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ABSTRACT

Early and accurate detection and localization afmf is an essential requirement of modern eargy\iiarning systems.
Video-based systems can be used for this purpasecver, flame detection remains a challenging iskieto the fact that
many natural objects have similar characteristiith ¥ire. In this paper, we present a new algoritftumvideo based flame
detection, which employs various spatio-temporaktifees such as colour probability, contour irregtyaspatial energy,
flickering and spatio-temporal energy. Various lgaokind subtraction algorithms are tested and coatiparresults in terms
of computational efficiency and accuracy are pressgerExperimental results with two classificatioethrods show that the
proposed methodology provides high fire detectetes with a reasonable false alarm ratio. FinallgD visualization tool

for the estimation of the fire propagation is audlil and simulation results are presented and diedus
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1. Introduction

Video-based forest surveillance coupled with impgecessing techniques for flame and smoke deteitione of the most
promising solutions for automatic forest fire déi@e due to its low cost and short response tinesides early detection of
wildfires, early intervention and efficient fire magement is also very important in fire fightinfyfile-fighters had access to
fire propagation estimation information, then firenagement would be considerably more efficient &l@y, the main

disadvantage of early warning systems based onovaieveillance is increased false alarm rates dueattospheric

conditions (clouds, shadows, dust particles), Irgffiections etc [1].

Especially in the case of flame detection, the nwdiallenge that researchers have to face is thetichend complex
nature of the fire phenomenon and the large vanatiof flame appearance in video. In [2], Toreyirak proposed an
algorithm in which flame and fire flicker are detat by analyzing the video in the wavelet domaihilevin [3] a hidden
Markov model was used to mimic the temporal behaviof flame. Zhang et al [4] proposed a contoureldaforest fire

detection algorithms using FFT and wavelets, whefagik and Demiral [5] presented a rule-based gewrelour model for



fire-flame pixel classification. More recently, Kb al [6] used hierarchical Bayesian networks fi@-flame detection and a
fire-flame detection method using fuzzy finite autta [7].

Despite the extensive research results listedenaliure, video based flame detection remains an ¢gsue. This is due
to the fact that many natural objects have singtaloburs as those of the fire (including the surrjouss artificial lights or
reflections of them on various surfaces) and caanobe mistakenly detected as flames. In this paperpresent a new
algorithm for video based flame detection, whiclptoys a set of spatio-temporal features of firehsas colour probability,
contour irregularity, spatial energy, flickeringdaspatio-temporal energy. More specifically, vasdiackground subtraction
algorithms are investigated and comparative reguitsrms of computational efficiency and accuraoy presented. In order
to accurately model the colour space of fire, a melour analysis approach using non-parametric tfindds introduced,
while the spatial energy of a candidate regiorsigreated by applying a 2D wavelet analysis onlytlom red channel of the
image. In addition to the detection of the flickerieffect, we introduce a new feature, the spatioptoral energy, in order to
further reduce the false alarm rate. The spatigptaal energy concerns the variance of the spati@tgy in a region of the
image within a temporal window and aims to identifie irregular changes of the fire's shape. For diserimination
between fire and non-fire regions, two classifizatmethods are investigated (a Suppor Support Yédtzhine (SVM)
classifier and a rule-based approach) and expetahersults with both approaches are presentedallffj a 3D visualization
tool for the estimation of the fire propagationdescribed and simulation results with differentsset parameters are
presented and discussed.

The rest of this paper is organized as followsS#ttion 2, the proposed methodology is presentddttan different
processing steps are described in detail. In Sed@icexperimental results with fire and non-fire addsequences are

presented, while Section 4 describes the 3D fiopggation visualization too. Finally, conclusioms drawn in Section 5.

2. Methodology

The proposed methodology initially applies backgbisubtraction in order to detect moving objectsl #men colour
analysis to identify candidate flame regions. Sinaadidate regions may correspond either to realdi to fire-coloured
objects, further processing is required for distaydfalse candidates. This processing aims to iffespatio-temporal
characteristics, which distinguish fire from firelgured objects. As a result, a set of extractedlfes is generated for each

candidate region and the final decision is made bhassifier as shown in Figure 1.
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Figure 1. The proposed methodology

The different processing steps of the proposedritihgo are described in detail in the following ssections.
2.1 Background Subtraction

