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Control over the optical response of metal nanoparticles and their associated plasmons is currently enabling many promising
applications in areas as diverse as biosensing and photocatalysis. In this context, experiments based upon colloid synthesis and
nanofabricated structures are assisted by numerical electromagnetic modeling, which supplies predictive simulations, but not the kind
of physical intuition needed for exploration of new ideas, such as one finds when simple mathematical expressions can describe a
problem. This tutorial review presents and extends a simple analytical simulation method that allows us to accurately describe the
optical response of metal nanoparticles, including retardation effects, without the requirement of large computational resources. More
precisely, plasmonic extinction spectra and near-field enhancement are described through a small set of real numbers for each
nanoparticle shape, which we tabulate for a wide selection of common morphologies. Remarkably, these numbers are independent of
size, composition, and environment. We further present a compilation of nanoplasmonic experimental data that are excellently
described by the simple mathematical expressions here introduced.

Key learning points
1. Intuitive understanding of the optical response of plasmonic nanoparticles and its dependence on size, morphology, composition, and environment.

2. Mathematical separation between material optical properties (i.e., dielectric functions) and other nanoparticle features (i.e., size and geometry).

3. Simple mathematical expressions to describe plasmonic response at negligible computational cost, including retardation when the particle size is
not small compared with light wavelength.

4. Successful explanation of existing measured nanoparticle spectra using simple analytical theory.

5. A tool for designing and optimizing applications of plasmonic nanoparticles such as biosensing.

1 Introduction
The study of metal nanoparticles has developed into a rich field
of research with a plethora of applications in areas as diverse
as nanomedicine (e.g., drug delivery,1 diagnosis,2 and cancer
therapy3) and catalysis.4 Indeed, metal nanoparticles exhibit ex-
traordinary optical properties inherited from the ability of their
conduction electrons to sustain collective oscillations known as
plasmons, which are key ingredients in those applications. Most
notably, (i) plasmons interact strongly with light; (ii) they are
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robust against imperfections, inhomogeneities, environmental
noise; (iii) their frequency and spatial extension are sensitive to
the dielectric environment; (iv) the optical electric field can be
largely amplified near a nanoparticle when irradiated by light
tuned to one of its plasmon resonances; and (v) the optical en-
hancement can be confined down to a nanometer-sized region,
much smaller than the incident light wavelength.

As an application of property (i), having been used for cen-
turies to color glass (e.g., the celebrated Lycurgus cup), the ability
of metal nanoparticles to produce strong, selective light absorp-
tion was first recognized by Faraday’s pioneering work5. Modern
colloid synthesis and nanolithography techniques have achieved
a remarkable degree of control over nanoparticle-based structural
coloring.6

The robustness of plasmons against particle details and envi-
ronmental conditions (property (ii)) enables the design of defect-
tolerant structures for the nanoscale manipulation of optical
fields. This property is partly inherited from the large number
of electrons participating in the plasmon oscillation (the so-called
spectral strength, which is quantified by the area under the extinc-
tion cross-section peak associated with this type of excitation), as
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Fig. 1 Generic characteristics of nanoparticle plasmons. In an
illuminated nanoparticle (contour indicated by a dashed line), under the
influence of the external optical electric field Eext, conduction electrons
move in an oscillatory motion back and forth between the ends of the
structure, where charge piles up (blue (positive) and green (negative)
curves of thickness proportional to the induced surface-charge density)
and the total field E is enhanced (underlying density plot). The
orientation of E (field lines, also parallel to the induced current inside the
metal) is nearly perpendicular to the surface in the regions of maximum
enhancement.

opposed to optical modes in smaller systems such as atoms and
molecules.

The spectral sensitivity to the environment (property (iii))
has prompted applications in the ultrasensitive detection of
biomolecules, whereby the attachment of a minuscule amount
of analyte to the surface of nanoparticles functionalized with a
bioreceptor produces changes in the permittivity of the environ-
ment that result in measurable redshifts in the plasmon frequen-
cies, which in turn reveal the presence of the molecules.1

Plasmon field enhancement (property (iv)) has been exploited
to amplify the interaction of molecules with light, thereby increas-
ing the strength of optical inelastic absorption and scattering,
which are signals used to detect the presence of the molecules. In
particular, surface-enhanced Raman scattering (SERS) has been
shown to provide chemical identification at the single-molecule
level.7–9 Additionally, plasmon-assisted molecular-absorption fin-
gerprinting has been explored in the infrared spectral window for
the detection of biomolecules.10 These sensing techniques bene-
fit from plasmon confinement (property (v)) by collecting a sig-
nal primarily due to the nanoscale region in which the analyte is
attached (i.e., the optical hotspot associated with a localized plas-
mon), while the rest of the environment (e.g., the complex chem-
ical diversity of biological fluids) produces a weaker response.

