components/entities and their interfaces, to an approach where components can be 

“constructed” via the programmatic composition of elementary “building blocks”.  

In our view, a specific 5G network deployment should comprise the combination of: 

1) Elementary radio, packet, and flow processing primitives and events, formally specified and 
described independently of the specific underlying hardware, but implemented and 
automatically selected/instantiated so as to match the underlying hardware facilities while 
taking advantage of the relevant accelerators (e.g., GPUs or FPGAs) if/when available. 

2) Platform-agnostic node-level and network-level “programs” describing how these primitives 
interact, communicate, and connect to each other so as to give rise to specific (macroscopic, 
and formerly monolithic) node components, network functions and services. 

3) A heterogeneous computational and execution environment, supporting the execution (and 
deployment) of such “programs” and the relevant coordination of the 
signal/radio/flow/network processing primitives. 

Under this vision, operators will formally describe a desired network service as a composition of 

platform-agnostic, abstract elementary processing blocks. Vendors will be in charge of providing 

efficient software implementations of such elementary blocks, possibly casting them to underlying 

hardware accelerated facilities. The (cloud based) infrastructure will provide the brokerage services 

to match the design with the actual underlying hardware, to control and orchestrate the execution 

of the elementary blocks comprising the designed service, and to permit dynamic and elastic 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 23 of 77 

provisioning of supplementary dedicated computational, storage, and bandwidth resources to the 

processing components loaded with peak traffic. 

This document offers an initial assessment of the reusable components in different domains of the 

networking landscape including the Cloud RAN and Mobile Edge Computing. We proceed to 

decompose existing monolithic network functionality into reusable components, and report our key 

observations to date. Our goal is not to build a definitive list of reusable components that should be 

standardised, but rather to start understanding what are the useful functionalities that might be the 

candidates for standard reusable components. 

When discussing functional decomposition, we posit that two (not necessarily exclusive) directions 

can be taken. The first direction consists in identifying relatively “high-level” network functions (load 

balancers, firewalls, caches, analytics and monitoring functions, etc.) and “chain” such functions so 

as to deploy value-added network services. This direction is already quite established and somewhat 

mature in the networking community; for instance, it (implicitly) appears chosen by most of the 

current ongoing work in the NFV arena. At least in principle, the model for interconnecting such 

functions is also relatively established, and entails the formal description of a Direct Acyclic Graph 

(DAG), which connects the output of one or more function blocks to the input of other function 

blocks. This model has indeed found an extremely successful adoption not only in the NFV arena, but 

also in the configuration of software routers such as Click. In practice, several challenges still remain 

open for such an “high level” decomposition approach, and Superfluidity will address many key 

research topics in this field, including but not limiting to the necessary clear specification of the 

semantics of each involved block, not an easy task when blocks are complex and stateful. 

A second decomposition direction, which we descriptively refer to as “nano-decomposition”, is 

certainly less explored. Rather than employing relatively high-level functions, the idea is to define a 

set of extremely elementary and stateless actions and primitives as building blocks. In such model, 

we would not handle, say, a “load balancer function” but we would rather handle much more 

elementary forwarding and processing instructions (for instance, send packet from flow X to port Y, 

increment a counter, etc.). To make a concrete example, a load balancer would not anymore be 

treated as a basic function block, but might be in turns “programmed” using a suitable combination 

of such very elementary primitives. Obviously, such a more aggressive decomposition model would 

ease the problem of semantics (the involved stateless primitives are much more elementary, and 

more easily specified and agreed upon, than an high level network function), and would give much 

more flexibility to the programmer since it would entail fine-grained customization of network 

functions. Getting back to the example of a load balancer, we would be in principle able to “program” 

how the load balancer should take internal decisions on each specific flow. But at the same time, by 

shifting “intelligence” (e.g. flow state handling) from the implementation of the function block to the 

composition of “dumb”, stateless, primitives, this direction opens new research challenges, and 

specifically: 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 24 of 77 

1) how to formally describe the way such elementary functions should be combined together so 

as to model a stateful behaviour using stateless primitives and in a platform-agnostic manner 

(a DAG most likely not being appropriate, as there is no immediate and simple way to 

formalize flow/device states using a DAG, nor trigger state updates with a DAG), and  

2) how to design a concrete reference architecture that support such an approach (e.g., which 

internal architecture component should store and maintain states, how states are updated, 

which internal processing components should be envisioned, and so on). 

The process of building complex functionality depends on ability of all the involved parties’ to 

understand what each reusable component is supposed to do: what its allowed inputs are and how 

the outputs are obtained from the inputs. This is equivalent to the POSIX contract: what are the 

allowed ranges and formats for input parameters for system calls, and what is the expected output, 

error conditions and so forth. Another example is the contract between the CPU and the 

programmer: what each CPU-level instruction does, what the inputs and outputs are, etc.  

This API contract is fundamental to decouple implementation from utilisation, yet it is completely 

missing today in works that aim to virtualize network functions such as ETSI NFV. To understand why 

this is the case, consider a simple firewall reusable component. At first sight, its semantics are 

obvious: it will drop all traffic not wanted by the network operator. However, there are many 

subtleties:  

- What type of traffic does it accept beyond TCP and UDP? Does it filter traffic in tunnels, and 

if so which ones?  

- Does it allow stateful processing (e.g. allow outgoing traffic and related incoming traffic)?  

- Does it scan TCP options and drops unknown ones?  

- Does it parse payloads and remove viruses?  

All of these are plausible functionalities of the firewall, and they need to be expressed clearly so that 

users of the firewall component know exactly what it does, so that they compose it correctly with 

other reusable components. For instance, using tunnelling before the firewall may completely disable 

it if the firewall does not deal with that type of tunnel; and using a proxy after the firewall means that 

any filtering based on source and destination addresses may be rendered useless.  

A key contribution of Superfluidity is to recognise the importance of associating semantics to each 

reusable component in a way that allows to safely compose them into correctly functioning network-

wide applications. In particular, we identify two main approaches:  

- The use of pre and post-conditions in the API to ensure type safety when traffic crosses 

multiple reusable components. 

- The use of a modelling language to describe, at higher level, what each reusable component 

is doing. We can then use symbolic execution to understand how different components would 

when applied together to traffic. 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 25 of 77 

3.2 Superfluidity architecture  

Figure 6 shows the reference architecture as specified so far in Superfluidity and mainly in WP3. It is 

an end-to-end architecture including the wired part, the data centre and the core components, the 

wireless part composed of Cloud-RAN component. Mobile Edge Computing (MEC) is a new 

technology platform, which constitutes the last component considered in the project. These 

components are depicted in the top of Figure 6 where the bottom depicts the different types of data 

-centres involved (Cell-site, Local, Regional and Central).  

On the bottom, an Extended-NFVI represents an evolution of the ETSI NFVI concept, considering the 

additional heterogeneity of its nature (including hardware, hypervisors, and other execution 

environments), and the federation of DCs at different geographies and different types. This extended-

NFVI is common to all components, easing resource management and allowing an agile orchestration 

of services (superfluid). 

The Superfluidity project aims to design a unified and high performance distributed cloud platform 

technology for radio and network functions support as well as their migration. In our vision, C-RAN, 

MEC and information technology cloud technologies are integrated, by adopting a “divide and 

conquer” architectural paradigm in order to create the “glue” that can unify heterogeneous 

equipment and processing into a dynamically optimised, superfluid network.  

 

 

Figure 6: Overall Superfluidity Architecture.  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 26 of 77 

Hereafter, we briefly introduce C-RAN and MEC. 

 Cloud Radio Access Network: 

The main idea behind Cloud-RAN (CRAN) is to pool the Baseband Units (BBUs) from multiple 

base stations into centralised BBU pool for statistical multiplexing gain. A minimum of critical 

functions remain at the radio head (RRH, Remote Radio Head) whose main function is 

frequency shifting. With CRAN, it is then possible to design very tight coordination between 

cells and to maximise the radio capacity in bps/MHz/cell. Additionally, by leaving only the RRH 

on-site with a compact power supply, CRAN facilitates antenna site engineering and provides 

footprint reduction, as well as shorter time to install and lower rental costs. 

 Mobile Edge Computing: 

A key enabler for low latency scenarios of 5G networks is the concept of Mobile Edge 

Computing (MEC), whose main idea is to deploy computing capabilities near the end users. In 

particular, MEC allows supporting Radio Access Network (RAN) processing and third party 

applications. This technology brings a set of advantages: i) proximity to users, ii) ultra-low 

latency, iii) high bandwidth, iv) real-time access to radio network information and v) location 

awareness. As a result, operators can open the radio network edge to third party, allowing them 

to rapidly deploy innovative applications and services towards mobile subscribers, enterprises 

and other vertical segments. One of the goals of Superfluidity is to integrate MEC in the overall 

architecture such that the MEC platform can rely on the same physical resources of the 

Extended-NFVI. 

 

Toward a flexible 5G system, Superfluidity proposes to decompose these monolithic components into 

a Reusable Functional Block (RFB) to have a more fluid network. In a decomposed vision, instantiating 

a user service will be translated as a combination of the right RFBs each other’s. Programmable and 

portable network functions, independent from the underlying platform 

3.3 Key elements for achieving superfluid network programmability  

The three main elements of a programmable superfluid network are: 

 A set of basic/elementary (domain-specific) “Reusable Function Blocks” (RFBs), which are 

building blocks used to compose high-level functions and services. A RFB is a logical entity and 

it is the generalization of the concept of VNF (Virtual Network Function) and of VNFC (Virtual 

Network Function Component). RFBs can be composed to provide high-level functions and 

services but also to form other RFBs, as an RFB can be composed of other RFBs. A 

standardization of such set of RFBs (again, think to the OpenFlow analogy in terms of 

standardized actions) is all needed to guarantee that an application which suitably composes 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 27 of 77 

(see below) RFBs running on a given platform (e.g. a SW switch) can be migrated on a different 

platform (e.g. a bare metal HW switch) which supports the same set of RFBs. 

 An “RFB Composition Language” (RCL). Key to portability is the ability to describe a potentially 

complex and stateful network function as the combination of RFBs, so as to obtain a platform-

agnostic formal description of how such RFBs should be invoked, e.g. in which order, with 

which input data, and how such composition may possibly depend (and change!) based on 

higher level “states”. The actual specification of such language is all but trivial. Different 

languages may be more appropriate to different network contexts (e.g. for node-level 

programmable switch platforms opposed to network-wide NFV frameworks). And, to the best 

of our knowledge, as of now there is not a clear cut candidate standing out. Indeed, the typical 

approach, used in block-based node platforms (such as the Click router, or even in Software 

Defined Radio platforms) of formally modelling a composition of blocks as a Direct Acyclic 

Graph of such blocks may be insufficient, as it does not permit the programmer to introduce 

the notion of “application level states” and hence dynamically change (adapt) the 

composition to a mutated stateful context. Languages in the IFTTT family (If This Then That), 

recently introduced in completely different contexts (such as web services or Internet of 

Things scenarios) may find application also in the networking context given their resemblance 

with the matching functionality frequently used in forwarding tasks, although, again, stateful 

applications may require extensions.  

 A “RFB Composition Execution environment” (RCE). Having a set of blocks (i.e., the RFBs), and 

having a language which describes how they are composed does not conclude our job. In the 

proposed architectural framework, we ALSO need an entity or a framework in charge of 

“executing” such a composition. In most generality, we refer to such framework as “RFB 

Composition Execution environment” (RCE). The role of the RCE is to concretely instantiate a 

desired RCL script instance, control its execution, maintain and update the application-level 

states, trigger reconfigurations, and so on. As we want to address different levels of functional 

decomposition, we need to target an heterogeneous RCE, capable of controlling the 

execution of the RCL scripts over different platforms. The RCE can be seen as a generalization 

and enhancement of the NFVI (NFV Infrastructure). In the current model the infrastructure 

(NFVI) provides resources and an external orchestrator coordinates them (but it only 

instantiates VMs and connects them according to the graph that describes the network 

services). In the envisaged model, the enhanced infrastructure RCE provides the means to 

execute arbitrarily complex RCL scripts operating at different levels1. 

