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Abstract—Plug-in hybrid electric vehicles (PHEVs) offer an
immediate solution for emissions reduction and fuel displacement
within the current infrastructure. Targeting PHEV powertrain
optimization, a plethora of energy management strategies (EMSs)
have been proposed. Although these algorithms present various
levels of complexity and accuracy, they find a limitation in terms
of availability of future trip information, which generally prevents
exploitation of the full PHEV potential in real-life cycles. This
paper presents a comprehensive analysis of EMS evolution toward
blended mode (BM) and optimal control, providing a thorough
survey of the latest progress in optimization-based algorithms.
This is performed in the context of connected vehicles and high-
lights certain contributions that intelligent transportation systems
(ITSs), traffic information, and cloud computing can provide to
enhance PHEV energy management. The study is culminated with
an analysis of future trends in terms of optimization algorithm
development, optimization criteria, PHEV integration in the smart
grid, and vehicles as part of the fleet.

Index Terms—Connected vehicles, energy management strategy
(EMS), intelligent transportation systems (ITS), optimal control,
plug-in hybrid electric vehicle (PHEV).

I. INTRODUCTION

A IR quality has become a serious concern in cities and
urban areas in recent years. This has promoted new legis-

lation, affecting the European automotive sector through Euro
I–VI, which limits emissions of CO, HC, NOx, and particulate
matter [1]. As Euro VI became into force, the spotlight is
nowadays on CO2 emissions. The European Commission has
established a 130 g CO2/km target for 2015, which will be
reduced to 95 g CO2/km in 2021 [2]. Similar policies have been
imposed in other automotive markets, such as the USA, China,
and Japan. This legislation has encouraged the introduction of
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hybrid electric vehicles (HEVs), which have been considered
the most liable and immediate choice by car manufacturers.
HEVs refer to vehicles powered by at least two power sources,
usually concerning an internal combustion engine (ICE) and an
electric motor (EM) [3]. Battery capacity, EM power limits, and
grid charge capabilities define different levels of electrification.
The ultimate case is the technology of plug-in HEVs (PHEVs),
which can be recharged directly from the grid. The network
support allows the integration of a high-capacity battery and
powerful EM, which becomes coleader in the PHEV propulsion
along with the engine. Consequently, PHEVs have a larger
margin of efficiency improvement than HEVs, which results in
further fuel displacement [4].

As a result of multiple power sources, (P)HEVs have more
degrees of freedom to supply the power demand, compared with
the conventional vehicles. Therefore, their energy management
is framed as power/torque split selection, namely, determining
the amount of power/torque that each of the sources provides to
satisfy the driver demand. Energy management usually targets
to maximize the overall powertrain efficiency and minimize
fuel consumption [3], whereas the associated algorithm imple-
mented for this purpose is referred to as the energy management
strategy (EMS).

Raghavan et al. [5] measured PHEV impacts with an energy-
based analysis, obtaining valuable insights into fuel consump-
tion reduction through the electrification potential factor. This
factor is leveraged to rate the electrification level and payback
time with respect to the vehicle additional price and lower
running cost. However, the actual amount of fuel displaced is
tightly coupled with the EMS capacity to maximize electricity
use and optimize the overall system efficiency. In practice, the
fulfilment of optimal control of PHEVs hinges on key informa-
tion about drive cycle, which is necessary to schedule conve-
niently the battery depletion. Such desirable strategy depends
on the selected route, congestion level, road profile, weather
condition, and other information available through Global Po-
sition System (GPS), intelligent transportation systems (ITSs),
geographical information systems (GIS), and traffic modeling
[6], [7]. In this respect, emerging connected vehicles and wire-
less technology could undoubtedly mark a watershed.

This paper provides a comprehensive collection and survey
on the recent PHEV EMS literature, with the overarching
goal to systematically summarize the state-of-the-art of PHEV
EMSs and explore research trends in the context of synergies
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of ITS, smart grid, and smart city. In contrast to previous
papers, it avoids the classification into groups, (on/off)line
global/local optimization, which can be sometimes mislead-
ing due to possible algorithms modifications and assumptions
taken for implementation. Instead, each algorithm is individ-
ually introduced and evaluated, highlighting its strengths and
weaknesses, including alternative methods to compensate for
them. Three prominent contributions differentiate our articles
from the previous articles [8], [9]. First, we review nearly
all the optimization-based PHEV EMSs to date, particularly
covering the most recently proposed methods, e.g., convex
programming (CP), game theory (GT), and numerous meta-
heuristic algorithms. It also includes plentiful examples of their
applications in simulation environment, which shows the im-
portance of these novel algorithms in research trend nowadays.
Second, we survey the interactions of PHEV EMSs with ITS
and highlight the great significance of predictive EMSs cog-
nizant of environmental conditions outside the vehicle. Finally,
we preview potential research prospects from a multitude of
perspectives, which, along with ITS interaction analysis, are
main contributions that are not included in such depth in prior
review papers. Although significant progress has been made,
the current state of the art has reached a level where novel
transformative approaches are much desired to advance this
field. This survey seeks to stimulate such innovative thoughts.

The remainder of this paper is arranged as follows. Section II
gives an overview of PHEV EMSs. Section III focuses on
optimization-based EMSs. The interactions of EMSs with ITSs
are discussed in Section IV, followed by an outlook for further
research opportunities presented in Section V. Conclusions are
summarized in Section VI.

II. OVERVIEW OF PLUG-IN HYBRID ELECTRIC VEHICLE

ENERGY MANAGEMENT STRATEGIES

The EMS of HEVs is currently a well-proved technology.
These vehicles have limited charging capability and reduced
battery size and, consequently, operate within a small state of
charge (SoC) window. With a core task of assisting in ICE
load shifting, EMSs in HEVs target equal initial and final SoC
values, known as charge sustaining (CS) operation. The EMS of
HEVs can be readily extended to PHEVs via charge depleting–
charge sustaining (CD–CS) mode [10], [11]. This strategy is
featured by its simplicity and ease of implementation; however,
once the vehicle switches into CS, PHEV margin for improve-
ment disappears [11]. Several publications have claimed the
limited efficiency of CD–CS [12]. Its lack of optimality is
addressed in simulation environment by Sun et al. [13], where
the fuel efficiency is improved by 22.17% through deterministic
dynamic programming (DP), provided that the vehicle speed
profile is available. Some detractors of CD–CS also alluded to
the electric efficiency reduction under high power during the
intensive CD mode. Zhang et al. [14] claimed an improvement
of 9% in the fuel efficiency using reduced power strategies in
a power-split configuration. In addition, CD–CS may require
a relatively large battery to generate satisfying fuel economy,
incurring augmented vehicle cost.

Fig. 1. Comparison between the CD–CS strategy and the optimal solution.