In a different context, confinement and enhancement in-
duce strong particle-plasmon-mediated interaction between op-
tical emitters (e.g., quantum dots), which has been speculated
to serve as a tool for the nanoscale implementation of quantum-
optics protocols.11 As another interesting avenue, the strong plas-
monic field enhancement is extensively used to introduce nonlin-
earities in glasses containing dispersed metallic nanoparticles,12

while it can also generate intrinsic frequency mixing13 and har-
monic response.14

1.1 Plasmon characteristics

Under the influence of the oscillatory external electric field Eext

of the incident light, conduction electrons in an illuminated
nanoparticle move in its interior and give rise to charge pileup
at the surface, as illustrated in Fig. 1. This charge accumulation
produces in turn an enhanced electric field E (density plot and
field lines in Fig. 1), which has maximum intensity in the proxim-
ity of the particle. The induced part of E is nearly perpendicular
to the surface, and because of the continuity of the normal elec-
tric displacement, the magnitude of E is drastically reduced when
moving from outside to inside the particle. Interestingly, the re-
gion where the inner field is maximum (still much smaller than
the global maximum outside the metal) is roughly situated near
the particle center, away from the surface charge pileup. Intu-
itively, this is expected because the current must be proportional
to the field in the metal, which flows in such a way that the sur-
face charge oscillates at the ends of the particle. Like E, the in-
duced current jind is divergence-less in the metal (∇ · jind = 0),
so that, in virtue of the continuity equation, there is no induced
charge in the bulk of the particle. However, the current is max-
imum in the central region, which is also the place where there
is more power dissipation (∝ |E|2) via inelastic coupling of the
plasmon to electron-hole pairs in the metal. The dynamics of this
type of decay is a complex process,15 which we describe in this
work through a phenomenological relaxation time τ.

Before describing rigorous electromagnetic theory, it is instruc-
tive to formulate a tutorial model that captures the main char-
acteristics of the plasmon: we consider an effective induced
charge q of mass m placed at a position r that oscillates as a
spring of characteristic frequency ω0. This leads to the equation
of motion md2r/dt2 = −mω2

0 r− (m/τ)dr/dt +(2q2/3c3)d3r/dt3 +

qEext(t), where the rightmost term is the force produced by the
external field Eext(t) = 2Re{Eexte−iωt} of frequency ω, whereas
the second and third terms in the right-hand side describe inelas-
tic damping via Joule losses and Abraham-Lorentz radiation,16

respectively. Direct solution of this equation permits writing the
dipole induced on the particle as qr = 2Re{α(ω)Eexte−iωt}, where

α(ω) =
q2/m

ω2
0 −ω(ω + iτ−1)− i2q2ω3/3mc3

is the particle polarizability. This conceptually simple model al-
ready incorporates a correction in the plasmon lifetime due to
radiative losses in a way that is consistent with the optical the-
orem17 (i.e., Im{−1/α(ω)} ≥ 2ω3/3c3). As we show below, re-
tardation also leads to a size-dependent shift in the plasmon fre-
quency ω0.

1.2 Nanoparticle synthesis

The rapid development of nanoparticles has been largely based on
the remarkable advancements in the synthesis of metal nanopar-
ticles, often using lithography but mostly based on colloid chem-
istry. Reliable chemical recipes have been available since the
1950’s for the preparation of spherical gold and silver nanopar-
ticles, but the 21st Century has literally seen a revolution in the
ability to control particle size and shape in solution. As a re-
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sult, a plethora of well-defined morphologies can be routinely ob-
tained in large amounts, including nanorods, nanowires, bipyra-
mids, nanocubes, nanocages, or nanoplates among others.18

Even though the growth mechanisms are not yet completely un-
derstood, there is common agreement in the importance to sep-
arate nucleation from growth and, as a result, seeded growth
methods are highly preferred, as they provide a further degree
of accuracy. It should be noted that, in many of such synthesis
procedures, organic additives are frequently required, and often
termed shape-directing agents. These mainly include surfactants
and polymers, which have been claimed to preferentially adsorb
on certain crystalline facets and thereby create the required sym-
metry breaking for anisotropic growth.