                                                      

 

 
1 To make an example, a Click router instance can be a VNF Component in a VNF. Its hosting environment is a hypervisor. 
The Click instance is described by means of a directed graph of elements (called configuration). In the current modelling 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 28 of 77 

 

Figure 7 summarizes our proposed conceptual architectural model for programmable and portable 

network functions, independent from the underlying platform. The figure clearly highlights that the 

model (with due technical differences) may recursively apply at different hierarchy levels in the 

network. Indeed, one can envision it at the typical NFV level, where RFBs are usually meant to be 

relatively large functions (e.g. a load balancer, a firewall, etc.) and the RCE is a network-wide 

orchestrator complemented by an SDN controller. In turns, a specific high level network function can 

be implemented over a programmable network node using in turns a decomposition into more 

elementary sub-blocks (e.g. OpenFlow-like elementary forwarding and processing actions). 

 

Figure 7: Conceptual model for Reusable Functional Blocks (RFBs) and 

RFB Composition Execution environments (RCEs) 

3.3.1 A possible RFB Composition Language: NEMO 

NEMO (Network Modelling) started as an effort to produce a human-readable representation of 

networks and network configurations in the IETF. The language proper is defined in [30]. Although 

there were some efforts in forming a Working Group at the IETF’94 in Prague, this effort has been 

abandoned. Currently, it is used in the IBNEMO project, an official project that is working on defining 

                                                      

 

 

approach it is not possible to further decompose the VNFC. In our vision, each element is a RFB that has the Click router 
as hosting environment and each RFB can in principle be further decomposed.  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 29 of 77 

an Intent Based northbound interface using the NEMO language in the OpenDaylight (ODL) Beryllium 

release. The NEMO language defines Models for Nodes and Links and then allows users to instantiate 

them. 

Figure 8 shows a service graph composed by three VNFs and four virtual links (VLs) as proposed in 

the Management and orchestration (MANO) framework [9]. NEMO can accommodate the VNFs in in 

NodeModel component and the VLs in LinkModel components.  

 

 

Figure 8: A service graph composed of virtual network functions and virtual links 

Since NEMO is recursive in nature (you can use NodeModels in NodeModel definitions), it could 

represent a simple, yet powerful way of representing RFBs and their relationships in the scope of 

Superfluidity. Therefore, the project is analysing the NEMO applicability to the Superfluity concepts, 

and identifying the gaps and needed extensions. 

CP1 CP2VL2

VL3

VL4VL1

VNF1

Cp11

VNF2 VNF3



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 30 of 77 

4 Flexible network design: from monolithic functions to a set of RFBs 

The first objective of Superfluidity project is to propose a flexible, an open and a programmable 5G 

data plane and relevant APIs for network functions’ convergence. To entail that, Superfluidity 

proposes to decompose the architecture into elementary radio and network processing primitives 

and events, to be exploited as basic modules of more comprehensive (and traditionally monolithic) 

network functions and services. The decomposition of monolithic functions into reusable functional 

blocks (RFB) permit a flexible placement at different physical elements in the network (Cell-site, Local, 

Regional and Central), as well as the incorporation of adequate virtualization techniques (Docker, 

UniKernel, Virtual Machine) considering real-time constraints. Successful accomplishment of such 

goal will permit unprecedented reusability of radio and network processing tasks, and 

simplified/fastened deployment time, at reduced cost (reduced component-specific personnel’s 

expertise needed). Vendor-neutrality and open interfaces will permit interoperability; more 

primitives that are elementary will reduce the entry barrier to third party stakeholders.  

In the following subsections, we summarize the main reusable functional blocks identified in different 

environments: CRAN, MEC, generic NFV environment, fixed networking equipment, packet 

processing state machines. 

 

We identified a methodology that can be used to facilitate the identification and description of 

Reusable Functional Blocks. It is based on the following template: 

 Description: It described the scope of the functional blocks, its main processes, and 

functionalities. 

 Interface/Affinity with other functional blocks: To implement any applicative service (e.g. video 

streaming session) or a network service (e.g. IMS), a set of functional blocks have to be 

chained. So it is necessary to know the neighbouring of each functional blocks called here 

affinity. For example, a MAC functional block could not be chained directly to the Mobility 

management functional block of the core. This affinity is essential to build the blueprint of a 

service or a network slice. 

 Synchronous or asynchronous characteristic: it indicates the characteristic of the time 

synchronization at the level of TTI.  

 Control or Data plane: In mobile network, we have two types of information data and control. 

Many control information are executed in order to monitor the state of the devices their 

respective mobility across cells... The data plane is related to the data consumed by the 

device. Therefore, it is important to identify the nature of the Functional block. 

 Hardware affinity: Each functional block will take advantage, if possible, from the 

virtualization, except some functional blocks will be physically implemented e.g. conversion 

A/D, Amplifier... However, due to real time requirements of some components in 

Superfluidity architecture like the RAN, some acceleration in the hardware platform is 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 31 of 77 

required. So for each functional block we specify its requirement on the need on the 

acceleration or not and what is the hardware platform/environment needed. 

 Domain: the 5G architecture will be composed by three main domains: Front-End cloud 

(composed of a set of CRPI GWs), EDGE cloud and central cloud as it is depicted in Figure 9: 

 

 

Figure 9: Different domain considered in Functional block placement:  

Central DC, Regional DC, Local DC and Front-end DC 

For each functional block, the decision for placement should follow the following rules:  

 Any functional block could theoretically instantiated/placed to any of the three domains: with 

virtualization, we are able to run a core functional block even in a front-end cloud. 

 Traditionally monolithic functions are likely to be split between several domains to bring the 

required flexibility. For example, the physical layer will be split between front-end cloud and 

edge cloud; the mobile core functions will be split between central cloud and EDGE cloud. The 

splitting allows a lean and independent upgrade of the different functional blocks.  

 Each FB will have real time constraints, which should be considered to determine the best 

place. For that, it is important to identify the needed timing for each FB: 

o In case of a hard real time function (ms), the FB need to stay within the vicinity of the 

antenna (Front-End cloud or EDGE cloud) 

o In case of soft real time functions (100s of ms - 1s), we can relax the location; EDGE 

Cloud or even Central cloud 

o In case of offline RFBs (e.g. Machine learning), the FB could be located in the Central 

cloud because of large storage capabilities.  

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 32 of 77 

4.1 Description of different C-RAN RFBs 

In this section, we describe the list of identified FBs required for a Cloud RAN. Figure 10 depicts the 

six layers used as reference in the Radio Access Network and the relationship across them. 

 

Figure 10: Monolithic version of the RAN and its different layers 

The scope of the six layers is described hereafter: 

 Physical Layer (Layer 1): The Physical Layer carries all information from the MAC transport 

channels over the air interface. It takes care of a set of processes related to the user’s link 

(adaptation, power control), cell search for synchronization matter and other measurements 

for the RRC layer. 

 Medium Access Layer (MAC): The MAC layer is responsible for: 

o Error correction through HARQ,  

o Scheduling information reporting,  

o Multiplexing/ de-multiplexing of MAC SDUs from one or different logical channels 

onto transport blocks (TB) to be delivered to the physical layer on transport channels,  

o Priority handling between UEs,  

 Radio Link Control (RLC): The RLC operates in 3 modes of operation:  

o Transparent Mode (TM),  

o Unacknowledged Mode (UM), 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 33 of 77 

o  Acknowledged Mode (AM). 

RLC Layer is responsible for error correction through ARQ (Only for AM data transfer), 

concatenation, segmentation and reassembly of RLC SDUs (Only for UM and AM data 

transfer). 

RLC is also responsible for re-segmentation of RLC data PDUs (Only for AM data transfer), 

reordering of RLC data PDUs (Only for UM and AM data transfer), duplicate detection (Only 

for UM and AM data transfer), RLC SDU discard (Only for UM and AM data transfer), RLC re-

establishment, and protocol error detection (Only for AM data transfer). 

 Radio Resource Control (RRC): The main services and functions of the RRC layer include 

broadcast of system Information related to the non-access stratum (NAS), broadcast of 

System Information related to the access stratum (AS), Paging, establishment, maintenance 

and release of an RRC connection between the UE and E-UTRAN, Security functions including 

key management, establishment, configuration, maintenance and release of point to point 

Radio Bearers. 

 Packet Data Convergence Control (PDCP): PDCP Layer is responsible for Header compression 

and decompression of IP data, Transfer of data (user plane or control plane), Maintenance of 

PDCP Sequence Numbers (SNs), In-sequence delivery of upper layer PDUs at re-establishment 

of lower layers, Duplicate elimination of lower layer SDUs at re-establishment of lower layers 

for radio bearers mapped on RLC AM, Ciphering and deciphering of user plane data and 

control plane data, Integrity protection and integrity verification of control plane data, Timer 

based discard, duplicate discarding,  

 Non Access Stratum (NAS) Protocols: The non-access stratum (NAS) protocols form the highest 

stratum of the control plane between the user equipment (UE) and MME. NAS protocols 

support the mobility of the UE and the session management procedures to establish and 

maintain IP connectivity between the UE and a PDN GW. 

 

By analysing the different processes supported in each layer which could be classified to control and 

data plane, some of them requires a synchronization to low layer time (TTI), others could be executed 

in asynchronous way and some processes are related to a dedicated user and others are related to a 

cell. So, based on that classification, we propose the following different functional blocks (see Table 

1). 

 

 

 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 34 of 77 

Table 1: Description of different C-RAN Functional Blocks  

Functional 

Block (FB) 

FB Description Interface/Affinity 

with others FBs 

 

Sync/Async Control/Data 

Plane 

HW affinity Domain 

PHY RRH A/D; Signal generation 

and adaptation 

It exchanges 

information with 

PHY cell functional 

Block ( I/Q samples 

streaming) 

sync C and U plane Physical 

Network 

Function 

(not 

virtualized) 

Hardware 

HW specific: 

FPGA, DSP 

Antenna 

site 

PHY Cell It includes all the 

processes executed for 

one cell, e.g. FFT/iFFT, 

Modulation, Cyclic 

prefix  

It exchanges 

information with 

PHY UE and PHY 

RRH FBs (FFT (I/Q) 

streaming ) 

Sync C and U plane It requires 

some 

acceleration 

capability 

FPGA, SoC, 

DSP, ARM 

Antenna 

site or 

Front-

End 

Cloud 

PHY User (UE) It covers all the physical 

processes executed per 

UE, e.g. FEC 

(Convolution coding 

(control) Turbo coding 

or Polar coding), 

HARQ,… 

It exchanges 

information with 

PHY Cell, MAC UE 

MAC Cell (Bursty 

packet), and RRC 

Sync /Async C and U Plane It requires 

powerful 

processors 

ARM, x86 

and some 

acceleration 

capability 

FPGA, SoC 

Front-

End 

Cloud or 

EDGE 

cloud 

MAC 

Cell/Schedulin

g Real Time 

It covers all the 

processes related to 

the scheduling and the 

different optimization 

features like COMP, 

ICIC… 

It exchanges 

information with 

PHY UE, MAC UE, 

RLC, RRC  

Sync/Async C and U Plane It requires 

powerful 

processors 

ARM, x86  

Front-

End 

Cloud or 

EDGE 

cloud 

MAC User (UE) It covers processes 

related to UE like UE 

Power control; 

Padding; Multiplexing 

of TBs; 

It exchanges 

information with, 

PHY UE, RRC, RLC 

(AM/TM/UM) and 

MAC Cell 

Sync/Async C and U Plane It requires 

powerful 

processors 

ARM, x86 

EDGE 

cloud 

RLC It includes processes 

related to 

segmentation/concate

nation of PDCP PDUs 

based on information 

It exchanges 

information with 

PDCP, MAC and 

RRC. It should be co-

located with MAC 

Async C Plane (RLC 

TM), U/C plane 

for RLC 

AM/UM 

Executed on 

generic HW 

(x86) 

EDGE 

cloud 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 35 of 77 

exchange with MAC 

and PDCP. Several 

modes are supported: 

Transparent, 

Acknowledged and 

Unacknowledged. Each 

case could be a 

separate FB 

Cell/UE FBs since 

the connection is 

delay sensitive 

PDCP IT covers functionalities 

like transfer of 

user/control plane 

data, header 

compression, ciphering, 

(un) acknowledged 

data transfer service, in 

sequence delivery, 

duplicate discarding ...  