The alternative approach is gradual battery depletion along
the drive cycle using blended mode (BM). This consists of the
cooperation of the ICE and the EM during the whole trip, not
reaching full battery depletion until the end. Analysis of BM
strategies can be found in [15]–[18]. A comparison between
CD–CS and BM in terms of the battery SoC evolution is
shown in Fig. 1. Nevertheless, it is worth mentioning that BM
strategies have to be tuned for the trip length; longer trips
result in premature battery drain, whereas shorter ones leave
unused charge in the battery. In absence of trip information, BM
could even develop worse results compared with a well-tuned
CD–CS strategy [14], [19], [20], which is one of the main issues
that prevents from BM implementation onboard. However, in
contrast to CD–CS, it provides considerable improvement in
fuel economy and fully exploits PHEVs beneficial properties,
assuming availability of the required information [8], [21].

With independence from BM or CD–CS, EMSs are usu-
ally divided into two principle groups, rule-based (RB) and
optimization-based strategies [8], [22]. The former includes de-
terministic strategies and fuzzy logic (FL), which are described
as a set of rules that compute the control signals based on
preestablished thresholds over the controlled variables. These
thresholds are often calculated based on the analysis of optimal
control policies obtained from selected drive cycles [10], [17].
The rules define the vehicle operating modes [11], [23] and are
easy to implement and understand, and their performance for
low levels of hybridization is often acceptable. The previous are
the main reasons for RB popularity in HEVs in industry [24].
Such advantages have encouraged their adaptation from HEVs
to PHEVs [25]. However, they generally yield nonoptimal
control in real-life driving conditions, as they are devised for
a particular set of drive cycles. Their drawbacks have been evi-
denced through simulation in [15] and [26] by comparing them
with optimization-based EMSs. Fair comparisons, however, are
only applicable if a certain level of drive cycle information is
available, which is generally not the case in real life.

A higher level of abstraction is provided by FL. This strategy
is still based on predefined rules that are implemented in a map-
based format allowing for a wider margin of improvement. FL
has been extended from HEVs to PHEVs in terms of EMS and
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battery management in [27]. Several strategies have attempted a
combination between FL and optimal solutions to improve the
FL performance and maintain a low computation burden. Some
examples are neuro-FL [28] and FL, combined with genetic
algorithm (GA) [29] and evolutionary algorithm [30].

Although some of the former approaches are suitable for
low levels of electrification, optimization-based strategies are
proved to be superior to RB approaches. Nevertheless, they
are also associated with additional implementation issues, e.g.,
algorithm complexity, high computation effort, robustness, and
sensitivity to drive cycle information and characteristics, main
reasons of their slow integration in industry. Nonetheless, a
plethora of optimization-based algorithms has been applied to
EMSs in PHEVs, mainly in simulation environment in research.
These are classified into global (noncausal) optimization and
real-time (causal) optimization [31]. Their distinction is not
always clear as they are conditioned not only by the algorithm
itself but also by sample time, model accuracy, and parame-
ters definition, among other factors. The main optimization
algorithms encompass DP [32], equivalent consumption min-
imization (ECMS) [33], simulated annealing (SA), GA, par-
ticle swarm optimization (PSO), divided rectangle (DIRECT)
method [34], neural networks (NNs) [35], GT [36], sliding-
mode control (SMC), CP [37], analytical simplifications of the
previous algorithms, and model predictive control framework.
Their main characteristics and examples applied to the EMSs
of PHEVs are elaborated in the following.

III. OPTIMIZATION-BASED ENERGY MANAGEMENT

STRATEGIES FOR PLUG-IN HYBRID ELECTRIC VEHICLES

Here, a comprehensive survey of the state-of-the-art of opti-
mal PHEV EMSs is provided, including the main approaches
considered in the literature to date.

A. Dynamic Programming

DP is an algorithm able to compute global optimal solutions
in general control problems. The optimal solution is achieved
by minimizing an unwanted outcome considering present and
future cost of control decisions. This cost function J for DP de-
terministic implementation (DDP) can be expressed as [3], [32]

J =

N−1∑
k=0

gk(xk, uk, wk) + gN (xN ) (1)

where gN represents terminal cost; gk is additive cost incurred
at time k; and X , U , and W denote system states, control
decision, and disturbances, respectively [32], [38]. The optimal
cost to go of the initial step J0(x0) is calculated backwards
from N − 1 to 0, starting with end cost gN(xN ) and iterating

Jk(xk)= min
uk∈Uk(xk)

{gk(xk, uk, wk)+Jk+1 (fk(xk, uk, wk))} .
(2)

In contrast to enumeration methods, the DP computational
advantage lies in the decomposition of the problem into sub-
problems, which are easier to solve and require less com-
putational cost. Subproblem optimality is guaranteed through

the principle of optimality (PO): “Optimal policies have op-
timal subpolicies” [39]. These are solved using multiple-
state decision-making processes, and possible solutions are
studied via selecting only optimal combinations, which re-
duces searching space and thus calculation time [39]. It is
applicable to varied domains, including nonlinear constraint
dynamic processes and integer problems, and it can manage
several complex constraints applied to states and inputs [3],
[40]–[42].

Nonetheless, the algorithm itself is not easily tractable as
it usually engenders numerical hazards, and its computational
burden increases exponentially with the number of states and
control variables. This syndrome is called as “curse of dimen-
sionality,” which is an entrenched property of the Bellman’s
principle [42]. Furthermore, assuming that the full information
of the problem uncertainties is available prior to the solution
calculation, DDP computes the optimization backwards, from
the end to initial conditions. This mechanism seriously pro-
hibits DDP from real-time automotive control since drive cycle
information is often only partly known, highly changeable,
and vulnerable to strong disturbances [3], [43]. As a result,
DDP is widely utilized in offline analysis to benchmark alterna-
tive EMSs, inspire RB strategies design, tune control parame-
ters, and serve as training data for machine learning algorithms
[3], [44], gear shifting optimization, trip time reduction, etc.
[44], [45].

Examples of DDP optimal results used as training material
for NN-based EMSs can be found in [16] and [46]. Likewise,
DDP was used by Lin et al. to obtain implementable rules
for EMS and gearshift optimization in a hybrid truck [40]
and [47]. An investigation of the optimal EMS for a fuel-cell
hybrid is provided in [42], and gearshift control optimization is
assessed in [7], [40], and [48]. Alternatively, its online applica-
tion could be achieved with simplified models, integrated with
cycle preview capability [44]. Li et al. [7] proposed a future
speed prediction algorithm based on NNs and certain cycle
information, which enables DP-based optimization of a transit
plug-in hybrid electric bus. A DDP online application for com-
monly driven drive cycles was detailed by Larsson et al. [41],
where the cost-to-go is calculated offline and feedforward to
the online controller using a local polynomial approximation.
The primary implementation issue of DDP can be tackled using
stochastic DP (SDP), which replaces the disturbance vector
by a random Markov process, and are thus independent from
previous k values, not requiring future trip information. The
cost function in SDP is hereby reformulated as expected cost
in statistical terms [3]