One of the most usual examples is the seeded growth of gold
nanorods,19 in which small seeds are prepared by reduction of
HAuCl4 with a strong reducing agent (NaBH4), in the presence of
a protecting agent, typically the quaternary ammonium surfactant
cetyl-trimethylammonium bromide (CTAB). The reduction of ad-
ditional HAuCl4 by a weak reducing agent (ascorbic acid), again
in the presence of CTAB and a small amount of AgNO3, leads to
preferential growth in the [110] direction of the face centered
cubic crystalline lattice of metallic gold. Parameters such as the
nature of the surfactant, the halide counterion and the concen-
tration of Ag+, strongly affect the morphology of the resulting
nanorods, so that the aspect ratio can be finely tuned. Interest-
ingly, if the seeds are made in the presence of citrate, nanorods
can be grown in the absence of silver, but bipyramids grow in
the presence of AgNO3 and HCl. On the other hand, a similar
method involving iodide can lead to the growth of monodisperse
triangular nanoplates.

The preparation of silver nanoparticles with different mor-
phologies typically relies on rather different methods. Probably
the most successful one has been the so-called polyol method,20

in which the solvent (and reducing agent) is ethylene glycol or a
higher order polyol, and the most common stabilizer is the poly-
mer poly(N-vinylpyrrolidone). By adjusting reactant concentra-
tions and temperature, cubes, plates, wires and other shapes can
be readily obtained with high yield and in large amounts.

Silver has also been grown on gold nanoparticle seeds, which
offers a handle to further tune size and shape, using chemistry
in water, with methods closely related to those used for gold
nanoparticles.21

1.3 Theoretical description of nanoparticle plasmons

Particle plasmons have been modeled with different levels of the-
ory. Rigorous quantum-mechanical descriptions have been car-
ried out from first principles, but only for small systems,22 be-
cause these methods cannot cope with finite particles having
> 100’s electrons. In contrast, electromagnetic theory allows us
to model the optical response for any size of the particles.23–25

Starting with analytical models for simple geometries,23,24 the
electromagnetic simulation of nanoparticle plasmons has pro-
gressed during the last century to produce full numerical solu-
tions of Maxwell’s equations that apply to arbitrary geometries,
reaching even complex arrangements of thousands of nanoparti-

cles.25

Unfortunately, analytical solutions of Maxwell’s equations only
exist for a reduced number of geometries, such as Mie’s theory23

for spheres. In the long-wavelength limit, anisotropic nanopar-
ticles are oftentimes described using Gans’ theory for the elec-
trostatic response of ellipsoids.24 The collective optical behav-
ior of particle arrays can be studied using analytical multiple-
scattering theories,26 while semi-analytical modal expansions
provide a quantitative level of description for both the near and
far fields.27,28 Importantly, for any particular geometry, the plas-
mon resonance wavelengths and quality factors are uniquely asso-
ciated with resonant values of the complex dielectric permittivity
of the material.29

In complex geometries, numerical solution of Maxwell’s equa-
tions renders full details of the response, although the required
computational effort is at the limit of currently available com-
puters when several particles are present or the structures span
many light wavelengths. In this context, various numerical ap-
proaches are widely used, roughly categorized into two subsets
that offer complementary advantages: volume methods (e.g.,
finite-difference in the time domain30 and the discrete-dipole ap-
proximation31), in which geometrical parametrization is easier;
and boundary-element methods32,33 (BEMs), which are compu-
tationally more efficient. A review of these methods was reported
almost ten years ago for the simulation of gold nanoparticles,34

along with a critical comparison of their relative strengths. As
a useful extension of that work, we introduce here a powerful
analytical model that allows us to simulate the optical response
of metal nanoparticles including retardation. The advantage of
this approach is twofold: it takes negligible computational effort,
thus enabling the optimization of geometrical and compositional
parameters through broad searches for different applications of
nanoparticle plasmons; and it provides physical intuition for gen-
eral problems, such as the exploration of fundamental limits to
plasmon absorption, extinction, and coupling to optical emitters.