It exchanges 

information with 

RRC and RLC 

Async U/C plane Executed on 

generic HW 

(x86) 

EDGE 

cloud or 

Central 

cloud 

RRC Cell It covers functionalities 

to convey messages to 

UE in RRC_idle/ 

RRC_connected 

associated with 

broadcast system 

information 

It connects to all 

FBs: PHY RRH, PHY 

Cell, MAC Cell, RLC, 

PDCP and NAS 

Async C plane Executed on 

generic HW 

(x86) 

EDGE 

cloud or 

Central 

cloud 

RRC User (UE) It covers functionalities 

handling UE control and 

management: mobility 

functions (Handover), 

UE measurements 

reporting, QoS 

management, paging 

It connects and 
interacts with MAC 
UE, MAC Cell, RLC, 
PDCP and NAS. 

 

Async C plane Executed on 

generic HW 

(x86) 

EDGE 

cloud or 

Central 

cloud 

NAS User (UE) It refers to the user 

procedures related to 

signalling between the 

UE and MME. 

 

It connects and 
interacts with NAS 
Core, RRC UE, RRC 
Cell. 

 

Async C plane Executed on 

generic HW 

(x86) 

EDGE 

cloud or 

Central 

cloud 

NAS Core It refers to network 

management functions 

(MMEs load balancing, 

MME overload control, 

GTP-C signalling load 

control…) 

It interacts with NAS 

UE 

Async C plane Executed on 

generic HW 

(x86) 

EDGE 

cloud or 

Central 

cloud 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 36 of 77 

Remark: Some of the identified FBs in C-RAN could be decomposed in a finer granularity like PDCP 

functional block, which could be decomposed into two FBs: the first one focused on user plane 

grouping functionalities related to header compression and data transfer procedures that are specific 

to user Plane. The second one could group functionalities and procedures applied for both user plane 

and control plane like sequence number maintenance, (De)-Ciphering, Integrity Protection and 

Verification. 

  

As depicted in Figure 11, we move from monolithic RAN functions to a functional blocks graph 

highlighting the affinity of the different identified FBs. 

 

 

Figure 11: Affinity graph between different C-RAN functional blocks. 

4.2 Description of MEC RFBs 

4.2.1 MEC Overview 

The Mobile Edge Computing (MEC) technology is currently under standardization by the ETSI in the 

MEC Industry Standard Group (ISG). MEC offers application developers and content providers a cloud 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 37 of 77 

computing hosting environment to deploy and run applications at the edge of a mobile network. The 

MEC environment is characterized by: 

• User proximity 

• Ultra-low Latency 

• High bandwidth 

MEC provides a set of services to be consumed by applications running on the MEC environment, 

such as radio signal conditions, network statistics, or end-user locations, among others. These 

services, together with the applications’ privileged deployment location (at the edge), create a 

potential to enable brand new use cases, such as advanced IoT solutions (e.g. video analysis), 

augmented reality, or video streaming, among others, improving significantly the user experience. 

MEC can take advantage of existing NFV deployments, due to the complementary use of cloud 

infrastructures, virtualization layers and management and orchestration components. Operators are 

increasingly looking at virtualization of their mobile networks and, in particular C-RAN, which is 

deployed at the edge. The synergy between the deployment of network functions and applications 

can further support the MEC concept by leveraging the deployment of applications at the edge. 

The MEC architecture includes the MEC Host as the key point in the edge. The MEC Host allows 3rd 

party applications to get deployed on top of a cloud environment, but also allows applications to 

register and get authenticated/authorized to access to multiple services, available via APIs. 

Management functions are available to manage both, the applications lifecycle (LCM) and services. 

In a centralized point, there is the orchestration layer, responsible to make decisions regarding the 

instantiation, termination and movement of applications along the different edges. 

The Figure 12 depicts the MEC architecture as described by the ETSI MEC [32]. It reflects the influence 

from the ETSI NFV architecture. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 38 of 77 

 

Figure 12: ETSI MEC architecture.  

MEC is an important technology for 5G, as it complements NFV/SDN technologies by extending the 

DC to the edge and to applications (not only network functions). The MEC paradigm plays a pivotal 

role on 5G since will reduce significantly the latency for the new era of applications. 

4.2.2 MEC RFBs 

The MEC system comprises two levels of operation: the Host level and the System level. The Host 

level is located on mobile network edges and includes components like Cloud Infrastructure, Services, 

Apps and Managers. The System level is located at a centralized point and has a holistic view about 

the whole system. It includes essentially the MEC Orchestrator. 

A full MEC system comprises a single MEC system level and multiple MEC Host levels (Hosts), each 

located in a particular edge location and associated with a certain mobile network coverage. Figure 

13 provides a pictorial representation of the MEC building blocks.  

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 39 of 77 

 

Figure 13: MEC building blocks 

 

The tables below describe the main MEC components, as well as the smaller building blocks of the 

overall MEC solution.  

Table 2: MEC main building blocks 

MEC Description 

1. MEC TOF The MEC TOF (Traffic Offloading Function) is located at the user data plane (S1-

U), and is responsible to inspect and forward the subscribers' traffic towards the 

Applications and vice-versa. 

2. MEC Host A MEC Host comprises an NFVI to support the dynamic deployment of 

Applications, and a platform to allow those Applications to consume (via APIs) 

Services. Applications may also provide services to other Applications. 

3. MEC MANO The MEC MANO (Management and Orchestration) is responsible for managing 

the MEC Host. It can be divided into two main management components: App 

Managers (for managing the lifecycle of the Apps) and Platform Managers (for 

managing the platform, e.g. the Application access to Services). 

These main building blocks can be further decomposed into smaller blocks, which may be reused 

(RFB). These are identified in the following tables. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 40 of 77 

1. MEC TOF Description 

1.1 GTP-U Decap Decapsulates IP packets from GTP-U tunnels  

1.2 GTP-U Encap Encapsulates IP packets within GTP-U tunnels 

1.3 Traffic Filter Filters GTP-U and user IP traffic 

1.4 Router Routes GTP-U and user IP traffic 

1.5 S/DNAT Source/Destination Network Address Translation (NAT) 

 

2. MEC Host Description 

2.1 Service (N) Services to be consumed by Applications (e.g. TRF, LOC, RNIS, 

Monitoring, etc.). There can be multiple Service (N). 

2.2 Service API (N) Provide Service APIs for Apps access. There can be multiple 

Services API (N) for a given service. 

2.3 Service Bus Messaging Bus to make Service APIs available for Apps  

2.4 MEC Apps (N) MEC Applications running on the MEC Host environment. There 

can be multiple Apps (N). 

 

Besides the RFB shown above, the MEC MANO is also made of blocks, but very unlikely reusable. 

3. MEC MANO Description 

3.1 App Manager (N) Manages the entire MEC Apps' lifecycle. There may be 1 

App Manager per App (N). 

3.2 Platform Manager Manages the Platform, which includes the Service Bus, the 

Services and respective APIs. 

3.3 MEC Orchestrator Orchestrates the Apps deployment among the entire MEC 

System (composed by multiples edges). 

3.4 MEC Orchestrator Repository Stores Orchestration policies and other relevant system 

information. 

 

4.3 Description of different NFV RFBs 

NFV platforms, similar to IT public clouds, are expected to provide various tools to be used by the 

VNF providers. Those tools are expected to be provided as a service (according to the so called XaaS 

approach). Load balancer, analytics and state repository are three examples of services to be 

provided by the NFV platform. In this section, we further decompose those services into RFBs to 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 41 of 77 

enable faster instantiation, scaling, and migration of those services based on the traffic and usage 

needs. Then we focus on the Service Function Chaining functionality and provide its decomposition 

into logical components. 

4.3.1 Load balancer as a functional block 

This is a basic example for a functional block – it gets a stream of packets and needs to forward them 

(in a load balanced way) to a set of servers (services) that do the work on the stream of packets. 

While this is a very simple example, there are still interesting issues related to this example, which 

requires a further study. 

 The load balancer could be realised as a single (physical) component that can be elastic (grow 

as needed) or could be a single component (we are referring to a load balancer as a functional 

block) that cannot scale. 

 The load-balancer functional block interfaces should be defined. Specifically, we should 

further investigate how to define the incoming stream as well as how to define the number 

of server and their locations. 

 Does it have a state (for example sticky load balancing all packets from the same flow go to 

the same server)? if so, what is a state and how this state is shared if at all? 

 

Per ETSI GS NFV-SWA 001 V1.1.1 (2014-12) [3], among the different types of load balancing, typically 

4 models are identified: 

 

1) VNF-internal Load Balancer: 

 

Figure 14: VNF-internal Load Balancer 

 One VNF instance seen as one logical NF by a Peer NF. The VNF has at least one VNFC that 

can be replicated and an internal load balancer (which is also a VNFC) that scatters/collects 

packets/flows/sessions to/from the different VNFC instances. If the VNFCs are stateful, then 

LB shall direct flows to the VNFC instance that has the appropriate configured/learned state. 

 Examples: VNF Provider specific implementation of a scalable NF. 

 Single VNF Provider solution (per definition of VNFCs). 

 The VNFM instantiates the LB, which may itself be a VNFC. 

 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 42 of 77 

 

 

2) VNF-external Load Balancer (analogous to 1:1 (drop-in) replacement of existing NFs): 

 

Figure 15: VNF-external Load Balancer 

 VNF Instances seen as 1 logical NF by a Peer NF. A load balancer external to the VNF (which 

may be a VNF itself) scatters/collects packets/flows/sessions to/from the different VNF 

instances (not the VNFCs!). 

 Examples: Application Delivery Controller (ADC) type LB or Direct Server Return (DSR) type LB 

in front of web-server. 

 VNFs may be of different VNF Providers, e.g. to increase resilience. 

 If the VNF supports this model, the NFVO may instantiate it multiple times and add a LB (V)NF 

in front of this pool of VNF instances. 

 If the VNFs contain state, then the LB VNF shall direct flows to the VNF instance that has the 

appropriate configured/learned state. 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 43 of 77 

3) End-to-End Load Balancing: 

 

Figure 16: End-to-End Load Balancer 

 N VNF instances seen as N logical NFs by a Peer NF. The Peer NF itself contains load balancing 

functionality to balance between the different logical interfaces, see figure 12. For example: 

o In 3GPP, S1-flex interface between eNBs (= Peer NF) and MME, S-GW. 

o Client-side (DNS-based) load balancing between web servers. 

 VNFs may be of different VNF Providers, e.g. to increase resilience. 

 If the VNFs contain state, then the LB NF shall direct flows to the VNF instance that has the 

appropriate configured/learned state. 

 The NFVO may instantiate multiple VNFs, but does not instantiate a LB. 

 

4) Infrastructure Network Load Balancer 

 

Figure 17: Infrastructure Network Load Balancer 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 44 of 77 

 VNF instances seen as one logical NF by a Peer NF. A load balancer (may be in a hypervisor 

vSwitch, an OS vSwitch, or a physical box) provided by the NFV Infrastructure that 

scatters/collects packets/flows/sessions to/from the different VNF instances. Examples: NFV 

Infrastructure providing load balancing for several Firewall instances. 

 VNFs may be of different VNF Providers, e.g. to increase resilience. 

 If the VNF and the NFVI supports this model, the NFVO may instantiate it multiple times and 

configure a load balancer in the NFV Infrastructure that connects to this pool of VNF instances 

to perform load balancing. 

 

Something important to note is that load balancers need to be reconfigured upon VNF/VNFC 

instantiation and termination, occasionally under MANO control. In addition, load balancers 

occasionally support health-checking functions that allow them to automatically stop sending packets 

to servers that become unresponsive, and resume sending packets once these servers become 

healthy again. 