Thirteen background subtraction methods have beealuated, both in terms of accuracy (using a tegtisnce with ground
truth data) and speed (which is very importantfiice detection applications). More specificallyetfollowing algorithms
have been evaluated: BGS 1: Adaptive Median [8],SB®B Gaussian Mixture Model [9], BGS 3: Improvedaftve
Gaussian Mixture Model [10], BGS 4: Running AveraB&S 5: Running Gaussian Average [11], BGS 6: Taapmedian
[12], BGS 7: Eigenbackground [13], BGS 8: BayeadSlfication [14], BGS 9: Improved Mixture of Gaisss [15], BGS
10: Adaptive Thresholding [16], BGS 11: Kernel Dign&stimation based Background Subtraction [17312: Adaptive
Background Extraction [18], BGS 13: Frame Differieigc To evaluate the performance of all these biakad subtraction
algorithms, we used a video sequence from the V8Siiforithm competition [19]. The selected videquence contains a
moving background (trees, bushes etc) and it wesrded by a fixed camera. The ground truth of fovagd objects in the
scene is available thus facilitating the evaluapioocedure.

In Figure 3 the corresponding execution times amws, while in Figure 2, the sensitivity vs.1-sfieiy values of all
algorithms are plotted, while. The default algamtiparameter values were used. Results show thaAdhptive Median
(BGS1) algorithm outperforms the others in termsafputational time, while in terms of accuracy #daptive Median
(BGS1), Temporal median (BGS6) and Bayes classifica(BGS8) are the most efficient methods. In experimental
results in Section 3 we have used the Adaptive Bre{@GS1) method.
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Figure 2. The execution times of the 13 backgroextdaction algorithms using their default parangter
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Figure 3. ROC curves of all 13 background extrarcttgorithms for the video sequence of [19].

2.2 Colour Analysis

The second processing step aims to filter out im@a €oloured moving pixels. Only the remainingglsxare considered for
blob analysis, thus reducing the required companati time of the whole processing. To filter ounHre moving pixels,
we compare their values with a predefined RGB aoldistribution created by a number of pixel-sampiesn video
sequences containing real fires.

Let X3, X,...,Xy be N fire-coloured samples of the predefined distribnitiUsing these samples, the probability density

function of a pixel;, can be non-parametrically estimated using thedtéin(Elgammal, 2000) as:
l N
Pr(x) = 2 Knlx =)
i=1

If we choose our kernel estimator functidf}, to be a Gaussian kernéd,=N(0,S), whereS represents the kernel
function bandwidth, and we assume a diagonal aatiogl matrixS with a different kernel bandwidths for thej™ colour
channel, then the density can be estimated as:

i(xnﬁxj)z

N 3 1 3
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Figure 4. (a) RGB colour distribution and (b) the
colour distribution with a global threshold around

each sample.

Using this probability estimation, the pixel isnsidered as a fire-coloured pixelRf(x)<th, where the thresholth is a
global threshold for all samples of the predefingstribution and can be adjusted to achieve a eeégiercentage of false

positives. Hence, if the pixel has a RGB value Wwhielongs to the distribution of Figure 4(b), thieis considered as a fire-
coloured pixel as shown in Figure 5.

After the blob analysis step, the colour probapitf each candidate blob is estimated by sumntiegcblour probability
of each pixel in this blob.

1 N
Plyos = 7zpr(xi)
N =

whereN is the number of the pixels in this blob d@Prgfx,) is the probability estimation of each pixel.

(b)

Figure 5. (a) Initial image (b) colour mask.

2.3 Contour analysis

The shape of flame objects is often irregular thigh irregularity/variability of the blob contoucan also be considered as a
flame feature. This irregularity is identified byating the object contour, starting from any pieelit. Thus a direction arrow
is defined for each pixel on the contour, which banspecified by a label L, whetx L < 8, assuming 8-connected pixels,
as shown in Figure 6.

The variability of the contour for each pixel che measured by calculating the difference (distabetween two

consecutive directions (from and to the specifi@pj using the following formula, which returnglestance between 0 and 4
for each pixel:

_ dmax_dmin if dmax_dmin <4
8+dyin —Udnax  Otherwise



whered,;, =min(d,,d,)andd,_, =max(d,,d,)-

The average value of this distance function candeel as a measure of the irregularity of the eonto

Figure 6. (a) The direction to the next boundary
pixel is represented by a code (0 — 7) (b) An
example of a boundary and the direction of the

arrows.

2.4 Spatial Wavelet Analysis

Since there is higher spatial variation in regioostaining actual fire compared to fire-colouregects, the next step aims to
detect the spatial variation in a moving fire-catedi blob. To this end, a two-dimensional waveleaplied on the red

channel of the image as shown in Figure 7.

Figure 7. Two dimensional spatial wavelet analy$ise original image was downloaded from [20])

For the single stage wavelet transform, the weighthe low pass and high pass filters are [0.250025] and [-0.25 0.5 -
0.25] respectively. The final energy mask (Figuyevéhich contains the spatial variation of the imaig obtained by adding
low-high, high-low and high-high wavelet sub-imagesording to the following equation.