In this tutorial review, we exploit a rigorous solution of
Maxwell’s equations obtained by incorporating successive retar-
dation corrections in a perturbative expansion. This allows us to
calculate extinction and scattering cross-sections, as well as plas-
mon frequencies and lifetimes, with the help of just a few real
parameters. In a related development, an analytical model was
formulated for an oblate spheroid by successively including re-
tardation corrections,35,36 a result that we generalize in this tu-
torial to arbitrary morphologies. Before we discuss this method
in more detail, we present an example of application in Fig. 2,
where we plot the extinction cross-section of two gold bipyra-
mids of the same morphology and aspect ratio, but with different
sizes. We consider polarization parallel to the long axis of the
structures, for which the spectra are characterized by a promi-
nent long-wavelength dipole plasmon, accompanied by a weaker
plasmon at shorter wavelengths; the longitudinal component of
the induced current associated with the former does change sign
within the metal, in contrast to the latter (see electric-field den-
sity plots). Due to the resulting sign cancellations, the shorter-
wavelength feature couples less efficiently to light. Additionally,
the plasmons of the larger particle are redshifted and broadened
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Fig. 2 Analytical description of retardation in plasmonic
nanoparticles. Extinction spectra of two gold bipyramids of pentagonal
cross-section, with the same aspect ratio but different size lengths L, as
calculated either with our analytical model (solid curves) or from a fully
numerical solution of Maxwell’s equations (broken curves). Distributions
of the intensity (left, thermal-color-scale plots) and instantaneous
component along the long axis (right, red-blue scale for
positive-negative values) of the electric field are shown for each
extinction peak. The particles are assumed to be surrounded by water.

as a result of retardation, an effect that becomes less pronounced
in the shorter-wavelength features, again as a result of sign can-
cellations in the interaction between distant induced charges,
which place more weight on smaller distances. The full numeri-
cal solution of Maxwell’s equations (broken curves) is nearly in-
distinguishable from the analytical model (solid curves), includ-
ing plasmon broadening and redshifts in the larger particle. The
agreement is remarkable considering that the analytical model
only uses four real parameters for each particle shape and polar-
ization direction, regardless of size (i.e., four real numbers are
enough to model both spectra of Fig. 2). Importantly, as we show
below, retardation parameters are not obtained by fitting the nu-
merical spectra, but rather they are calculated by integrating spe-
cific combinations of the size- and material-independent electro-
static mode fields.

2 Analytical model

2.1 Electrostatic limit

In what follows, we consider illumination with monochromatic
light of frequency ω, so that the time dependence of the electric
field is given by E(r, t) = E(r,ω)e−iωt +E∗(r,ω)eiωt . Additionally,
we focus on homogeneous metallic particles, with the metal de-
scribed through its frequency-dependent permittivity εm(ω). This
is the so-called local approximation (i.e., the assumption that the
dielectric displacement εm(ω)E(r,ω) depends exclusively on the
electric field at the same position r), which only breaks down for
very small particles37 (typically < 10nm for noble metals) and

also in the presence of either sharp tips or narrow gaps between
metals (< 1nm)38,39.

For small particles compared with the light wavelength, retar-
dation effects are negligible and the optical response can be sim-
ulated by solving Poisson’s equation ∇ · ε(r,ω)E(r,ω) = 0, where
ε(r,ω) = εm(ω) f (r)+(1− f (r))εh(ω), εh is the permittivity of the
host dielectric, and f (r) is a filling function that takes a value of 1
inside the particle and 0 elsewhere. Modal expansions have been
used for a long time to obtain semi-analytical formulations of this
electrostatic limit.40–44 They essentially rely on the existence of a
orthogonal and complete (within the subspace of electrostatic so-
lutions) set of real eigenmodes E j(r) and eigenvalues ε j labeled
by j and satisfying (see Secs. I and II of the Electronic Supple-
mental Information, ESI)

∇ ·
[
ε j f (r)+1− f (r)

]
E j(r) = 0.