 

Another important consideration of in-network services is the so-called firewall load balancing (Figure 

18): unlike server load balancing, where the clustering can be realized using one load balancer, 

network service clustering requires two (logical) load balancers, one on each side of the cluster. In 

addition, these two load balancers need to ensure that the packets belonging to a TCP/UDP 

connection go through the same network service device. Many network security services are stateful 

in nature. They can do better security analysis of the traffic only if all the packets belonging to a 

connection are seen. 

 

Figure 18: Firewall Load Balancing 

 

4.3.2 Analytics as a functional block 

The analytics functional block is a more complex block, where the input here can be a stream of data 

items and the output can be an alert when an abnormal characteristic in the data is detected. This 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 45 of 77 

can be as simple as a threshold based alert notification, or could utilise a very complex machine-

learning algorithm that takes history into account.  

Snap telemetry system [29] decomposes the Analytics into three main components, namely, 

collectors, processors, and publishers (as depicted in Figure 19). 

 Collectors - Collectors consume telemetry data.  

 Processors - Extensible workflow injection. Convert telemetry into another data model for 

consumption by existing consumption systems. 

 Publishers - Store telemetry into a wide array of systems.  

 

Figure 19: snap decomposition 

In Superfluidity we further differentiate the analytics as a service into edge and core blocks to enable 

real-time analytics at the edge networks that responds in a short timing, as well as offline analytics at 

the core network. As for the offline analytics, we further decompose it into smaller components, 

namely, root cause analysis, alarm correlation and policy/rule engine. Figure 20 depicts the proposed 

decomposition. Although those RFBs are differentiated by the location they are deployed in, we are 

not limiting the allocation of those blocks, and in fact, RFBs could be shifted from the edge cloud to 

the central data centre and vs. versa, based on the real time requirements form the analytics engine. 

That is, for example, if latencies permit, all data collectors can be located at the central data centre. 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 46 of 77 

 

Figure 20: decomposition of analytics block 

 

 Local Collectors 

 The collectors RFBs collect the information from the various sources, such as infrastructure 

information (e.g., from Nagios or ceilometer), applications data, user information, etc. The collector 

RFB should typically be located near the information source to avoid both delays as well as transfer 

of high traffic loads to the core network. 

 Real time analytics/ event processor 

This block aims at analysing real time information and provide alerts based on immediate information 

collected by the telemetry system. Decisions and inputs from the event processor are transferred to 

the event publisher, either to trigger operation or to transfer processed information for offline 

analytics. 

 Event publisher 

This event processor can trigger alarm or any other operation as well as provide 

aggregated/processed information and alerts to the central aggregator.  

 Aggregators 

The aggregator may collect information from the local publishers as well as from additional data 

sources. The information is stored in a repository for offline analytics. The aggregators could be 

located at the aggregation node or at the core network. 

 Alarm correlation 

Receives alerts from the aggregators correlates the alarms and provide the minimal sets of alarms. 

The alarm correlation RFB would probably be located at the central data centre. If all information is 

local, then the data base as well as the alarm correlation would be located at the edge network. 

 Root cause analysis 

Identifies the root cause of a failure. Typically, the root cause analysis is based on offline analytics 

and rely on machine learning techniques, 

 Rule engine 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 47 of 77 

Data analytics and predictions would be performed by this RFB. 

 Alarm publisher 

Based on information received by the offline analytics (e.g., alarm correlation RFB), the alarm 

publisher produces alarm and populate it through the application publishing mechanism (e.g., the 

support system web page). 

4.3.3 State repository as a functional block 

An important aspect of moving to the cloud is the ability to scale in a timely manner. To that end, it 

is clear that VNFs should be redesigned and decomposed in (i) stateless workers, and (ii) state 

repository distributed across the infrastructure. Such an architecture allows fast instantiation of new 

workers and synchronisation of their role with the state that is available and synchronised to multiple 

locations. 

In the following, we focus on the cloud RAN use case as an example for the usage of the State 

repository functional block. 

The state for the RAN MAC is composed of a control state keeping the channel information for the 

users and the priorities of the packets (to meet with the required QoS), as well a data state which is 

composed of the actual pending packets for transmission. Then the MAC scheduler works on the 

control data to derive the transmission order in the next frame. The scheduler output is fed to the 

frame builder that takes the actual packet and constructs the frame or the streams to be transmitted 

from each antenna. 

Accordingly, for the wireless MAC scheduler we could identify two state types, namely, control state, 

and data state. 

 Control state 

o Channel states for the different users to the different antennas/cells.  

o Packet priorities (e.g., deadline, MIR and CIR, PF metric, etc.) 

 Data state 

o The data queues for each user (organised according to the traffic QoS) 

Now, instead of handling this state information by the VNF (i.e., the wireless MAC function), it would 

be more efficient to utilise a more generic state repository functional block.  

Here, the state functional block has various requirements such as: 

 Storage volume: the control state consumes small volume, but the data packets may require 

high volumes. 

 Storage traffic: Both the control and data states updates frequently in about every 1msec 

(read and write) 

 Distribution: MAC process may shift between access nodes (e.g., due to handovers) or 

between the access and the aggregation node (when transmitting data in a multi-cell MIMO 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 48 of 77 

techniques). Accordingly, the state should be synchronised and available at the surrounding 

access node and the nearest aggregation node. 

4.3.4 Service Function Chaining 

Service function chaining enables the creation of composite (network) services that consist of an 

ordered set of service functions (SFs) that must be applied to packets and/or frames and/or flows 

selected because of classification. 

 

Figure 21: Service Function Chaining (SFC) architecture 

 

Defined by IETF, the SFC Architecture is described in [33]. The SFC Architecture is built out of 

architectural building blocks that are logical components. These logical components are: 

 SFC-aware and SFC-unaware Service Functions 

 SFC Classifier 

 SF Forwarder 

 SFC Proxy 

 

Components are interconnected using the SFC encapsulation. The SFC encapsulation enables service 

function path selection. It also enables the sharing of metadata/context information when such 

metadata exchange is required. 

4.3.4.1 Service Function 

The concept of a Service Function (SF) evolves; rather than being viewed as a bump in the wire, an 

SF becomes a resource within a specified administrative domain that is available for consumption as 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 49 of 77 

part of a composite service. SFs send/receive data to/from one or more SFFs. SFC-aware SFs receive 

this traffic with the SFC encapsulation. 

While the SFC architecture defines the concept and specifies some characteristics of a new 

encapsulation – the SFC encapsulation – and several logical components for the construction of SFCs, 

existing SF implementations may not have the capabilities to act upon or fully integrate with the new 

SFC encapsulation. In order to provide a mechanism for such SFs to participate in the architecture, 

an SFC Proxy function is defined. The SFC Proxy acts as a gateway between the SFC encapsulation and 

SFC-unaware SFs. 

4.3.4.2 Service Function Forwarder 

The Service Function Forwarder (SFF) is responsible for forwarding packets and/or frames received 

from the network to one or more SFs associated with given SFF using information conveyed in the 

SFC encapsulation. Traffic from SFs eventually returns to the same SFF, which is responsible for 

injecting traffic back onto the network. Some SFs, such as firewalls, could also consume a packet. 

 

The collection of SFFs and associated SFs creates a service-plane overlay in which SFC-aware SFs, as 

well as SFC-unaware SFs reside. Within this service plane, the SFF component connects different SFs 

that form a Service Function Path (SFP). 

The SFF component has the following primary responsibilities: 

1. SFP forwarding 

2. Terminating SFPs 

3. Maintaining flow state 

4.3.4.3 Network Overlay and Network Components 

Underneath the SFF there are components responsible for performing the transport (overlay) 

forwarding. They do not consult the SFC encapsulation or inner payload for performing this. They 

only consult the outer-transport encapsulation for the transport (overlay) forwarding. 

4.3.4.4 SFC Proxy 

In order for the SFC architecture to support SFC-unaware SFs (e.g., legacy service functions), a logical 

SFC Proxy function may be used. This function sits between an SFF and one or more SFs to which the 

SFF is directing traffic. 

The proxy accepts packets from the SFF on behalf of the SF. It removes the SFC encapsulation, and 

then uses a local attachment circuit to deliver packets to SFC-unaware SFs. It also receives packets 

back from the SF, reapplies the SFC encapsulation, and returns them to the SFF for processing along 

the service function path. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 50 of 77 

Thus, from the point of view of the SFF, the SFC proxy appears to be part of an SFC-aware SF. 

4.3.4.5 SFC Classifier 

Traffic from the network that satisfies classification criteria is directed into an SFP and forwarded to 

the requisite service function(s). Classification is handled by a service classification function. 

The granularity of the initial classification is determined by the capabilities of the classifier and the 

requirements of the SFC policy. 

For instance, classification might be relatively coarse: All packets from this port are subject to SFC 

policy X and directed into SFP A, or quite granular: All packets matching this 5-tuple are subject to 

SFC policy Y and directed into SFP B. 

As a consequence of the classification decision, the appropriate SFC encapsulation is imposed on the 

data, and a suitable SFP is selected or created. Classification results in attaching the traffic to a specific 

SFP. 

4.4 Decomposition of a Cisco Security Appliance (ASA 5510) 

4.4.1 Overview 

An important step in the transition to 5G is the task of choosing the right building blocks that can be 

used to easily create new network functionality. Granularity matters: larger building blocks are easier 

to understand but harder to use to enable other functionality; smaller building blocks may be 

desirable but is it feasible to decompose complex functionality into such small building blocks? The 

Click modular router proposes a suite of small elements, each with clearly defined semantics, as a 

way to enable the creation of custom packet forwarding functionality. A major benefit for Click 

elements is that they capture basic network functionality which we can easily model using of symbolic 

execution-friendly language called SEFL and described in the upcoming architecture deliverable 

D3.1). Thus, any Click configuration (a directed graph of Click elements through which packets flow) 

can be automatically translated in SEFL and verified. Network administrators can use Symnet – our 

symbolic execution tool for SEFL - to trace-down bugs, check security policies, etc. Second, Click is 

directly executable. 

 

Cisco’s Adaptive Security Appliance ASA5510 (short ASA), is a hardware appliance which performs 

deep-packet inspection, along with basic traffic filtering and NAT. An ASA 5510 is the core-device in 

University Politehnica of Bucharest Computer Science Department network. In this section we 

describe how we have expressed the functionality of the ASA box as a Click modular router 

configuration. Our “ASA-in-Click” can be used to replace the physical ASA for NFV.  

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 51 of 77 

 

4.4.2 A Click model for ASA 

The ASA model contains over 200 Click elements. It performs VLAN switching, routing, traffic filtering, 

static and dynamic NAT, TCP options filtering. Additionally, our model implements Cisco’s security 

levels: each interface is assigned a numeric value – its security level. Traffic from interfaces with lower 

security-levels cannot reach those with higher security levels. The following table illustrates the Click 

element types used for each ASA operation. 

ASA operation Click Element Types 

Ethernet and VLAN switching EtherEncap 

EtherDecap 

VLANEncap 

VLANDecap 

HostEtherFilter 

Security Levels Paint 

PaintSwitch 

Traffic filtering (ACLs) IPClassifier 

Static NAT (IP source/destination rewriting) IPClassifier 

IPRewriter 

Dynamic NAT IPClassifier 

IPRewriter 

TCP options filtering TCPOptions (written by us) 

 

To generate an ASA model, we have developed a tool which parses a subset of ASAs’ configuration 

file and builds its corresponding Click model. We have validated our generation tool using “black-

box” testing. We have sent TCP, UDP, raw-IP and ICMP packets through a real ASA and its model, and 

compared the results. We have also used Symnet in order to verify the model. Symnet proved 

instrumental in finding subtle modelling bugs such as incorrect handling of (specific) return-traffic 

subject to NAT. 