EG, j)=%(HL(x. Y)? + LH (x,)? + HH (x,y)?)

whereN is the total number of pixels.
For each blob, the spatial wavelet energy is eséichay summing the individual energy of each pbalbnging to the blob.

13, .
Eblob:WzE(l!J)
b i,

whereN, is the number of pixels in a blob.
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Figure 8. (a) The energy image corresponding to
wavelet subimages of Figure 6 and (b) the initial

image along with the detected blobs.

2.5 Spatio-temporal Analysis

The shape of fire changes irregularly due to thioai caused by wind or due to the type of burningterial. The spatio-
temporal analysis step aims to identify these charig order to discriminate between fire regiond fare-coloured objects.
For this reason, a new feature is extracted coriagi¢he variation of the spatial energy in a blaithin a temporal window

of N frames. The variance of a pixel’s spatial enesggstimated as follows:
1 Ly =g o2
V(I.J)=NZ(E(I.J)—E(I, )

t=1

whereN is the size of the temporal windoff,is the spatial energy of the pixel in time insthand E is the average value

of its spatial energy. The final spatio-temporagrgly mask is shown in Figure 9.

Figure 9. Flame creates high spatio-temporal energy

values.

For each blob, the total spatio-temporal eneggy,, is estimated by summing the individual energytepixels:

Sun =7 2V )

b i,

whereNy is the number of pixels in a blob.

2.6 Temporal Processing



Flickering is a very important characteristic adrfie and it is very significant for discriminatingtlveen“flame” and “non-
flame” regions. In our approach, we use a temparmtiow of N frames (N equals 50 in our experimeny®lding a 1-D

temporal sequence of N binary values for each gesition. Each binary value is set to 0 if thegbiwas labeled as “no
flame candidate” or 1 if the pixel was labeled #arfie candidate” after the background extractiod aalour analysis
processing steps. To quantify the effect of flickgr we traverse this temporal sequence for edeim# candidate” pixel and
measure the number of transitions between “flanmelicate” and “no flame candidate” (0->1). This nienban be directly

used as a flame flickering feature, with flame oegi characterized by a sufficiently large valuélahe flickering.

2.7 Classification

For the classification of the 5-dimensional featueetors (colour probability, irregularity of th@mtour, spatial wavelet
energy, spatio-temporal energy, flame flickerinf)leach blob, we employed a Support Vector MachB¥M) classifier
with RBF kernels. In our experiments, the trainofghe SVM classifier was based on approximatel® @&mes of fire and
non-fire video sequences.

In addition to SVM, a second classification appigawhich is based on a number of thresholds ateb,rwas also
adopted. More specifically, a threshdlg is empirically defined for each featurafter a number of experiments (Colour
probability: th,= 0.002, Contourith,=0.8, Spatial wavelet energyh;=100, Temporal energyth,=20, Spatio-temporal
varianceths=30,). Then the following classification technigaepplied: first, the value of metri& for each feature vectdr

is computed by the following equation:
5
C:ZF(thi, f,)
i=1

whereF is a function defined as follows:

0 ,f<th

F(th’f):{l f > th

Then, the following rule is applied for each featwector: IfC>M (M < [1,5]), then the feature vector is classified as a fire,

otherwise it is considered as a false alarm i.a-fire (in our experiments M=3).

3. Experimental Results

To evaluate the performance of the proposed mettiddps containing fire or fire-coloured objectsreveised. Figure 10
shows the detection of flame along with the intatiate feature masks (background, colour, spatiaieles, spatiotemporal
and temporal map), while in Figure 11, an exampgté & video containing a moving fire-coloured oljecpresented. As it
is clear from the intermediate masks, extractedufeavalues are higher in case of flame detectioe t the random

behaviour of fire.



Figure 10. True detection of fire

Figure 11. True rejection of a fire-coloured obj@atange trunk)

Fourteen test videos were used for the evaluatighe algorithm. The first seven videos contaituatfires, while the
rest contain fire coloured moving objects e.g. ligts, sun reflections etc. Screenshots from thédeos are presented in
Table 1 (the first column presents fire detectiesults, while the second column contains screeashmn videos with fire
coloured moving objects).

Results are summarized in Figure 12 and Figures 18rms of the true positive and true negativeosatThe definition
of these terms is given below:
= True Positive: the number of frames in which fisecorrectly detected out of the total number ofnfea in a fire test

video.
= True Negative: the number of frames in which ne firas detected out of the total number of frames mon-fire test

video.