In other words, E j is the self-standing electrostatic field for a par-
ticle of the same geometry placed in vacuum and filled with a
medium of permittivity ε j. Eigenmodes can be normalized to sat-
isfy the orthogonality relation (see Sec. II of the ESI)∫

d3r f (r)E j(r) ·E j′(r) = L3
δ j j′ , (1)

where L is a characteristic length of the particle (e.g., the diam-
eter for a sphere or the elongation in anisotropic particles such
as those of Fig. 1). Remarkably, these modes are independent of
material composition. Nonetheless, they allow us to express the
self-consistent electric field E(r,ω) near an actual nanoparticle
of permittivity εm(ω), in response to an externally incident field
Eext(r,ω), as

E(r,ω) = ∑
j

[
1− εm/εh−1

ε j−1

]−1
Cext

j (ω)E j(r), (2)

where εh(ω) is the (real, positive) permittivity of the host medium
and

Cext
j (ω) =

1
L3

∫
d3r f (r)E j(r) ·Eext(r,ω).

The particle polarizability along a symmetry direction also admits
an expansion in terms of contributions from different eigenmodes
as

α(ω) =
εh

4π
∑

j
V j

(
1

εm/εh−1
− 1

ε j−1

)−1
, (3)

where

V j = (1/L3)

∣∣∣∣∫ d3r f (r)E j(r)
∣∣∣∣2 (4)

are mode volumes, the sum of which is the total volume of the
particle ∑ j V j =V in virtue of the orthonormality noted above. For
example, for each of the symmery axes l = x,y,z of an ellipsoid,
there is only one electrostatic dipolar mode, and in turn, also only
one term ( j = 1) in eqn (3), with V1 =V and ε1 = 1−1/Ll , where
Ll = (axayaz/2)

∫
∞

0 ds(s+ a2
l )
−1[(s+ a2

x)(s+ a2
y)(s+ a2

z )]
−1/2 is the

corresponding depolarization factor24 and ax,y,z are the half-axis
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Fig. 3 Analytical model parameters for selected particle
morphologies. We show the resonant permittivity ε1, the mode volume
V1 normalized to the particle volume V , and the two retardation
parameters a12 and a14 for the lowest-order dipole plasmon of rods,
triangles, and cubic cages as a function of aspect ratio R. We define R
and the polarization direction (double arrows) in the upper insets.
Symbols for ε1 are obtained by fitting the numerically calculated
absorption spectra in the electrostatic limit. The rest of the symbols for
other parameters are computed by integrating the electrostatic mode
fields as shown in eqns (4) and (7), except the triangular symbols for V1,
which are extracted from the peaks in the noted spectra for comparison.
Solid curves represent analytical interpolations (see Table 1). Nanorods
have hemispherical caps at the tips, triangles have smooth edges with
rounding radius (1+1/R)L/40, and cages have sharp edges and
smooth corners with rounding radius 0.3L.

lengths.

2.2 Retardation corrections

We now extend the electrostatic limit to include effects derived
from the finite size of the particle relative to the free-space light
wavelength λ . In particular, we use the size factor s =

√
εhL/λ

as a convenient perturbation parameter that already incorporates
the reduction of the wavelength in the host medium relative to
free space due to the refractive index

√
εh. The polarizability of

eqn (3) can be corrected as (see Sec. III and IV of the ESI)

α(ω) =
εh

4π
∑

j
V jB j(s)

(
1

εm/εh−1
− 1

ε j−1
−A j(s)

)−1
, (5)

where A j(s) and B j(s) are s-dependent functions. Here, we are
interested in practice in situations for which s is not too large (see
results below), so it is natural to expand these functions in power
series of s. We note that the plasmon resonances are shifted and
broadened due to the presence of nonzero real and imaginary
parts in A j, respectively, for which we derive the expansion (see

Sec. IV of the ESI)

A j = a j2s2 +
4π2iV j

3L3 s3 +a j4s4 + . . . , (6)

where

a jn =
(2πi)n

4πn(n−2)!Ln+3

∫
d3r f (r)

∫
d3r′ f (r′) (7)

×
{
(n−3)|r− r′|n−5 [(r− r′) ·E j(r)

][
(r− r′) ·E j(r′)

]
+(1−n)|r− r′|n−3E j(r) ·E j(r′)

}
.