 

In Figure 22, a simplified traffic pipeline of our ASA model is shown. The following code snippet 

illustrates Ethernet and VLAN operations for that pipeline: 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 52 of 77 

in_PROF_CS -> host_ether_PROF_CS :: HostEtherFilter(00:23:eb:bb:f1:4d) 

  -> in_vlan_PROF_CS :: VLANDecap() 

           -> ether_decap_PROF_CS :: EtherDecap() 

  -> pn_PROF_CS :: Paint(80); 

Packets only destined for the current interface are accepted. VLAN tags are stripped, as well as the 

Ethernet.  

In the second phase, we use Click annotations (Paint & PaintSwitch) to implement Cisco’s forwarding 

security level rule. In the above snippet, 80 is the security level assigned to the “PROF_CS” interface. 

Packets that are not dropped by the “Security Level” elements move on to the next phase.  

 

The ASA handles TCP and non-TCP traffic differently. We use an IPClassifier element to make this 

distinction on packets. Non-TCP traffic may or may not be subject to IP source/destination rewriting 

(without storing mappings), which is handled by “Static NAT”, illustrated schematically below: 

pn_PROF_CS -> … //non-tcp traffic 

      -> static_cl_PROF_CS :: IPClassifier(src host 172.16.5.222,-)[0] 

      -> static_rw_PROF_CS :: IPRewriter(pattern 141.85.225.152 --- 0 1) 

  -> next_stage 

static_cl_PROF_CS[1] -> next_stage 

 

TCP traffic for which NAT mappings exist (shown in green in Figure 22) is directly moved to the routing 

phase and subsequently forwarded to the destination. 

The entire NAT operation is handled by a single IPRewriter element, illustrated schematically below: 

 

 

global_nat :: IPRewriter(keep 0 1, 

                         [pattern pi nati nat_repli,] 

                         keep no_nati no_nat_repli,   

                         …); 

In the above snippet, i ranges over all ASA interfaces. If traffic on an interface may be subject to NAT, 

a “rewrite pattern” pi is created. nati and nat_repli identify the output ports for direct (natted) resp. 

return traffic on interface i. For each interface we also define a “keep” pattern, which stores a 

mapping without modifying traffic. As before, no_nati and no_nat_repli are the direct resp. return 

traffic on interface i. We use “keep” in order to identify return traffic for active TCP connections and 

forward them without passing through the filtering stage. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 53 of 77 

Any type of new traffic (IP traffic from the “Static Nat” stage, and TCP traffic egressing ports nati and 

no_nati, shown in orange in the figure) is subject to filtering (including TCP-options filtering which is 

realized by a custom-written “TCPOptions” element), and may be dropped, depending on the 

destinations’ security-level. A snippet is shown below: 

cl_incoming :: IPClassifier(  

 src host 37.128.224.6, 

 dst net 141.85.228.0/26, 

 dst host 141.85.225.151 and dst tcp port 21,…,-) 

       -> opts :: TCPOptions() 

       -> PaintSwitch (…) 

The element “cl_incoming” models ASA’s access control list “incoming”. The “TCPOptions” Click 

element has been custom-written. 

 

The routing phase is implemented as “destination-based forwarding” using an IPClassifier element. 

The appropriate VLAN and Ethernet encapsulations are finally applied. 

 

We note that the routing stages for NAT and non-NAT traffic are different, because security level 

filtering does not apply to the former. We opted for this pipeline structure in order to avoid using 

different types of Click annotations (in addition to those used by the Security Level box), and to make 

debugging of the ASA model easier.  

 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 54 of 77 

 

Figure 22: A simplified ASA pipeline 

 

4.5 Nano-decomposition with state machines 

In section 2.1.3, we have discussed how the networking community is focusing on the OpenFlow 

abstraction to provide decomposition of switching functions. In what follows, we propose an 

approach which not only shows that nano-decomposition appears technically viable without getting 

rid of the crucial platform-independence property, but also that it may be somewhat cast as an 

OpenFlow extension. The scope of this deliverable is to provide a functional decomposition into 

Reusable Functional Blocks, while the architectural aspects should be demanded to the Work Package 

(WP) 3. On the other hand, we need to introduce some architectural aspects hereafter, taking into 

account the novelty of the proposed approach. 

Our proposal will specifically entail the definition of a platform agnostic programming abstraction 

based on eXtended Finite State Machines - XFSMs (see section 4.5.1), which is a much more general 

and expressive abstraction than the OpenFlow match/action one, and which permits to describe 

Ether	&	
VLAN	decap	

Security	Level	
(in)	

IPRewriter	(NAT)	Sta c	NAT	

TCP	Traffic

	

Ether	&	VLAN	encap	

Traffic

	

wi th	
NAT	
mapping	

Rou ng	
New	traffic	

Filter	rules	

Rou ng	

IP	raw	and	other	
non	TCP	traffic	

Security	Level	
(out)	

Possibly	
NATed	traffic

	



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 55 of 77 

stateful network processing tasks, opposed to the stateless nature of the OpenFlow match/action 

abstraction. Based on this abstraction, a set of identified Reusable Functional Blocks for XFSM will be 

described in section 4.4.2. 

4.5.1 Abstracting Flow Processing with eXtended Finite State Machines 

To the best of our knowledge, the usage of XFSMs to model in an abstract manner network functions 

has been pioneered in the field of Wireless Medium Access Control protocols by the Flavia EU project 

[22]. The relevant first publication [24] indeed shows how to formally describe and “execute” an 

802.11 MAC (and any variation thereof, including TDMA schemes) using an XFSM-based bytecode 

machine language running on an XFSM execution engine, called Wireless MAC Processor, directly 

implemented in the Wireless Network Interface Card. A network switch is however a completely 

different device: it must handle possibly millions of flows in parallel and with state transitions in the 

nanoseconds packet-level timescale (opposed to a “single” wireless channel access operation, where 

performance in terms of state transitions and maintenance are in the order of the microsecond 

timescale). 

Nevertheless, viability of finite state machines for stateful forwarding the wired/switching domain 

was proposed and proven viable in [25], which is our starting point for the approach presented next. 

This work proposed OpenState, a generalization of OpenFlow which (perhaps surprisingly) requires 

very marginal architecture modifications in existing network switches but can “execute” a state 

machine to dynamically evolve OpenFlow forwarding rules on the basis of packet-level events. 

OpenState was however limited to support an extremely simple form of state machines, called Mealy 

Machines. Specifically, OpenState was conceived starting from the observation that the OpenFlow 

match/action abstraction can be reinterpreted in formal terms as a “map” T:IO, where I={i1, …, iM} 

is a finite set of Input Symbols, namely all the possible matches which are technically supported by an 

OpenFlow specification (being irrelevant, at least for this discussion, to know how such Input Symbols' 

set I is established, and that each input symbol is a Cartesian combination of all possible header field 

matches), and O={o1, …, oK} is a finite set of Output Symbols, i.e. all the possible actions supported by 

an OpenFlow switch. The “engine” which performs the actual mapping T:IO is a standard TCAM. 

The obvious limit of this OpenFlow “map” abstraction is that the match/action mapping is statically 

configured, and can change only upon controller's intervention (e.g. via flow-mod OpenFlow 

commands). However, as observed in [25], an OpenFlow switch can be trivially extended to support 

a more general abstraction which takes the form of a Mealy Machine, i.e. a Finite State Machine with 

output, and which permits to formally model dynamic forwarding behaviours, i.e. permit to change 

in time the specific action(s) associated to a same match. It suffices to add a further finite set S={s1, 

s2, …, sN} of programmer-specific states, and use the TCAM to perform the mapping T:S×IS×O. While 

remaining feasible on ordinary OpenFlow hardware, such a Mealy Machine abstraction brings about 

two key differences with respect to the original OpenFlow abstraction. First, the (output) action 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 56 of 77 

associated to a very same (input) match may now differ depending on an (input) state si in S, i.e., the 

state in which the flow is found when a packet is being processed. Second, the Mealy Machine 

permits to specify in which, possibly different, (output) state so in S the flow shall enter once the 

packet will be processed, hence it permits to dynamically modify the flow state, and hence apply to 

the next packet(s) a different forwarding rule, without the intervention of any external controller. 

While quite interesting, this generalization appears still insufficient to permit the programmer to 

implement meaningful and realistic packet processing stateful applications, which usually require 

more than just the ability to define and update a state label. Consider for instance a traffic classifier: 

it requires to extract features from the packet stream comprising the flow (such as average packet 

size, statistics on the inter-arrival packet time, etc.), and such feature extraction must rely on 

arithmetic operations not supported neither by the OpenState Mealy Machine abstraction, nor by 

the switch architecture proposed in [25]. Or take for instance a traffic policer or shaper implemented 

as a Token Bucket: policing decisions require to manage timers, and depend on conditions applied to 

the packet statistics, conditions which are not expressible using a Mealy Machine.  

We thus propose to exploit a more compelling and complete abstraction (actually already anticipated 

in [25], but without any idea of how to support it via an actual architecture), the so-called eXtended 

Finite State Machine (XFSM) model.  

Table 3: Formal specification of an eXtended Finite State Machine (left two columns) and its 

meaning in our specific packet-processing context (right column) 

XFSM formal notation Meaning 

I input symbols all possible matches on packet header fields 

O output symbols OpenFlow-type actions 

S custom states application specific states, defined by programmer 

D n-dimensional linear space D1×…×Dn all possible settings of n memory registers; include 

both custom per-flow and global switch registers 

F set of enabling functions fi:D{0,1} Conditions (Boolean predicates) on registers 

U set of update functions ui:DD Applicable operations for updating registers' content 

T transition relation T:S×F×IS×U×O Target state, actions and register update commands 

associated to each transition 

As summarized in the above Table 3, this model is formally specified by means of a 7-tuple 

<I,O,S,D,F,U,T>. Input symbols I (OpenFlow-type matches) and Output Symbols O (actions) are the 

same as in OpenFlow. Per-application states S are inherited from the Mealy Machine abstraction [25], 

and permit the programmer to freely specify the possible states in which a flow can be, in relation to 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 57 of 77 

her desired custom application (technically, a state label is handled as a bit string). For instance, in a 

heavy hitter detection application, a programmer can specify states such as NORMAL, MILD, or 

HEAVY, whereas in a load balancing application, the state can be the actual switch output port 

number (or the destination IP address) an already seen flow has been pinned to, or DEFAULT for 

newly arriving flows or flows that can be rerouted. With respect to a Mealy Machine, the key 

advantage of the XFSM model resides in the additional programming flexibility in three fundamental 

aspects.  

(1) D: Custom (per-flow) registers and global (switch-level) parameters. The XFSM model 

permits the programmer to explicitly define her own registers, by providing an array 

D of per-flow variables whose content (time stamps, counters, average values, last 

TCP/ACK sequence number seen, etc.) shall be decided by the programmer herself. 

Additionally, it is useful to expose to the programmer (as further registers) also switch-

level states (such as the switch queues' status) or ``global'' shared variables which all 

flows can access. Albeit practically very important, a detailed distinction into different 

register types is not foundational in terms of abstraction, and therefore all registers 

that the programmer can access (and eventually update) are summarized in the XFSM 

model presented in Table 3 via the array D of memory registers. 

(2) F: Custom conditions on registers and switch parameters. The sheer majority of traffic 

control applications rely on comparisons, which permit to determine whether a 

counter exceeded some threshold, or whether some amount of time has elapsed since 

the last seen packet of a flow (or the first packet of the flow, i.e., the flow duration). 

The enabling functions fi:D{0,1} serve exactly for this purpose, by implementing a 

set of (programmable) Boolean comparators, namely conditions whose input can be 

decided by the programmer, and whose output is 1 or 0, depending on whether the 

condition is true or false. In turns, the outcome of such comparisons can be exploited 

in the transition relation, i.e. a state transition can be triggered only if a programmer-

specific condition is satisfied.  

(3) U: Register's updates. Along with the state transition, the XFSM models also permits 

the programmer to update the content of the deployed registers. As we will show later 

on, registers' updates require the HW to implement a set of update functions ui:DD, 

namely arithmetic and logic primitives which must be provided in the HW pipeline, 

and whose input and output data shall be configured by the programmer.  