J = Ewk

[
N−1∑
k=0

gk(Xk, Uk, wk) + gN(XN )

]
. (3)

SDP follows the same algorithm as DDP with expected
cost [3]. This approach was suggested to reduce drive cycle
dependence in [49] and [50] for PHEV EMSs. The shortest path
SDP (SP-SDP) was used by Opila et al. in [51] and later in
[52], with real-time implementation eased by extensive offline
computations stored in tables.
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B. Equivalent Consumption Minimization Strategy

ECMS was first introduced by Paganelli et al. in [33] and
[53], with the purpose of reducing fuel consumption in a hybrid
parallel powertrain. It consists of the calculation of an equiva-
lence fuel factor, which accounts for actual fuel consumed, fuel
consumed to recharge batteries, and fuel saved by using energy
recovered through regenerative braking. This represents the fact
that electricity accumulated in the battery is not “free” when
proceeding from the engine recharging mode and allows for
unifying fuel and electricity consumption in a single objective
[43], [53]:

min

(
N∑
t=1

ṁfeq(t)

)
∀ t (4)

ṁfeq(t) = ṁf (t) + ṁfem(t) = ṁf (t) + s(t)
Pbatt(t)

QLHV
(5)

where N , ṁfeq, ṁf , ṁfem, s, Pbatt, QLHV, and t are, respec-
tively, trip duration, equivalent fuel flow, actual fuel flow into
ICE, equivalent fuel flow used by the EM, fuel equivalence
factor, battery power, fuel lower heating value, and time step
[43], [53]. ECMS was initially designed for HEVs operating
in CS mode, using the equivalence factor to prevent from
sudden battery depletion [12], [43]. In PHEVs, this strategy
targets, instead, CD mode, and consequently, the SoC reference
is not a fixed value but a scheduled battery depletion along
the trip.

ECMS is derived using the Pontryagin’s minimum principle
(PMP) optimality conditions, which return a local optimization
algorithm. PMP assumptions and equations derivation can be
found in [53]–[55] and [43], which includes Lagrange multipli-
ers. These simplifications result in an algorithm more computa-
tionally efficient than DP and well suited for potentially online
applications, which can generate controllers close to global
optimal solution with appropriate tuning of the equivalence
factor. This is, however, not straightforward, due to its high
sensitivity to drive cycle characteristics [43].

ECMS has proved to outperform RB in a simulation envi-
ronment [15]. Triboli et al. used PMP results to inspire an RB
strategy, also validated through simulation, comparing it with
CD–CS and conventional powertrain [17]. An application of
ECMS to PHEV is described by Stockar et al., who obtained the
optimal equivalence factor through offline iterations, studying
its influence in CD–CS versus BM [54]. However, ECMS
online implementation requires further reduction of the com-
putational time. This issue is addressed by the same authors,
who proposed solving the Hamiltonian offline and storing the
optimal results in a map to facilitate its use online [43]. Further
simplifications have been introduced to explore regular patterns
in the solution, which allow for PMP approximation using
piecewise linear equations in [18]. Fuel equivalence factor
online tuning is achieved by Musardo et al. through an adaptive
ECMS (A-ECMS), which is able to automatically modify the
parameter based on trip information with periodical online
updates [56]. Similarly, Tianheng et al. presented an A-ECMS
using NN to predict future cycle demand in [6].

Fig. 2. (Top) MPC basic problem structure and (Bottom) single iteration of
MPC algorithm [57].

C. Model Predictive Control

As already mentioned, trip information is critical to EMSs in
PHEVs. MPC offers such a predictive scheme that future cycle
information can be incorporated into various EMSs [57]. Its
operation comprises four main steps: 1) prediction over a fixed
horizon with length N , which depends on the historical data
recorded and system model; 2) control policy calculation from t
to t+N based on the previous prediction; 3) application of the
control policy calculated for the current instant t, discarding the
rest; 4) update with real measurements at t, and return to Step 1.
Using fast control algorithms in step 2 is particularly recom-
mended due to MPC iterative computations [24]. Fig. 2 shows
the MPC framework and one iteration step.

The algorithm performance relies on model quality, sampling
step, and prediction horizon length. The horizon length has to
be tuned accordingly with control strategy used, computational
effort, model accuracy, and external conditions and distur-
bances [57]. MPC can be also combined with GPS information,
improving the prediction results by means of past, present, and
future driving conditions [58].

ECMS would benefit from additional drive cycle information
through predictive algorithms such as MPC. It can be used to
tune systematically the parameters, which will be less depen-
dent on the drive cycle. Furthermore, MPC does not require
full information of the drive cycle, as it happened with DDP.
Instead, the prediction horizon and implementation of faster
algorithms, such as quadratic programming (QP), allow for its
potential application in real-time control [24]. This framework
was used by Sun et al., who proposed a two-level EMS using
traffic information, MPC, and NN, for long-term and short-
term forecasts [13]. Borhan et al. used QP in [24], and a PMP
in a later publication, easing MPC computational burden [59].
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A Lagrange multipliers derivation is detailed by Kermani et al.
in [60], where the functions are approximated by maps and
embedded into MPC framework. Using the same principle as
in SDP, Ripaccioli et al. proposed a stochastic MPC approach,
which models driver demand as a Markov process, and reduces
the computational effort implementing QP when compared with
SDP [61].

D. Derivative-Free Algorithms

Derivative-free methods mainly concern metaheuristic algo-
rithms inspired in nature and DIRECT deterministic method,
which is detailed in Section III-D4. They are utilized to solve
optimization problems with large search space of likely solu-
tions. The main metaheuristic algorithms employed by (P)HEV
EMSs are SA, GAs, and PSO [26], [34], [62], [63]. These
algorithms do not require derivative calculations but harness
alternative methods to populate candidates for optimal solution.
This solution search depends on certain parameters that facili-
tate getting rid of local minima, although convergence to global
optima cannot be generally ensured [64].

1) Simulated Annealing: SA is a method inspired in the
annealing process of metals. The solution is searched through
a stochastic technique that takes the solution candidates that
show improvement over the objective function but keeps sub-
optimal solution candidates which still agree with a defined
criterion as well. This characteristic prevents the algorithm
from being trapped in local minima and enhances its evolution
toward global optimality [62], [65]. The solution variability
is controlled by the “temperature” of the iteration and rated
using the objective function. The temperature decreases with
the number of iterations, i.e., a “cooling down” effect, evolving
from global to local optimal search [62], [65]. New solutions
are only accepted when meeting the Boltzmann criterion with
monotonically decreasing temperature parameter, i.e.,

p′ < exp

(
−ΔE

T

)
with T [k + 1] = α · T [k] (6)

where p′, ΔE, T , and α are a random uniformly distributed
value [0 1], comparison between current and candidate solution,
temperature of the iteration, and cooling parameters, respec-
tively. SA is relatively easy to implement and provides satis-
factory results with a low computation burden, which makes it
feasible for real-time applications [34], [65]. It was developed
to solve combinatorial problems, generating competitive solu-
tions when compared with DP in limited simulation time [64],
[66]. It can also be readily extended to continuous optimization
problems. The SA tradeoff between accuracy and calculation
time can be controlled by termination conditions, which are
usually expressed in terms of limited iterations and accepted
tolerance [62], [64], [66].