Experimental results show that the proposed meghrodides high detection rates in all videos coritej fire, with a
reasonable false alarm ratio in videos without finemost cases, the SVM classification provideghhbr true positive rates in
videos containing fire, while rule-based classifima outperforms in non-fire videos. The lower tronegative rates,
especially with SVM classification, are shown indiN fire_video3” due to the continuous reflectioriscar lights on the

road. However, we believe that the results maynygraoved in the future with a better training of tB€M classifier. The



speed of the proposed method was an average ofgk3.@hile the size of the video sequences of §dblvas 320x240. The
experiments were performed with a PC that has @ €&uo 2.66 GHz processor.

Table 1
Test videos used for the evaluation of the propadgarithm.

: “
. ,

Fire_videol Non_fire_videol

Non_fire_video2

Fire_video3 Non_fire_video3

Fire_video4 Non_fire_video4



Fire_video5 Non_fire_video5

Fire_video6 Non_fire_video6

Fire_video7 Non_fire_video7

Fire Videos - True Positives

@ SVM
m Ruled-based

Percentage (%)

1 2 3 4 5 6 7 Total
Fire_Video

Figure 12. Experimental results with videos coritajireal fires
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Figure 13. Experimental results with videos coritajrfire coloured objects

4. 3D Visualization of Fire Propagation

The proposed flame detection algorithm can be fmethe detection and localization of fire by aetdbased early warning
system. However, the detection of the starting fpofifire is just the first step in fire fighting.he next step is efficient fire
management. To this end the estimation and visataiz of fire propagation is extremely significamce it will enable the
fire fighting forces to cope with the fire and mgeatheir resources effectively. Most of the firegagation simulation
software presented in the literature yields a 28ww{mostly a top view) of the fire area, which, fewer, may not provide a
clear view of the situation to the persons respmedior the deployment of fire-fighting forces. tinis paper, we present a
user-friendly GIS simulator (Figure 14), which pides 2-D/3-D visualization of fire propagation esdtion output (ignition
time and flame length) and enables interactivectiele of some parameters (e.g. ignition point, hdityiparameters, wind
direction etc). The system is based on Google EARh [21], which is publicly available and allowket creation of

impressive 3-D animations of the fire propagatiaraddition to the static views.

Figure 14. 3D Visualization of Fire Propagation

In this work, fire spread calculations are mais&sed on Fire Behavior SDK [22] that implementspgbpular BEHAVE
algorithm [23], instead of FireLib library [24], wth was used in a previous work [25]. Fire Behawi8DK has significant
advantages over FireLib such as: a) built-in supfoorall Scott-Burgan fuel models [26] (40 modetg;luding 17 dynamic

models, where live/dead fuel load changes dynafgidalpending on moisture conditions), b) supponndfture of two fuel



models at the same cell, ¢c) modelling of crownsfiri@ addition to surface fires, and d) provisidradditional information
(e.qg. fire ignition probability).

(b)

Figure 15 Simulation results with (a) weak wind

and uniform vegetation cover, (b) stronger wind

and non-uniform vegetation cover

According to BEHAVE, fire propagation depends omwmber of parameters such as. ignition point, fmeldel,
humidity, wind, terrain data and other factors. fwr terrain data, we used Digital Terrain Mod&$Ks) by SRTM, which
are freely available with a resolution of 90m. Wimdormation (direction and speed) can be obtaimedeal time from
existing weather stations via Internet weathergsrtwhile vegetation information is based on CORIENnd cover maps
[27], which support 44 land cover and land usesglasepresenting the major surface types acrosp&ur

Figure 15 shows two simulation results with diffier sets of parameters. More specifically, Figutal shows a
simulation result from a valley area in Thebes,d8eg with uniform vegetation cover (the vegetatayer is activated) and
low wind speed values (1m/s). On the other hanthénsecond simulation in Figure 15(b) (Pratoytahe wind speed has
been increased (4m/s) and for this reason the ffegallt is more directional. It is also worth mentihg that the propagation

of the fire is halted in the edges of the red (njtmea, where the simulation considers that tisdiack of vegetation (fuel).

5. Conclusion



Early detection of fire is a crucial issue for theppression of wildfires and the mitigation of @iga. Video based systems
for automatic early forest fire detection is a preing technology, which can provide real-time fitetection information
with high accuracy. In this paper, we presentethméd detection methodology, which identifies spatimporal features of
fire such as colour probability, countour irregithgrspatial energy, flickering and spatio-tempoealergy. Experimental
results with a number of test videos have alrebdyvs the great potential of the proposed method.

In the future, we plan to investigate the uselo€ks instead of blobs in order to increase themaational efficiency of

the flame detection algorithm and to compare omuation results with real data from past fires.
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