Finally, we stress that the actual computational step in an XFSM, i.e. the step which determines how 

the XFSM shall evolve on the basis of an arriving packet, resides in the transition relation 

T:S×F×IS×U×O, which is ultimately nothing else than, again, a “map” (albeit with more complex 

inputs and outputs than the basic OpenFlow map), and hence is naturally implemented by the switch 

TCAM, as shown in the next section 4.4.2. In other words, what makes an XFSM a compelling 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 58 of 77 

abstraction is the fact that its evolution does not require to resort on a CPU, but can be enforced by 

an ordinary switch’s TCAM. 

4.5.2 Identification of Reusable Functional Blocks for XFSMs: the “update functions” 

With reference to the proposed XFSM abstraction, the goal of a functional (nano-)decomposition is 

to identify which specific set of functions should be provided as basic building block for the 

programmer to describe meaningful packet processing and traffic control tasks by means of an XFSM. 

As said above, the XFSM model summarized in Table 3 is formally specified by a 7-tuple 

<I,O,S,D,F,U,T>. Since the set of states S, the content of per-flow registers D, and the list of transition 

relations T are freely defined by the programmer, these sets are not relevant to any functional 

analysis. This is clearly not anymore the case for what concerns Input symbols I and Output Symbols 

O (actions). However, we posit that (at least for backward compatibility issues) we may reasonably 

inherit OpenFlow-type matches and OpenFlow actions, respectively, and indeed significant work is 

currently being made in the ONF community to both extend the OpenFlow’s matching facilities as 

well as the supported action set. Furthermore, with respect to the enabling functions F, these are 

standard Boolean comparison, so programmable support for logical operators and of their 

combinations is the only requirement to implement such set. It follows that for the purpose of this 

section, the only remaining target for a decomposition analysis consists in identifying an appropriate 

set of update functions U.  

We recall that, at each step, the specific computations that the Update Logic Block must perform are 

provided by the output of the XFSM transition, and are expressed in the form of a tuple of micro-

instructions typical of a microprocessor (e.g., 32 bit instructions). An use-case-based analysis (taking 

as use cases non trivial traffic processing functions currently performed at line rate and not 

programmable in an OpenFlow switch due to limitations in the expressiveness of the match/action 

abstraction - we specifically considered as use cases a port scan detector, a C4.5 traffic classifier 

based on a binary tree, and a token bucket.) has been therefore made to determine which candidate 

update functions should be implemented in the Update Logic Block and hence supported by the 

deployed domain-specific ALUs.  

The next two tables report the findings of our analysis. While Table 4 reports basic ALU functions that 

are already supported by any basic ALU design, Table 5 specifically lists additional domain-specific 

functions, which we deem useful in traffic control applications, and which would normally require 

multiple clock cycles if implemented using more elementary operations. Each instruction comprises 

an OPCODE, followed by a variable number of operands that depend on the specific instruction. Input 

operands (labelled as INi in the next Table 4 and Table 5) can be any among the available per flow 

registries Ri, the global variables Gi, or the header fields Hi provided by the Extractor block. Output 

operands (labelled as OUTi) indicate where the result of the instruction must be written (e.g. in a 

given per-flow register, or in a global variable). In some instructions, one or more of the operands 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 59 of 77 

(labelled as IOi) are both used as input and output. Finally, some instructions may handle constant 

operands (labelled as IMM). 

The most interesting finding is related to the Domain-specific operations, which include the online 

computation of running averages (Avg) and variances (Var), and the computation of exponentially 

decaying moving averages (Ewma) which can serve the purpose of a moving average, but which can 

be incrementally computed and do not require to maintain a window of samples. Usage and 

implementation details about packet/flow specific instructions are provided in Table 5. The Avg() 

operation stores the number of samples in IO1, and includes a new sample IN1 in the running average 

IO2. Similarly, the Var() operation stores the number of samples in IO1, the average of the value IN1 

in IO2 and the variance in IO3. Finally, the Ewma() operation2 was included to permit smoothing. It 

stores the last timestamp (IN1) of a packet in the register identified by IO1, computes the 

exponentially weighted moving average of the value IN2 using the equation in and stores the result 

in IO2. 

Table 4: ALU basic instruction set 

Type Instructions Definition 

Logic micro-instructions NOP do nothing 

NOT OUT1  NOT(IN1) 

XOR, AND, OR OUT1  IN1 op IN2 

Arithmetic micro-instructions ADD, SUB, MUL, DIV OUT1  IN1 op IN2 

ADDI, SUBI, MULI, DIVI OUT1  IN1 op IMM 

Bit-level instructions (shift/rotate) LSL (Logical Shift Left) OUT1  IN1 << IMM 

LSR (Logical Shift Right) OUT1  IN1 >> IMM 

ROR (Rotate Right) OUT1  IN1 ror IMM 

 

Table 5: ALU extended (domain-specific) instruction set 

Instruction Description Definition 

Avg() Running average (frequently used for 

feature extraction) 

IO1  IO1+1 

IO2  IO2+(IN1-IO2)/(IO1+1) 

                                                      

 

 
2 Being tk the last sample time, and xk' a new sample occurring at time tk', for simplicity of HW implementation we may 

approximate the exponentially weighted moving average as m(tk')=m(tk) ^(tk'-tk) + xk', and we use =1/2 to compute 
powers as shift operations. The intermediate decay quantity in the second line is used just for clarity of presentation. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 60 of 77 

Std() Running variance (frequently used for 

feature extraction) 

IO1  IO1+1 

IO2  IO2+(IN1-IO2)/(IO1+1) 

IO3  IO3+((IN1-IO2)2 -IO3)/(IO1+1) 

Ewma() Exponentially weighted Moving 

average (latest samples are more 

important than past ones, so as to run-

time smooth measurements and 

‘follow’ a temporal behaviour) 

IO1  IN1 

decay = 1<<(IN1-IO1) 

IO2  IO2/decay + IN2 

 

Note that we have on purpose restricted the set of identified RFBs (update functions) to 

microinstructions, which, besides being apparently useful to the specific network programmer's 

needs, are also computationally effective in terms of implementation. More precisely we have 

restricted to functions which may be implemented in HW using at most two clock cycles (to this 

purpose, the definition of each identified update function explicitly shows inputs and outputs, and is 

provided in a way that makes evident to the reader how these functions might be implemented in 

HW). It is worth to mention that, similar to the action set in standard OpenFlow, also the specific 

instruction set provided by the Update Logic Block is independent of our proposed OPP abstraction, 

i.e., its extension or improvement (e.g. with further dedicated domain-specific instructions) does not 

affect the overall OPP design. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 61 of 77 

5 Reusable component analysis based on use cases 

D2.1 examined the use cases for Superfluidity, along with their business and technical requirements. 

We considered the likely impact on Superfluidity's work under several categories: 

 

 Service agility – in terms of service creation, delivery and management. This includes flexible 

service function chains, as well as resource allocation that is flexible enough for service 

continuity, mobility and orchestration 

 Cost savings – including simplicity for lower operational costs 

 Analytics and metrics – metrics are needed for different purposes and so with different 

temporal granularities, formats etc. One key purpose of metrics is to inform analytics that 

provide actionable insights for the orchestrator 

 Quality of experience – In-line functions need to add only a small amount of latency, either 

for all applications or else for selected ones. When considering where to physical place 

(/distribute) of a chain of functions, we need to be aware of the QoE required 

 Building blocks – Reusable Functional Blocks (RFBs) are a way of decomposing high-level 

monolithic functions into reusable components. There need to be tools to validate the 

properties of functions that are composed of simpler RFBs. 

 Orchestration – the challenge is to compose RFBs to achieve ‘macro’ functions that meet the 

requirements of latency, scalability and throughput. 

 Converged architecture – this is about handling heterogeneity at different levels: the traffic 

and endpoints; the services and processing; access technologies and scale 

 Platform – to handle service agility, computation and network efficiency 

 Scalability – one way of addressing this is through a load balancer that spawns up a new 

‘service handling instance’ as required. Scalability requires support from the platform, 

orchestrator, telemetry system and so on 

 Security – functions need to be verified to be secure before deploying them (often called 

‘secure by design’). As well as this static analysis, dynamic analysis is needed during actual 

operation to verify behaviour, detect anomalies and so on. 

 

Perhaps the overall architectural requirement emerging from the above list is that of simplicity. 

Simplicity has of course always been important in networking and computing, but is particularly 

crucial in the NFV world, in order to fulfil its requirements for agility and dynamism in terms of 

creating, delivering and managing services. The challenge includes the scope and scale of the devices, 

vendors, functions and so on which are involved in the overall service. 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 62 of 77 

There is still a lot of on-going research about how to achieve simplicity, but some themes are 

emerging from our work: 

 Flexible reuse. This is the whole basis of the Reusable Functional Blocks described in Section 

4. 

 Consistency of interfaces, northbound and southbound of layers. There will be numerous 

functions and vendors involved in the layers of functionality. Part of the way forward is a 

consistent, vendor-neutral, layer-neutral way of describing the capabilities of the layer and 

for managing it. This is explored further in the WP3 deliverables. 

 Automatic and programmatic control. Ideally we want to eliminate ‘humans from the loop’. 

Humans are error-prone and slow! Network operators today see the issues; the opportunities 

for error and slowness will be greatly increased in the NFV world. We need tools that 

automatically plan, test and validate a change. Again, WP3 deliverables discuss this topic 

further. 

 In-line processing needs to scale and be easy to repair. There are several promising directions 

including stateless network functions and our finite state machines work discussed in Section 

4.4. 

 

We now revisit some of the use cases, by identifying the RFBs required in each case. 

5.1 Use Case: On–the-fly Monitoring 

 

Use case On –the-fly Monitoring 

Description in a 

nutshell 

Continuous increase in bandwidth demands means network-wide 

deployment of DPI will become increasingly expensive and in most cases 

unsustainable. There is a requirement to enable relatively cheaper 

monitoring infrastructures.  

 

Implementation of DPI like systems with VNF(s) will allow two scenarios (a) 

dynamic deployment of DPI to monitor selected network segments e.g. 

specific geographical regions, and (b) implementing multiple DPI 

deployments for disparate virtual customers sharing the same physical 

infrastructure 

Reusable Functional 

Blocks 

Packet Processor Service that looks into packet headers to get 

information on addresses (source and 

destination), identify protocols, and 

understands fingerprints of applications 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 63 of 77 

Load Balancer Service for distributing packet flows over 

multiple instances the DPI service chain 

Encryption/Decryption 

Module 

Service to enable analysis of secured packet 

flows 

Encryption Key Manager Service that allows encryption keys to be 

maintained outside of encryption/decryption 

module.  

Useful when same key is applied to multiple 

use cases e.g. same private key for encrypting 

packet flow. 

Management Module Service that manages creation, deletion, and 

upgrade of patterns and fingerprints of 

applications 

Policy Control/Enforcer Service that allows deep packet inspection to 

control access to network 

Switching  Service to switch packet flows in and out of DPI 

service chain 

Database Service to store and maintain 

pattern/fingerprint definitions used for 

monitoring different applications 

 

5.2 Use Case: S/Gi-LAN Services on the (Mobile) Edge 

 

Use case S/Gi-LAN Services on the (Mobile) Edge 

Description in 

a nutshell 

In today’s mobile networks, services involving traffic management/DPI and 

transport/content optimization have been traditionally deployed on the Internet 

side of the GGSN/P-GW, i.e. in the S/Gi-LAN. 

Even though the industry recognizes the utility of these services, always in the 

context of the Mobile Data Tsunami and the desire of operators to differentiate 

from their competitors on the basis of QoE, deploying such solutions in a scalable 

fashion is becoming increasingly challenging/costly. 

Moreover, the lack of accurate visibility on RAN conditions makes it very difficult 

to deliver traffic management and transport/content optimization in a way that 

achieves balance between network efficiency and QoE. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 64 of 77 

The flattening and “IP-fication” of the network, in the evolution from UMTS to LTE 

and, eventually, to 5G, provides opportunities of pushing these services into the 

RAN and towards the Edge of the network. 