An example of SA application to hybrids control is pre-
sented by Wang et al., who developed an EMS for a series
HEV. The simulation results showed convergence improvement
when compared with the DIRECT method for a fixed number
of iterations [67]. SA is combined with RB to develop the
EMS of an EV with two electrical power sources, battery, and

supercapacitor. Long-term energy management is determined
using RB providing a reduced search space, whereas short-
term power management optimization is performed with SA.
The results are validated in simulation environment in [64] and
later in [65]. Chen et al. derived an EMS based on PMP for a
PHEV and leveraged SA to search for optimal engine-on power
and maximum current coefficient, easing the computation for
random driving conditions [66]. Its convergence capabilities
were upgraded by combining SA with GA in [68]. This hybrid
algorithm took advantage of robust global convergence of GA
in earlier stages, and reduced later phases runtime using SA.
Similarly, SA and PSO convergence deficiencies are compen-
sated by combining both algorithms to form a so-called PSOSA
in [69].

2) Genetic Algorithm: GA is a stochastic method inspired
on natural selection and genetic evolution and a particular
case of evolutionary algorithms. It consists of three phases:
reproduction, crossover information, and mutation, which in-
volve randomness to ensure population diversity. In each of the
iterations, the solution is coded in simulated “chromosomes.”
Then, the best candidates are selected according to the objective
(fitness value) and deployed to populate the next set of solutions
following the previously listed steps. The process eventually
converges to “the best solution,” a satisfying tradeoff between
computational effort and precision [62], [70], [71]. However,
due to limited runtime, this algorithm may deliver suboptimal
solutions and does not explicitly enforce constraints, which
need to be considered in the form of penalty functions intro-
duced into the fitness function F [71]:

F (x) =
1

J(x)
+

ncon∑
t=1

αi · Pi(x) (7)

where J(x), αi, and Pi(x) are, respectively, objective function,
positive constant penalization, and penalty function for ith
constraint, where J(x) is maximized while F (x) is minimized
to penalize for constraints violation. This algorithm provides
good performance even when dealing with complex problems.
Furthermore, it only saves current states and last population,
requiring low memory resources. It is also compatible with a
broad variety of models, such as linear and nonlinear models
with continuous or discontinuous-time form. One of the main
strengths of GA, compared with other optimization strategies, is
the capacity of parallelism detection between different agents,
which is particularly beneficial to computing Pareto solutions.
It can also include elitism to make sure that the best solutions
are passed to next iterative step without major changes [62].

GA is sometimes combined with other algorithms to improve
the combined performance. Chen et al. [70] used GA to op-
timize the engine power in a power-split PHEV, whereas the
optimal battery current was calculated using QP, provided that
the model was expressed in quadratic terms. The parallelism
property was exploited by Bashash et al. [72], where GA was
adopted to optimize two conflicting objectives, i.e., energy cost
and battery health in a PHEV. GA was also applied to a parallel
HEV energy management to minimize fuel consumption, along
with emissions [71].
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Fig. 3. Representation of three iterations of the DIRECT method [26].

3) Particle Swarm Optimization: PSO was introduced for
the first time in 1995 by Kennedy and Eberhart. It is inspired
in the behavior of social organism moving in groups, such as
swarms, ant colonies, and bird flocking, which share informa-
tion within the members. PSO is also considered a particular
case of evolutionary algorithms, due to the solution population
characteristic similar to the crossover mechanism in GA. This
algorithm populates particles states, position, and velocity. Par-
ticles can interact locally between each other with the purpose
of interchanging information and can store their last best posi-
tion and group best solution, with the goal of improving the next
population. The convergence behavior depends on previous cal-
culated solutions and particle velocity [34], [69], [73]. All par-
ticles update their position xi

d and velocity vid according to [73]

vid(k + 1) =wvid(k) + c1 · r1 ·
(
pBesti(k)− xi

d(k)
)

+ · · · c2 · r2 ·
(
gBesti(k)− xi

d(k)
)

(8)

xi
d(k + 1) = xi

d(k) + vid(k + 1) (9)

where i denotes each particle, pBest and gBest are particle and
global best-found location, and w, c1, c2, r1, and r2 are inertia
weight, two positive constants, and two random parameters
within [0, 1], respectively. Maximum and minimum velocity
values are constraint within ±vmax

d . PSO is robust to complex
objective functions and merely requires population of two vari-
ables per particle (i.e., position and velocity), and iteration. The
small number of tuning parameters facilitates its implementa-
tion and reduces its sensitivity to initial solutions, when com-
pared with other metaheuristic optimization algorithms [34],

[69], [73]. The basic PSO algorithm can be adapted to accept
problems with constraints, as detailed in [74].

A comprehensive comparison of derivative-free algorithms,
SA, GA, PSO, and DIRECT, was carried out in [34]. These
algorithms were compared, in terms of fuel consumption, vehi-
cle performance, and computational characteristics, for a fixed
number of iterations. The results identified PSO and GA as
winning approaches, with PSO being slightly superior [34].
PSO performance can be enhanced by defining bounds in
search scope inspired on “experience” over the best solutions.
Nevertheless, despite probable accuracy, the convergence speed
is limited [75]. The online applications of PSO as an EMS
for PHEV was analysed by Lin et al. [76]. Satisfactory results
were obtained with a long simulation time, making its online
implementation difficult. The authors defended the necessity
of faster algorithms to obtain a real-time controller from near-
optimal PSO results. This issue was addressed in the case study
using PSO in combination with an NN.

4) DIRECT Method: DIRECT is a sampling derivative-free
method, a modification of the standard Lipschitzian algorithm,
where the weights of local and global search are equal. DIRECT
scales the searching space into fixed areas with cubic shapes
and searches for optimal solutions at the center point of each
area. The best solutions are identified and resampled following
the longest coordinate direction of each cubic division. The
algorithm completes until termination conditions are reached,
which can be expressed in terms of solution accuracy and/or
number of iterations. The result’s suitability is rated through
a cost function [26], [34]. Fig. 3 shows three iterations of
DIRECT method.
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Fig. 4. Example of neuron body with multiple inputs, affine operation, and
single output [35].