Additionally, the correction in the resonance strengths (the nu-
merator of eqn (5)) is small for the values of s under considera-
tion (see Fig. S1 of the ESI), so we can safely approximate B j ≈ 1.
Likewise, although retardation produces mixing of the electro-
static modes E j in the electric field of eqn (2), we find that this
effect is small for the values of s here considered and the main
correction arises from frequency shifts and broadening captured
by the expression

E(r,ω)≈∑
j

[
1− (εm/εh−1)

(
1

ε j−1
+A j

)]−1
Cext

j (ω)E j(r).

(8)

As we show in the results presented below, we can describe the
far-field scattering (through α in eqn (5)) and the near-field re-
sponse (through E in eqn (8)) for metal nanoparticles including
retardation using the electrostatic modes E j together with the set
of four real numbers ε j, V j, a j2 and a j4.

In a recent development, an ad hoc set of quasi-normal modes
has been used to account for ohmic and radiative losses for plas-
monic particles.27,45,46 These modes are obtained from solutions
of the Maxwell’s equations and they depend on the dielectric func-
tion of the metal. Additionally, their normalization must be taken
with care, as for example in the calculation of Purcell factors.46 In
contrast, the eigenmodes of our approach are independent of the
choice of metal permittivity and their normalization only involves
the volume of the particle.

The resonant permittivities ε j are found by fitting the position
and strength of the peak associated with mode j in the absorption
spectrum of the particle, calculated in the electrostatic limit. More
precisely, we perform fully numerical calculations using BEM or
a finite-element method (see below) for an airborne nanoparti-
cle of ∼ 10nm side length (i.e., practically in the electrostatic
limit), with the metal described by a simple Drude permittivity.
The near field E j is then taken as the induced field computed
when the light frequency is tuned to the absorption maximum.
Upon normalization of the field according to eqn (1), we further
compute the mode volume V j from eqn (4), and a j2 and a j4 from
eqn (7). We plot these four parameters in Fig. 3 for three common
morphologies (rods with hemispherical caps at the tips, equilat-
eral triangles, and cubic cages), as a function of aspect ratio R
(see upper insets). We also provide analytical R-dependent fits
in Table 1. Additional sets of parameters are provided in the ESI
(Fig. S2 and Table S1) for other geometries: ellipsoids, bicones,
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shape ε1 V1/V a12 a14 V/L3

rod −1.73R1.45−0.296 0.896 6.92/(1− ε1) −11/R2.49−0.0868 π(3R−1)/12R3

triangle −0.87R1.12−4.33 −0.645R−1.24 +0.678 5.57/(1− ε1) −6.83/(1− ε1) −0.00544/R2 +0.433/R
cage −0.0678R2.02−3.42 −0.008R2 +0.103R+0.316 −0.00405R2.59 +2.21 −13.9 8.04/R3−12/R2 +6/R−0.00138

Table 1 Fitting functions for ε1, V1/V , a12, and a14 corresponding to selected particle morphologies as a function of aspect ratio R (as defined in Fig. 3).
The rightmost column gives the particle volume in units of L3, including the effect of rounding in triangles and cages.
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Fig. 4 Dielectric functions of noble metals. We show the dielectric
functions of gold, silver, and copper taken from tabulated measured
data 47 (solid curves) compared with the Drude model (eqn (9), dotted
curves) and a more accurate analytical fit (dashed curves) using the
parameters listed in Table 2. The inset shows a zoom of Re{εm} in the
short wavelength region.

disks, rings, and bipyramids. The latter are used in the analyt-
ical calculations of Fig. 2. For axially symmetric structures, the
electrostatic modes are obtained using the BEM,32 whereas for
other morphologies we use a finite-element method (COMSOL).
As expected, we observe a trend toward larger negative values of
ε j with increasing R (i.e., with decreasing metal volume for con-
stant length), which implies a redshift in plasmon frequency as
the metal shapes are thinned. Additionally, the lowest-order plas-
mon mode generally contributes with a large fraction to the total
volume, indicating that this is the dominant mode in the spec-
trum. This effect is particularly important in nanorods, and we
remind again the reader that only one longitudinal dipole mode
exists for electrostatic ellipsoids.