Phases Instantiate Service Traffic management and optimization services will be 

instantiated in the Mobile Edge micro-data centres (DCs) 

specified by the operator, or determined to require them 

Access User Plane The traffic handling services will utilise the Mobile Edge 

Computing (MEC) infrastructure to acquire access to user 

plane traffic. 

Create Data Session Metadata about user plane traffic (Packet Data Protocol 

sessions) will be held in an in-memory Session Database. 

Information will include subscriber and device identifiers, 

respective bearers, associated IPv4/IPv6 addresses, etc. 

Enrich with Control 

Plane Information 

The entries maintained in the Session Database will be 

enriched with control plane information, leveraging the 

corresponding MEC APIs. Such information will involve 

radio-access type per bearer, radio resource allocation, 

cell load, throughput guidance, link quality, etc. Please 

note that this info may have to be updated regularly 

(probably asynchronously) during data session lifetime. 

Track Data Flows The traffic handling services will identify (L4) data flows. 

Initially the focus will be on supporting the tracking of 

flows that use the TCP and UDP transport protocols (over 

both IPv4 and IPv6). The services will need to maintain 

state (in-memory) for each of the identified data flows, at 

least for ones selected to receive traffic optimization. 

Inspect Content The content (i.e. payload of TCP or UDP packets) of the 

identified data flows will be inspected in DPI-like fashion 

to determine the content type. Note that this may have 

to be stateful, i.e. associating packets to logical streams. 

The analysis applied may have to be more elaborate than 

simple signature/pattern matching, e.g. to identify video 

transferred using an encrypted transport (HTTPS/QUIC). 

Identify Application To determine e.g. whether it is appropriate to apply 

traffic regulation to ABR video, the services will have to 

infer that the consuming application is a media player. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 65 of 77 

This occasionally requires logic across data streams of the 

same subscriber (e.g. when encryption is in effect). 

Evaluate Policies The services will combine information maintained in the 

session database with the state kept for each data flow 

and with the configuration set by the operator to decide 

which traffic optimization actions must be applied. 

Apply Transport-level 

Optimization 

The services will apply transport (L4) optimization, initially 

focusing on TCP traffic, to increase the speed, decrease 

the latency and maximize the efficiency of delivering 

content to the UE, moreover in a way that takes into 

account RAN congestion. 

Apply Application-

level Optimization 

On top of transport optimisation, the services may also 

apply application-level traffic management schemes. One 

example is ABR video aware traffic regulation (pacing), 

which allows the operator to limit the ABR video quality 

that should be delivered by the mobile network. 

Calculate Metrics, 

Emit Flow Records 

The transport and application layer metrics gathered as 

part of delivering the above services will be logged and 

optionally emitted (as IP flow records) to analytics infra. 

State Migration If the UE moves to a radio service area that is handled by 

a different MEC DC, the session & data flow state that is 

maintained on behalf of the UE will need to be migrated, 

to the extent that the transition is seamless to the user. 

Tear-Down Service If the traffic optimization services are not required any 

more in the particular MEC DC, they shall be torn town. 

Reusable 

Functional 

Blocks 

Mobile Edge 

Computing (MEC) 

 MEC Platform (Auth) 

 MEC Platform (Bus) 

 MEC Platform Management 

 MEC Enabler (TRF) 

 MEC Enabler (TRF API) 

 MEC Enabler (RNIS) 

 MEC Enabler (RNIS API) 

Load Balancer If traffic needs to be balanced between multiple service 

instances, load balancer must support stickiness on a per 

sub/UE or data session basis. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 66 of 77 

Service Chaining Since these services will be probably deployed together 

with other traffic inspection or traffic processing services, 

the Mobile Edge infrastructure needs to provide a traffic 

steering and/or service chaining function. 

Session Database Stored information will include subscriber (e.g. MSISDN) 

and device (e.g. IMSI) identifiers, associated bearers, 

allocated IPv4/IPv6 addresses, etc. Extra information will 

include radio-access type (per bearer), radio resource 

allocation, cell load, throughput guidance, link quality, … 

In case of multiple service instances within the same DC, 

Session Database will have to be shared between them. 

TCP/UDP header 

processing 

The traffic processing services must be able to process 

IPv4/IPv6 (L3) headers and TCP/UDP (L4) headers. This 

can be part of the kernel, but for reasons of throughput 

and flexibility, a user-plane protocol stack is preferable. 

Performance 

Enhancing Proxy 

Depending on the transport optimization techniques, the 

network services will have to modify the timing of packets 

(traffic regulation/pacing), generate ACKs and handle 

packet retransmissions on behalf of the content server, 

or even completely replace the congestion control 

module (the split-TCP middle-box scenario). 

Connection Tracker To be able to implement analysis/logic on a per logical 

flow/stream basis, the network services will include a 

connection/flow tracker. Depending on stateful-ness of 

the transport optimization technique, associated state 

may have to be synchronised across instances, or else 

service migrations may result into connection resets, etc. 

For similar reasons, service introduction shall only handle 

new connections, whereas service tear-down must 

(reasonably) wait for tracked connections to “starve”. 

Deep Packet 

Inspection function 

Protocol and content detection will depend on DPI-like 

signatures. 

Content Detection 

Algorithms 

Traffic must be inspected (on the basis of data flows) to 

identify the type of content being transferred. Focus 

would be on identifying content that can be optimized 

(e.g. ABR video, even if it is encrypted). 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 67 of 77 

Application Detection 

function 

Traffic must be inspected (on the basis of data flows) to 

identify the type of application that is consuming the 

content. Focus would be on identifying applications that 

can be optimised (e.g. ABR video players). 

Policy Engine Combining the data-plane and control-plane inputs with 

the configuration/preferences of the operator to make 

decisions and apply actions requires a Policy Engine. 

Transport Optimizer Transport-layer (L4) optimisation, initially focusing on TCP 

(see also Performance Enhancing Proxy). Objective is to 

achieve high network speeds, efficient use of network 

resources, congestion control and low latency. 

TCP Congestion 

Control function 

For the case of split-TCP middle-boxes, the congestion 

control algorithm can be replaced. Congestion handlers 

are usually delivered in the form of reusable modules. 

Video Optimizer Regulation/pacing of video flows is a traffic management 

action that helps conserve network resources. This, for 

example, allows the operator to specify the ABR video 

quality that should be delivered by the mobile network. It 

may require cooperation with the Transport Optimizer. 

Metrics Engine For monitoring service performance, detailed KPI metrics 

will be generated, both on a per data flow basis, but also 

time-windowed aggregates. The former can be emitted 

to a big data analytics RFB (see Flow Record Output 

below). The latter can be read, in the form of counters, 

via relevant management plane protocols (e.g. SNMP). 

Instrumentation 

Gathering 

Generation and exporting of instrumentation data is 

almost always required for traffic handling services, since 

it enables troubleshooting and root-cause analysis of any 

issues. This includes the capturing of packet traces, etc. 

Flow Record Output Detailed per flow metrics can be emitted to network 

analytics platform in the form of a flow record output. 

Management 

function 

Frontend system (CLI/GUI) for managing, configuring, 

monitoring and maintaining the optimization services 

Performance 

collector function 

Frontend system (web GUI) for evaluating performance 

and assuring the benefits of the optimization services 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 68 of 77 

Big Data Analytics Composition of functional blocks that receives metrics 

and counters from the traffic handling services (among 

other inputs) to implement a Network Analytics solution. 

Based on the historical metrics, and using trending, 

forecasting and machine learning techniques, insights 

extracted can be fed back to the traffic handling services, 

in terms of policies, towards optimizing them further. 

5.3 Use Case: On-the-fly Ad Removal Offloading 

Use case On-the-fly Ad Removal Offloading 

Description in a 

nutshell 

Given the proliferation of online advertisements and the fact that a large 

number of players based their revenue model on them, it is perhaps 

unsurprising that ad blockers have become commonplace. While certain 

useful, they do consume CPU cycles as they scan incoming traffic which 

results in reduced battery life when talking about mobile devices. In this 

use case we propose to provide an on-the-fly, virtualized ad blocker 

service that can be run in edge networks, essentially offloading this 

functionality from mobile devices in order to increase their battery life. 

Reusable Functional 

Blocks 

Strip RFB to strip L2 headers from packets 

IP Checker RFB to filter for IP packets and to check that 

they are sane (e.g., that the checksum is 

correct) 

Classifier RFB used to filter for specific traffic flows 

(e.g., HTTP traffic in case our intent is to 

block ads in HTTP flows) 

TCP flow reconstructor RFB to reconstruct the TCP flow in case ads 

span multiple packets 

HTTP parser RFB to parse HTTP traffic 

Ad remover RFB to search for and remove ads from 

packets. 

5.4 Use Case: Rapid and massively-scalable instantiation of high performance (virtual) 

application instances 

Use case Rapid and massively-scalable instantiation of high performance (virtual) 

application instances for high performance storage applications 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 69 of 77 

Description in a 

nutshell 

Current VMs are quite large and heavy, requiring a full Linux O/S to be 

provisioned. We challenge this model to use much more light-weight 

instances that can be then used for a multitude of applications that are 

otherwise inaccessible 

Reusable 

Functional Blocks 

Command listener Listens to ATAoE commands 

Driver domain Helper domain that contains drivers for particular 

hardware devices 

Router Routes commands either to/from local VMs or 

adds them to the network queue for remote 

processing 

Logging system Send/receive logs from all guest instances 

ACL system Authenticate packets coming in and send to 

authorised users. Maintain privacy for packets not 

addressed to other users 

Queues/Buffers and 

handlers 

Utilise local storage/memory space for capturing 

data/commands while the other data is being 

processed 

Packet reordering Given TCP/IP connection orientated, 

sequentialising system is not included, need to re-

order packets to generate the original stream 

VM controller Given the Dom0 logic is moved to the MicroVisor 

need to distribute the control logic and make each 

domU responsible for some of the control state. 

5.5 Use Case: Local Breakout (LBO) 

Use case Local Breakout 

Description in 

a nutshell 

Local Breakout intends to avoid user traffic to be sent to the mobile 

network core, when communication parties are on the same edge 

network (e.g. eNB). On 3GPP networks, by default, all traffic is terminated 

on the mobile core (PDP/PDN). However, in many cases, knowing that 

users are attached on the same edge, communications can be short-cut, 

making the connectivity more efficient. A similar concept may also be 

applied to fixed networks. 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 70 of 77 

Reusable 

Functional 

Blocks 

User-Data Plane Interface Component integrated with the forwarding path, 

which intends to allow the MEC platform to 

access the user-data plane traffic 

MEC Platform (Auth) MEC Platform component devoted to Service 

authentication and authorization, namely 

regarding the access to APIs 

MEC Platform (Bus) MEC Platform component dedicated to Service 

communication (Service<–>APIs, Service<-

>Service) 

MEC Platform Management Component dedicated to manage the MEC 

Platform, namely, regarding the API exposure, 

interaction with authentication/authorization 

modules, etc. 

MEC Enabler (TRF) Service Enabler plugged into the MEC platform, 

which provides user-data plane features 

MEC Enabler (TRF API) Component that makes an API available for 

Services to access the user-data plane 

MEC Enabler (RNIS) Service Enabler plugged into the MEC platform, 

which provides Radio Network Information 

Systems (RNIS) features 

MEC Enabler (RNIS API) Component that makes an API available for 

Services to access RNIS features 

MEC Enabler (Loc) Service Enabler plugged into the MEC platform, 

which provides UE Location features 

MEC Enabler (Loc API) Component that makes an API available for 

Services to access UE Location features 

MEC Service LBO  Operator or 3rd party Service devoted to provide 

Local BreakOut (LBO) services using the MEC 

System 

MEC Service LBO  Component devoted to manage the Local 

BreakOut (LBO) Service (associated to the LBO 

Service) 

5.6 Use Case: virtual Convergent Services  

Use case virtual Convergent Services (vCS) 

Description in 

a nutshell 

The virtual Home GateWay (vHGW) use case intends to move traditional 

functions (e.g. firewall, parental control, NAT, etc.) residing on the 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 71 of 77 

customers’ home to a virtual HGW (vHGW) in the cloud. In a convergent 

scenario, these services apply both to fixed and mobile environments, 

providing a convergent desired behaviour, either when the user is at 

home or using a mobile device. 