Compared with other metaheuristic optimization algorithms,
DIRECT is relatively simple as it does not require tuning param-
eters and can handle both equality and inequality constraints.
Moreover, it is robust in the presence of nonlinearities and
disturbances [26], [34]. Several applications of the DIRECT
method to HEV EMSs can be found in the literature, including
that by Rousseau et al. [26], who used the Powertrain System
Analysis Toolkit to design an EMS with tuneable variable
thresholds. The DIRECT method was applied to determine the
most influencing parameters and their optimal values to design
an RB for a set of drive cycles. Gao et al. analyzed DIRECT
performance by contrasting it with other derivative-free ap-
proaches in simulation environment for HEV fuel consump-
tion reduction subjected to constraints on vehicle performance,
which has been already referenced in PSO [34]. Whitefoot et al.
used DIRECT to minimize fuel consumption in an HEV in
offline investigation. The algorithm ran for a fixed number
of iterations in order to procure controllable computational
burden, but it did not allow evaluation of the global optimality
of solution. Therefore, this paper elucidated an offline imple-
mentation of DIRECT, without allusions to likely online appli-
cations [77]. DIRECT limitations for real-time applications are
also revealed in [78]. The authors highlighted the capability of
finding regions with local/global optimum solutions but argued
the necessity of considerable time to converge into a solution
with a small error tolerance.

E. Neural Networks

NNs perform brain-like computations inspired in biological
brain behavior, namely, operations emulating neuron activities
as natural systems. As seen in biological brains, each neuron
receives impulses from other neurons through their dendrites.
These signals are processed in the neuron’s body, and depend-
ing on inputs characteristics, an output signal is generated,
which is sent to other neurons. Fig. 4 shows an example of a
neuron that processes the weighted input signals

∑n
i=0 wixi,

and returns the result sign y with respect to a threshold t.
Neurons undertake affine transformation and linear/nonlinear
operations in a very efficient fashion. These operations are
usually expressed with transfer functions [35], [79]. Neurons
can be combined to create networks by building layers, usually
using feedforward configurations (see Fig. 5). The number of
layers and neurons can vary according to the process complex-
ity, desired fidelity, and model nonlinearity. This architecture
has to be defined prior to the calculation of neuron parameters,
which is always conducted using training data and the error
backpropagation algorithm [46], [62], [76], [79].

Fig. 5. Example of NN structure for future speed prediction, including input,
hidden, and output layers, as well as prediction level in terms of past and future
information [13].

The training data can be labeled with the desired output when
the strategy to follow is clear if the process is well known and
understood. However, it is also possible to work with unla-
beled data, which requires additional pattern recognition. The
error convergence in NN is enhanced using error backpropaga-
tion, which targets to optimize the reduction of training error
[35], [62]. The training process consists of least-squares regres-
sion, where the initial values of dendrites weights are assigned
randomly [62], [79]. The amount and quality of training directly
influence the NN performance, e.g., overfitting risk. However,
there exists an optimal amount of training data and therefore
excess training does not always imply the performance im-
provement [62], [76]. NNs are easily implemented and can
develop surrogated models of the underlying processes. These
models can reproduce complex behavior with high fidelity and
low computation burden: the so-called “intelligent decision-
making.” Furthermore, NNs are treated as blackbox, and no
additional understanding of the process physics is required
for its utilization [62]. Nonetheless, while a well-trained NN
efficiently extrapolates solutions, this is not always guaranteed
when the use cases are not contemplated on the training data.

Applications of NNs to automotive purposes are supported
by the statement included in [46], which affirms that “the algo-
rithms that require iterations are not convenient for hybrid vehi-
cle power distribution problem.” Khayyam and Bab-Hadiashar
[28] proposed NN application in “hybrid multilayer adap-
tive neuro-fuzzy inference.” This algorithm provided learning
characteristics to the FL controller to adapt and increase its
application range, which can automatically tune its values. The
authors defended the importance of finding a tradeoff between
algorithm performance and information requirements, through
analysing the influence of road, environmental conditions, and
driver’s behavior. Following the previous reasoning, Chen et al.
[16] also supported the need of intelligent controllers that pur-
sue a good tradeoff between computational effort and algorithm
robustness for a wider range of use cases. The authors employed
NN to minimize the fuel consumption of a PHEV, based on
training data from DP results of varied driving conditions. The
NN consisted of two different modules, N1 and N2, which
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worked with different levels of trip information. Murphey et al.
[80], [81] presented a power-split HEV EMS based on machine
learning also trained with DP optimal results. This strategy
combined road type and congestion level prediction, and used
NNs to optimize battery power and engine speed. Likewise,
Boyali et al. [46] developed a neuro-DP approach for HEV,
where again the NN was trained with DP solutions. The re-
sultant controller was also able to operate in real time and
exhibited parallel computation capabilities validated through
simulation. Alternatively, Lin et al. [76] synthesized an NN
controller trained with data generated using PSO. Other NN
applications concern their combinations with other algorithms
to diminish computational effort. For instance, Sun et al. in-
corporated NN into MPC over a short-term prediction horizon
[13]. The same authors also presented a future speed prediction
algorithm based on machine learning including Markov chain
and NN. They claimed to obtain 92% fuel optimality using
NN-based predictor when compared with the MPC benchmark
solution using DP in simulation environment [82].

F. Game Theory

GT deals with the interaction between decision-makers, also
known as players. The players pursue defined objectives and are
considered agents with self-interest. GT is inspired by the main
characteristics describing ordinary games, which typically in-
volve various players, a set of rules, and a number of allowable
strategies. These available actions have an associated payoff,
which rates how beneficial or detrimental the “movement” for
each player is. The game itself only describes what the players
can do, but not the ultimate actions, in the same way the model
equations constrain the variables feasible values [36], [83],
[84]. Every strategy followed by one player generates a benefit
for the named agent and a loss for the rest, which is the so-
called payoff. It is assumed that each player acts rationally
toward the action that maximizes its own payoff, and the game
evolves toward the steady-state case, where no player has any
incentive to change its state. This is known as a Nash equi-
librium, a nonunique situation usually difficult to reach which
does not necessarily represent the fairest outcome for all players
[83]–[85]. Considering a two-player noncooperative game with
follower and leader feasible strategies u ∈ U and w ∈ W , re-
spectively, the players tend to achieve in each stage a Stakelberg
equilibrium (marked by ∗), described as [85]

J(u∗, w∗) = maxw∈W minu∈U J(u,w). (10)

Games can be classified in two groups depending on players’
behavior with respect to other players. On the one hand, games
are “noncooperative” when the players take individual actions
to maximize their own payoff. On the other hand, games are
“cooperative” when the actions are taken to maximize group
objectives. One example of noncooperative games could be
the interaction between driver and powertrain. This can be
understood as the competition between the conflicting ob-
jectives, e.g., driver desired performance and fuel economy.
Alternatively, the cooperation of the ICE and the EM, with
the purpose to maximize their combined performance and fuel

saving, represents a cooperative game [36]. The most common
game in the literature for EMSs is two-player noncooperative.
Dextreit et al. [85], [86] applied this approach between driver
and powertrain, to develop the EMS for an HEV Jaguar Land
Rover Freelander 2. The driver intention was to obtain the de-
sired vehicle performance, which resulted in inefficient working
conditions, whereas the powertrain itself targeted fuel con-
sumption optimization. This application highlights one of the
main benefits of GT, which is the consideration of the driver as
a part of the control strategy, anticipating that the driving style
is intimately coupled with fuel consumption. The GT-based
EMS was also compared with DP and MPC, showcasing its
benefit with respect to the system robustness in simulation
environment. GT can be implemented with receding horizon in
the same way as MPC; however, its computation burden can
be comparable to DP, even when it uses simpler equations.
This makes its online implementation difficult in vehicular
applications. Some authors have tackled this problem with
model simplifications through static maps and vector-based
integration, which develop time- and drive-cycle-independent
strategies [85], [86]. A similar application of GT was described
by Gielniak et al. for a fuel-cell HEV [87]. The game was
again described by conflicting interests, i.e., powertrain effi-
ciency versus vehicle performance. The authors underlined the
fact that GT requires deep knowledge of the system elements
and consequently cannot be extrapolated to other vehicles
with different components. This constitutes one of the main
drawbacks. GT had further applications for PHEVs to develop
optimal charging strategies, “smart charging,” as detailed by
Mohsenian-Rad et al. [83] and Sheikhi et al. [88].

G. Sliding-Mode Controller

SMC is an algorithm inherently robust to nonlinearity and
modeling uncertainty, which can efficiently work with system
structures that alternatively switch. It is also insensitive to
parameters change and disturbances, a salient characteristic
that makes it useful for vehicular applications [19], [89]. This
strategy requires the definition of a sliding surface s(x), which
is also known as a switching function. The controller u(t) is
usually the same as s(x) and designed to converge to the sur-
face, i.e., s(x) = 0, in finite time, and to maintain its position,
i.e., the “ reaching condition.” This is designed in the form of

ui(t) =

{
u+
i (t), for si(x) > 0

u−
i (t), for si(x) < 0

}
i = 1, 2, . . . ,m; u+

i (t) �= u−
i (t). (11)

The complexity and performance of SMC depends on the
sliding surface design. Consequently, the mathematics involved
in this algorithm can be relatively complicated, in contrast with
most of the foregoing approaches. In [19] and [89], an SMC-
based controller was developed to manage a series HEV with
all-wheel drive for military purposes. This controller responded
to the necessity of a robust solution to nonlinear time-variant
systems surrounded by parameter variation and external distur-
bances. Its robustness also allowed the use of simpler vehicle
models. However, the applications of SMC have been more
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dominant in combustion engines control within hybrid power-
trains, rather than EMSs on its own. There is a case in [89]
where SMC is exploited to improve engine operation conditions
for optimizing the overall HEV efficiency; this was followed by
[90], discussing a similar application to EMS design.

H. Convex Programming and Analytic Solutions

Due to the complexity of vehicle models, the aforemen-
tioned EMSs have to deal with mathematical difficulties, such
as nonlinearity, various constraints, and computation burden.
Some studies also explore simplifying techniques to ease the
implementation issues of EMSs, including linearization, QP,
CP, and derivation of analytical equations. These formulations
are amenable to powerful solvers available, which typically ex-
tract optimal solutions in reduced time and potentially increase
the solution robustness. The quality of solution is, however,
compromised by declined model fidelity after simplifications,
thereby attaining near-optimal results [91].

CP is a generalization of linear programming and QP. In
CP problems, local optima coincide with global optima, sim-
plifying extensively the search of solution. Nevertheless, the
algorithm can only be applicable when the problem is strictly
expressed in convex terms, which requires both cost function
and inequality constraints expressed in convex form, and affine
equality constraints [37], [92]. Convex vehicle models need
to be simplified to comply with convexity requirements [10]:
1) eliminate integer decisions, i.e., engine on/off, gear shift,
etc.; 2) equality constraints must be relaxed if they are orig-
inally not affine; 3) use new variables to preserve convexity,
such as battery energy instead of SoC; and 4) problem coding
in discrete time. The formal definition of a convex function f is
described as [92]

f(θx+(1−θ)y) ≤ θf(x)+(1−θ)f(y), 0 ≤ θ ≤ 1 (12)

where x and y are two points of the f function space. Numerous
CP applications to (P)HEV EMSs have been reported in the
recent literature. Zhang et al. [14] dealt with an analytical solu-
tion for the power management of a PHEV, where the vehicle
model is simplified using quadratic equations. The solution
provided a simulation error of 3%. Egardt et al. [92] improved
PMP performance via expressing the cost function in convex
terms and approximating the model with quadratic expressions.
Nevertheless, the model equations required convenient refor-
mulation following convexity rules, which compromised its
accuracy. Another analytical solution for PMP was proposed
by Serrao et al. [93]. Hu et al. designed two EMSs based on
convex optimization to study fuel-to-traction and recuperation
energy efficiencies in a series plug-in hybrid electric bus [94].
Beck et al. presented two approaches for a real-time adaptive
EMS with QP optimization. Both solutions were compared in
simulation environment with the offline DP benchmark, demon-
strating commensurate optimality with a significant decrease in
computational time [95]. A similar strategy was followed by
Koot et al., where they used a QP problem formulation and DP
as a benchmark [96]. The diminution of the strategy complexity
not only encourages its real-time implementation but permits
integrating new variables into the optimization as well, e.g.,

catalyst air temperature to reduce poisonous emissions [97],
battery health [71], [72], and fuel cell health [98], [99]. CP has
also been successfully implemented for EMS in a PHEV with a
continuously variable transmission, which eliminates gearshift
integer variable [100]. Furthermore, CP-efficient computation
enables increasing the number of system states and control
variables for offline holistic studies, including EMS between
others [101]–[104].

CP main limitation, nevertheless, lies in the formulation of
an appropriate vehicle model. For instance, switch decisions
cannot be optimized in the CP problem, and consequently, the
optimal gear shift cannot be easily pursued with high accuracy
[18]. Sciarretta et al. [58] proposed a simplification of objective
function for an HEV EMS, reaching a possible analytic solu-
tion to the optimization problem. However, they found limited
applications of such an algorithm, owing to strong assumptions
over the battery SoC.

All the foregoing EMS approaches are straightforwardly
summarized in Table I, in terms of main characteristics and
application examples.

IV. ENERGY MANAGEMENT STRATEGIES INTERACTIONS

WITH INTELLIGENT TRANSPORTATION SYSTEMS

As demonstrated in most optimization-based EMSs men-
tioned in Section III, future trip information is of utmost impor-
tance for reducing fuel consumption in PHEVs [9]. Taking the
most pessimistic but probably realistic situation of no future trip
information into account, Huang et al. proposed a predictive
algorithm based on machine learning, which uses 150 s of past
cycle information to predict the next 50 s of vehicle speed [105].
Although there is a relationship between current and future
velocities, real-world cycles are, nonetheless, characterized by
a certain level of randomness and strong disturbances due
to traffic conditions. This has motivated growing research on
EMSs with entire trip information [106] or with robustness to
different levels of trip knowledge. As elaborated in [20], trip
information is typically classified into four levels: 1) full infor-
mation about distance, velocity, and road profile; 2) information
about distance and road profile, along with estimated velocity;
3) trip distance; and 4) no information.