The virtual Set Top Box component complements the use case, extending 

the usage of a virtual STB to a multi-screen scenario, simplifying the 

convergent environment, reducing operator investment and making 

easier the upgrade and deployment of new services, being accessible to 

the user from any terminal. 

Reusable 

Functional 

Blocks 

User-Data Plane Interface Component integrated with the forwarding path, 

which intends to allow the MEC platform to 

access the user-data plane traffic 

MEC Platform (Auth) MEC Platform component devoted to Service 

authentication and authorization, namely 

regarding the access to APIs 

MEC Platform (Bus) MEC Platform component devoted to Service 

communication (Service<–>APIs, Service<-

>Service) 

MEC Platform Management Component devoted to manage the MEC 

Platform, namely regarding the API exposure, 

interaction with authentication/authorization 

modules, etc. 

MEC Enabler (TRF) Service Enabler plugged into the MEC platform, 

which provides user-data plane features 

MEC Enabler (TRF API) Component that makes APIs available to let 

Services access to user-data plane features 

MEC Enabler (RNIS) Service Enabler plugged into the MEC platform, 

which provides Radio Network Information 

Systems (RNIS) features 

MEC Enabler (RNIS API) Component that makes APIs available to let 

Services access to RNIS features 

MEC Enabler (Loc) Service Enabler plugged into the MEC platform, 

which provides UE Location features 

MEC Enabler (Loc API) Component that makes APIs available to let 

Services to access to UE Location features 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 72 of 77 

MEC Service vCS Operator or 3rd party Service devoted to provide 

virtual Converged Services (vCS) using the MEC 

System 

MEC Service vCS (Mgm) Component devoted to manage the virtual 

Convergent Service (vCS) (associated to the vCS 

Service) 

MEC Orchestrator Component devoted to orchestrate Services 

lifecycle (deployment, scaling, migration, 

disposal, etc.) 

MEC Orchestrator (Policy) Component that hold policies used by the MEC 

Orchestrator to orchestrate the Services lifecycle 

5.7 Use Case: Late transmuxing (LTM) 

Use case Late transmuxing (LTM) on the (Mobile) Edge 

Description in 

a nutshell 

Instead of using the CDN network only as cache, the CDN (edge) nodes could be 

used to create requested formats when needed, saving bandwidth and storage 

within the network, increasing edge resource usage and improving user 

experience. 

(LTM) Phases Request parsing Webserver determines handler based on request type (via 

extension usually) and maps the request to the local or 

remote location the content (samples and server 

manifest) is located. 

Upstream sample 

fetch 

(Libfmp4) When needed audio/video samples are not in 

the local cache from a similar previous request for another 

protocol, sample have to be fetched upstream. 

Manifest creation (Libfmp4) Create the appropriate client manifest for the 

request (HLS, HDS, HSS or DASH). 

Chunk creation (Libfmp4) Create the appropriate chunk for the request 

(HLS, HDS, HSS or DASH). 

Encryption/DRM (Libfmp4) Encrypt chunk and/or signal DRM in the client 

manifest based on the server manifest settings. 

Output handover Return created output to Webserver for delivery. 

Reusable 

Functional 

Blocks 

Mobile Edge 

Computing (MEC) 

 MEC Platform (Auth) 

 MEC Platform (Bus) 

 MEC Platform Management 

 MEC Enabler (TRF) 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 73 of 77 

 MEC Enabler (TRF API) 

 MEC Orchestrator 

 MEC Orchestrator (Policy) 

Load Balancer If traffic needs to be balanced between multiple service 

instances within the same MEC DC, load balancer must 

support stickiness on a per sub/UE or data session basis. 

WebServer Linux platform that can support a web-server e.g. Apache 

or Nginx (or anything that can handle HTTP requests in 

general), the LTM instance. 

Libfmp4 The USTR muxing software used in the web-server for 

LTM. 

Storage Upstream providing mezzanine audio/video samples, 

accessible over HTTP (accepting range requests, e.g. S3). 

CMS/Policy Service for LTM instances to fetch configuration (server 

manifest) from, configuration can change dynamically. 

The server manifest controls the client/manifest 

generation and can be provided by the CMS on a per 

request basis, so rules may be applied (for instance in 

relation with the video optimizer). 

 

AutoScaling The setup should be able to add and remove LTM 

instances based on load or other metric, automated. 

Cache priming Latency between storage and LTM instance should be low 

enough so cache priming (setting up local caches with 

content to be ready for expected load) could be 

employed. Alternatively ‘prefetch’ (fetching next chunk 

before time by the webserver to have it cache already) 

may be employed as well. 

Video Optimizer Regulation/pacing of video flows is a traffic management 

action that helps conserve network resources. This, for 

example, allows the operator to specify the ABR video 

quality that should be delivered by the mobile network. It 

may require cooperation with the Transport Optimizer. 

Metrics Engine For monitoring service performance, detailed KPI metrics 

will be generated, both on a per data flow basis, but also 

time-windowed aggregates. The former can be emitted to 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 74 of 77 

a big data analytics platform (see Flow Record Output 

below). The latter can be read, in the form of counters, via 

relevant management plane protocols (e.g. SNMP). 

Monitoring Monitor stream characteristics on LTM instance 

(bandwidth, sessions, streams). 

 

 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 75 of 77 

6 Conclusions 

This document concludes the activities of WP2 of the Superfluidity project. 

A functional analysis of different domains/platforms, with the identification of functional elements 

relevant to 5G scenarios and their decomposition into Reusable Functional Blocks (RFBs) has been 

carried out.  

The first considered domain is the Cloud-RAN (Radio Access Network). A set of RFBs are proposed for 

Cloud-RAN. Each RFB is characterized by a set of features: its interface and affinity to other RFBs, 

synchronous or asynchronous characteristic, control or data plane, hardware affinity and the domain 

where the RFB could be instantiated. 

The second domain is the Mobile Edge Computing platform. The main MEC components have been 

identified and a decomposition in smaller functional blocks has been provided. 

The third domain is a generic NFV platform. Some key services like load balancer, state repository 

and analytics have been studied and decomposed into Reusable Functional Blocks. The Service 

Function Chaining functionality has been analysed and decomposed into logical components. 

The fourth domain is a fixed networking equipment and it has been addressed considering the 

example of a commercial security appliance (the CISCO ASA). We discussed how this appliance has 

been decomposed using as Reusable Functional Block the element of an open source router platform 

called Click. 

The fifth domain is an innovative environment, i.e. a packet processing state machine. This 

environment is referred to as XFSM (eXtended Finite State Machine) and represents the evolution of 

an OpenFlow forwarding engine, enhanced in order to perform a “stateful” packet processing. The 

set of elementary “actions” of this packet processing engine has been identified. 

To emphasize the benefit of the RFB principle, in the last section of this document a set of use cases 

has been analysed in order to identify the needed RFBs.  

Based on the results reported in this document, the work related to the finalization of the 

Superfluidity architecture will continue in the WP3.  



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 76 of 77 

7 References 

[1] “Network Functions Virtualisation (NFV); Use Cases” ETSI GS NFV 001 V1.1.1 (2013-10) 

[2] “Network Functions Virtualisation (NFV); Architectural Framework”, ETSI GS NFV 002 V1.1.1 (2013-

10) 

[3] “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture”, ETSI GS NFV-

SWA 001 V1.1.1 (2014-12) 

[4] “Network Functions Virtualisation (NFV); Management and Orchestration”, ETSI GS NFV-MAN 001 

V1.1.1 (2014-12) 

[5] OpenMANO Descriptors https://github.com/nfvlabs/openmano/wiki/openmano-descriptors 

[6] “Network Functions Virtualisation (NFV); Use Cases” ETSI GS NFV 001 V1.1.1 (2013-10) 

[7] “Network Functions Virtualisation (NFV); Architectural Framework”, ETSI GS NFV 002 V1.1.1 (2013-

10) 

[8] “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture”, ETSI GS NFV-

SWA 001 V1.1.1 (2014-12) 

[9] “Network Functions Virtualisation (NFV); Management and Orchestration”, ETSI GS NFV-MAN 001 

V1.1.1 (2014-12) 

[10] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, “Fog computing and its role in the internet of things”, 1st 

SIGCOMM workshop on Mobile cloud computing (MCC), August 2012, Helsinki, Finland 

[11] “Mobile-Edge Computing – Introductory Technical White Paper”, 

https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-

_Introductory_Technical_White_Paper_V1%2018-09-14.pdf 

[12] K.Chen et al., “C-RAN: The Road Toward Green RAN”, White Paper, China Mobile Research 

Institute (2011). 

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti and M. F. Kaashoek, "The Click Modular Router Project," 

ACM Transactions on Computer Systems, vol. 18, no. 3, pp. 263-297, 2000. 

[14] GNU Radio – The free and open software radio ecosystem, Available: http:/gnuradio.org/ 

[15] Gerardo Garzia, “Introduction to OpenMANO”, presentation on slideshare.net 

http://www.slideshare.net/movilforum/introduction-to-open-mano (Published on Jun 16, 2015) 

[16] openmano descriptors (produced by the Open Mano project) 

https://github.com/nfvlabs/openmano/wiki/openmano-descriptors 

[17] UCLA CS Read, "The Click Modular Router Project," 17 January 2012. [Online]. Available: 

http://www.read.cs.ucla.edu/click/elements. [Accessed 20 October 2015]. 

[18] UCLA CS Read, "The Click Modular Router Project," 01 December 2009. [Online]. Available: 

http://www.read.cs.ucla.edu/click/packages. [Accessed 07 October 2015]. 

[19] SDNCentral LLC, "SDX Central," [Online]. Available: https://www.sdxcentral.com/nfv-sdn-products-

directory/. [Accessed 05 October 2015]. 

[20] NGMN alliance, “NGMN 5G white paper”, 17 February 2015, Available online: 

https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf 

[21] Sam Newman, “Building Microservices”, February 2015, O’Reilly] Media 

[22] FLAVIA EU project (FLexible Architecture for Virtualizable future wireless Internet Access), 

http://www.ict-flavia.eu/ 



 
 

 

 

SUPERFLUIDITY D2.2: Functional analysis and decomposition Page 77 of 77 

[23] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual history of programmable 

networks“, ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 87--98, 2014. 

[24] Tinnirello, I.; Bianchi, G.; Gallo, P.; Garlisi, D.; Giuliano, F.; Gringoli, F., "Wireless MAC processors: 

Programming MAC protocols on commodity Hardware", INFOCOM, 2012, pp.1269-1277. 

[25] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Programming Platform-

independent Stateful OpenFlow Applications Inside the Switch” ACM SIGCOMM Computer 

Communication Review, vol. 44, no. 2, pp. 44–51, 2014. 

[26] Small Cell Forum, Small cell virtualization functional splits and use cases, Document 159.05.1.01 

(2015) 

[27] METIS Deliverable D6.4 “Final report on architecture”, January 2015. Available: 

https://www.metis2020.com/wp-content/uploads/deliverables/METIS_D6.4_v2.pdf 

[28] iJOIN Project. “D5.3-Final Definition of iJOIN architecture”, April 2015. Available: http://www.ict-

ijoin.eu/wpcontent/uploads/2012/10/D5.3.pdf 

[29] Intel, Snap – the open telemetry framework, https://github.com/intelsdi-x/snap 

[30] https://tools.ietf.org/html/rfc3963 

[31] Superfluidity, Deliverable D2.1, “Use cases, technical and business requirements”, March 2016 

[32] http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing 

[33] IETF SFC Architecture (RFC 7665). Available at https://tools.ietf.org/pdf/rfc7665.pdf 

http://www.ict-ijoin.eu/wpcontent/uploads/2012/10/D5.3.pdf
http://www.ict-ijoin.eu/wpcontent/uploads/2012/10/D5.3.pdf
https://tools.ietf.org/html/rfc3963
https://tools.ietf.org/pdf/rfc7665.pdf