The increasing popularity of smartphones promotes vehicles
with GPS, wireless connection, and real-time traffic conditions,
which can be obtained, for example, using Google services.
Such information, combined with MPC, was exploited by
Sun et al. [13] who developed a two-level controller for EMS of
a power-split PHEV. Real-time traffic information was absorbed
to perform a long-term planning at a supervisory level to
accomplish the optimized reference SoC trajectory. This tra-
jectory was then tracked at a lower level using MPC-optimized
short-term engine torque and speed, given the availability of
short-term velocity prediction provided by an NN forecaster
[13]. Several other examples of EMS incorporating GPS infor-
mation and route knowledge were shown in [9]. The importance
of GPS and GIS information for global PHEV optimization was
also showcased in [8].

In recent years, an escalation in research initiatives has been
observed to promote intelligent EMSs conscious of external
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TABLE I
MAIN EMS CHARACTERISTICS AND APPLICATIONS SUMMARY

environmental conditions, such as trip knowledge. Gong et al.
[19], [107] examined the impact of ITS information on the
PHEV fuel consumption with the objective to find the relation-
ship between vehicle performance and velocity profile, through
a statistical analysis of drive cycle. In a previous publication,
the authors also underscored the value of interplay among ITS,
GIS, GPS, and traffic flow modelling. Historical data and real-
time information were fused to provide enough information for
EMSs optimization through global methods [108].

A different approach is proposed by Ozatay et al., who
targeted cloud-based future speed optimization for a group of
vehicles [109]. The optimization was performed within three
servers with “unlimited” resources. These servers received data
from several vehicles, containing full information of traffic and
road conditions. The data are used to compute optimal strate-
gies, which were fed back to the driver serving as guideline. As
the computational burden is generally not an issue in the cloud,
DP can be utilized to assure global optimality. Accordingly,
the vehicle can be exempted from expensive engine control
unit capacity, and thus, its cost can be reduced. Moreover, this
also allows for using more accurate models and extending the
results to different drivers in similar conditions. Ozatay et al.
concluded with vehicle test results displaying a fuel reduction
in highway driving of 14.1%, when the reference velocity was
perfectly followed, and approximately 7.4% in urban driving,
given driver corrections [109]. Fig. 6 shows a similar approach,
where vehicles driving in the same route shared and received
information from the database. Fig. 7 discloses the key proce-
dures taking place internally in the vehicle control system.

A comprehensive study of the major impact factors on fuel
consumption was provided by Marano et al. in [110], with
a particular emphasis on the weather conditions, including
temperature and wind direction effects on rolling and aerody-
namic resistance. In addition to the clear importance of traffic
conditions for fuel consumption, the way the driver faces the
driving task has also a major effect. Reichart et al. [111]
claimed more than 16% improvement in fuel consumption after

Fig. 6. Connected vehicle framework with interchange of information with a
traffic database (figure is extracted from [13]).

Fig. 7. Connected PHEV framework. It is able to receive information from
ITS, GPS, GIS, etc., and combine internal signals measured to compute an
adaptive control strategy.
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intervening in driver’s driving style, while obtaining only 3%
time penalty over the drive cycle execution in a conventional
vehicle platform, according to simulation results. As a matter of
fact, driver monitoring and driver style correction can improve
noticeably fuel economy, as confirmed by Syed et al., where
27.85% improvement in fuel efficiency by correcting driver
driving style is observed in real-time simulation [112]. Driving
style correction can be particularly critical to (P)HEVs, as
small deviations in the torque demand, can incur significant
changes in the EMS, triggering, for instance, ICE starting.
A detailed evaluation of driving-style influence on different
vehicle platforms, BEVs, HEVs, and PHEVs, was conducted
by Neubauer et al. on a vehicle simulator in [113].

The optimal vehicle speed profile can be obtained combining
trip information and driving style to guide drivers for minimal
fuel consumption. However, it necessitates a good coordina-
tion of different sources, extensive data processing, and heavy
computational burden. Consequently, onboard computational
capability can be a limiting factor in this respect. With the latest
research tendencies, vehicles are advocated to be considered a
part of a larger group that can be optimized at a higher scale.
Cloud computing and ITS systems can ease the computational
stress onboard and provide an overall fleet optimization [9],
[109]. Furthermore, this could set a useful framework for
increased vehicle automation toward autonomous driving.

V. OUTLOOK AND FUTURE TRENDS

There has been a wealth of efforts on PHEV EMSs, in-
cluding both rule- and optimization-based ones as revisited in
Sections II–IV. As a prosperous area of research, various inno-
vative strategies are expected to emerge for enhancing the
performance, public acceptance, and market penetration of
PHEVs, instead of just repeating a number of existing ap-
proaches. Further research opportunities will definitely gain
considerable momentum from the advancement of optimiza-
tion algorithms, ITS, smart grid, smart city, and other
cyber–physical systems. In the following, we briefly but non-
trivially discuss the future trends of PHEV EMSs from differ-
ent perspectives, which could substantially contribute to safer,
greener, and cheaper vehicles.

A. Optimization Algorithms

As elucidated in Section III, each optimization algorithm
has its own strengths and limitations, a key reason why there
has been no consensus technique to address the EMS problem.
Consequently, a mixture of optimization algorithms with com-
plementary characteristics is a promising direction of PHEV
EMSs. For example, Elbert et al. combined CP with PMP to
successfully optimize both the ICE on/off signal and power split
in a series hybrid transit bus. PMP analytically obtains the ICE
on/off strategy, which is then used, along with convex optimiza-
tion, to compute the optimal solution. This combination allows
for the introduction of integer variable optimization within the
convex framework [114]. Similarly, Nüesch et al. combined DP
with CP to resolve a mixed-integer EMS optimization problem,
which allows integrating engine on/off and gearshift into the

convex optimization [52]. Such integer variables are precal-
culated over the entire drive cycle to enable expressing the
optimization problem as convex terms. Panday et al. presented
a synergy between GA and PMP. In this case, PMP received
optimal parameter values from GA and used them to calculate
the optimal strategy [115]. More such combinations could be
anticipated in the near future.

In parallel with the previous work, optimization itself rep-
resents a vast area of research. Novel optimization algorithms
are continually emerging, some of which are expected to solve
PHEV EMS problems with certain unique advantages, e.g.,
pseudospectral method [116] and hybrid optimal control law
[47]. In addition, machine learning (data-driven optimization) is
a rapidly growing area and provides numerous advanced learn-
ing techniques, e.g., NN, support vector machine, Bayesian
inference, and reinforcement learning [117]. These could be
integrated into the current PHEV EMSs to strengthen their
autonomy and environmental consciousness. For instance, rein-
forcement learning has been recently successfully implemented
in applications related to buses commuting within the same
route [118].

B. Consideration of Additional Model Dynamics and
Cycle Information

Quasi-static powertrain models had a prevalent adoption
in synthesizing PHEV EMSs because of their simplicity and
fast computation. However, the results from simulation and
real-test inevitably differ. To bridge the gap, dynamic models
are welcome, such as transients-involved ICE models [110]
and polarization-covered battery models [119]. Furthermore,
PHEV have intense battery use and grid impact, comparable
with battery electric vehicles. This fact needs to be addressed
with appropriate battery models able to provide more realistic
behavior [120], including extreme temperature working condi-
tions and cold temperature operation [121]. The concomitant
challenge is that some computationally intensive optimization
algorithms may not be directly applicable.

Another key requirement for optimal vehicle operation is the
available trip information. This is pursued through exploiting
commuting trips, bus preestablished routes, and predictive algo-
rithms, including MPC and machine learning. These algorithms
have been used to develop the so-called adaptive strategies that
update the parameter values of control strategies according to
the route characteristics, e.g., A-ECMS [6], [95], [122]. Never-
theless, trip information needs to be acquired through additional
instrumentation installed onboard and consumes computational
effort and memory resources, increasing the vehicle cost.

C. Multiple Control Objectives

Most of existing PHEV EMSs concentrated on a single con-
trol objective, i.e., fuel consumption minimization. However,
many other design concerns should be considered as well, in-
cluding drivability for comfort [34], [71]; battery health for cost
effectiveness [49], [72], [93]; emissions for ecodriving (which
can be critical when PHEVs have minimum engine use and de-
lay optimum exhausts temperature conditions [13], [18], [49],
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Fig. 8. PHEV EMS in a longer time scale, e.g., 24-hour energy management
including on-road driving and charging/discharging during parked (grid-to-
vehicle, vehicle-to-grid, and vehicle-to-house modes). The house controller and
PHEV EMS can communicate each other, to coordinate energy utilization in
driving and parking.

[97], [123]); ICE and battery thermal properties for safety; and
global CO2 emission, such as electricity generation [110], etc.

Incorporating some of such targets to enable multiobjective
PHEV EMSs is one of the future research directions. One main
challenge is how to achieve high-fidelity models depicting such
concerns, e.g., battery degradation and thermal models suitable
for PHEV operation. Battery health models considered in the
existing (P)HEV EMSs are generally too simple to capture both
capacity and power fading [66], [99]. Additional objectives also
cause a significantly heavier computational burden. Accord-
ingly, the difficulty of efficiently generating credible Pareto so-
lutions arises [91]. Alternatively, the objective functions can be
simplified either with single objective function combined with
constraints over “less important” targets or through objectives
weighted combination into one function [71]. On the one hand,
the first approach returns suboptimal results over the constraint
targets. On the other hand, weighted-objective optimality is
questioned by the selection of weight values [91]. Despite that
multiobjective approaches have been addressed using CP, it is
worth developing more computationally efficient optimization
algorithms to compensate deficiencies of the current ones.

D. Longer Timescale

The revisited EMSs were evaluated under a single drive cycle
or several concatenated cycles. Hence, the timescale consid-
ered was for merely onroad driving and was relatively short.
Nonetheless, there will be increasing interactions between
PHEVs, smart house, and smart grid, with the development
of smart meters and communication technology. As shown in
Fig. 8, this incentivizes a longer timescale (e.g., 24 h) EMS
problem, which manages energy utilization in both driving and
parking. First assessment of combined recharging and onroad
energy management in PHEVs was provided in [101] and [124].
More complicated PHEV activities are definitely worth careful
considerations in further research, such as vehicle-to-grid and
vehicle-to-house energy flows, subject to the intermittency of
renewables, and developing a new research stream, e.g., “smart
PHEVs charging.”

Fig. 9. Optimization of EMSs considering multiscale space and time via
connecting PHEVs with traffic, grid, and buildings (figure is taken from [9]).

E. Larger Space Scale

Traditionally, PHEV EMSs were evaluated at a single vehicle
level, and therefore, the space scale was relatively limited.
With the continual development of smart devices, vehicle-to-
vehicle (V2V), and vehicle-to-infrastructure (V2X) communi-
cation technologies, there will be increasing connected PHEVs
(see Fig. 9) and vehicle platooning, in the drive to increase road
capacity and overall energy efficiency [125]. The platooning
concept is usually associated with groups of heavy-duty vehi-
cles, where the longitudinal dynamics are controlled to reduce
intervehicular distance [126]. However, it is also applicable
to groups of light-duty vehicles sharing route and schedules.
Platooning will be developed along with the vehicular ad-hoc
network (VANET), wireless environment closely related with
ITS where data can be adequately exchanged [127]. Some
examples of this tendency are already present in the literature.
Baisravan et al. exploited vehicle connectivity advantages to
develop an EMS for a group of HEVs. The authors proposed
a two-level strategy, where the higher level controller benefits
from shared information from smart traffic lights, V2X, and
neighbors vehicles through V2V communication [128]. Like-
wise, Rios-Torres et al. targeted the reduction of fuel consump-
tion and trip duration through online coordination of connected
vehicles in merging road maneuvers using PMP [129].

The EMS problem of such a fleet of PHEVs might be
markedly different from the case of a single PHEV, due to
spatial distribution, intravehicle communication/control, sur-
rounding perturbation, and so forth. These unique attributes
can strongly motivate innovative and even revolutionary PHEV
EMS paradigms, e.g., multiagent cooperative EMS, coopera-
tive look-ahead EMS, distributed MPC-based EMS, and many
other advanced networked EMSs. Further, the level of vehicle
connection will bolster a gradual introduction of increasing
levels of automation. Luo et al. proposed an addition of
V2V communication to safely perform lane change for normal
and emergency cases and returning to lane [130]. Similarly,
Morales Medina et al. introduced a cooperative autonomous
T-intersection control based on V2V communication with vir-
tual platoons of vehicles [131]. Nevertheless, real-time traffic,
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ITS data, GPS, etc., assume a burdensome amount of infor-
mation required to achieve optimal situation awareness that is
critical to ensure safety in VANET [132], which will become a
thriving area of research.

VI. CONCLUSION

This review on PHEV EMS algorithms highlights strengths
and weakness of virtually all the existing approaches in the
open literature. It does not conclude with a single algorithm
preferred for PHEV energy management but advocates mixing
more than one to compensate for each own deficiencies. Never-
theless, it has been evidenced that the EMS cannot be really
optimized unless detailed information about the future route
is available. Since strong uncertainties surrounding driving
experience hinder accurate predictions, augmented vehicular
connectivity and evolution toward increasing levels of auton-
omy will mark a watershed for fuel consumption reduction and
strategy optimization. Such a new era will be presumably led by
information and big data and is highly probable to be advanced
by means of machine learning as a common framework.
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