2.3 Plasmon frequency
Plasmons are associated with resonant values of the dielectric
function of the metal close to one of the eigenvalues ε j, which

are negative real numbers. Losses in actual metals are propor-
tional to Im{εm} > 0, implying finite plasmon lifetimes. It is in-
structive to approximate εm(ω)≈ εm(ω j)+ε ′m(ω j)(ω−ω j) around
the real frequency ω j, defined by Re{εm(ω j)} = εhε j, where the
prime denotes differentiation with respect to the argument. In
the absence of retardation, the complex plasmon frequency ω̃ j

must satisfy εm(ω̃ j) = εhε j, which, using the above approxima-
tion and assuming Im{εm}� |εm|, leads to ω̃ j ≈ω j− i/2τ j, where
τ j = Re{ε ′m(ω j)}/Im{εm(ω j)}. From the physical condition16

Re{εm +ωε ′m} ≥ 0, we find τ j > 0. Additionally, the near-field
intensity decays with time as ∝ |e−iω̃ jt |2 = e−t/τ j after the external
excitation stops, clearly revealing τ j as the plasmon lifetime.

Among common materials, the condition of relatively small
Im{εm} is best satisfied by noble metals in the visible and near-
infrared spectral regimes. In particular, gold, silver, and copper,
exhibit a Drude-like response that can be characterized through
the expression48

εm(ω) = εb−
ω2

p

ω(ω + iτ−1)
(9)

with parameters εb, ωp, and τ as shown in Table 2. This model
provides a reasonable description of the measured dielectric func-
tion47 using constant values of εb for wavelengths above the in-
terband transitions (cf. solid and dotted curves in Fig. 4). Those
transitions contribute with a polarization component to the real
part of εm (the εb term in eqn (9)) and also with an increase in
the imaginary part (i.e., actual excitations) at short wavelengths
below ∼ 370nm, ∼ 500nm, and ∼ 550nm for Ag, Au, and Cu, re-
spectively. In those regions, eqn (9) can be still applied by includ-
ing an ω-dependence in εb, as shown in Fig. 4 (dashed curves)
and Table 2 (see caption). At longer wavelengths, the lifetime of
nonretarded plasmons is directly inherited from the Drude model
(τ j ≈ τ).

Retardation enters through A j(s) (eqn (6)), which for small val-
ues of the size parameter s (i.e., |A j| � 1), using eqn (9) to cal-
culate the corresponding pole of eqn (5), leads to the complex
plasmon frequency

ω̃ j ≈
ωp√

εb− εhε j

[
1−

A j

2
εh(ε j−1)2

εb− εhε j

]
− i

2τ
. (10)

This expression predicts both a frequency redshift (note that the
a j2 term in eqn (6) is positive, see Fig. 3) roughly proportional
to −εh(L/λ )2, accompanied by an increase in plasmon linewidth
from 1/τ to

∆ω j ≈
1
τ
+

2π2ωp

3
V j

λ 3
ε

5/2
h (ε j−1)2

(εb− εhε j)3/2
, (11)
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material εb h̄ωp (eV) h̄τ−1 (eV) τ (fs) A B C h̄ω1 (eV) h̄τ
−1
1 (eV) h̄ω2 (eV)

Au 9.5 9.06 0.071 9.3 0.132 -1.755 20.43 2.43 0.0716 1.52
Ag 4.0 9.17 0.021 31 -9.71 -1.111 13.77 4.02 0.0760 18.5
Cu 8.0 8.88 0.103 6.4 -4.36 -1.655 12.31 2.12 0.0528 5.43

Table 2 Parameters entering the Drude dielectric function εm(ω) = εb−ω2
p/ω(ω + iτ−1) with either a constant value of εb (Fig. 4, dotted curves) or with

this constant replaced by an ω-dependent analytical fitting function εb(ω) = A+B log
[
(ω1−ω− iτ−1

1 )/(ω1 +ω + iτ−1
1 )
]
+C exp(−ω/ω2) (Fig. 4, dashed

curves) for gold, silver, and copper.

where the second term accounts for the contribution of radiative
damping.

3 Optical response for selected morpholo-
gies

3.1 Extinction spectra

Gold and silver nanorods are among the most common
anisotropic nanoparticles, for which colloid synthesis protocols
are well established.19 Rod-like particles are also extensively fab-
ricated by nanolithography for plasmonic studies, offering a wider
versatility in the choice of material and particle location at the ex-
pense of a lower degree of control over size and defects. We thus
put our analytical method to the test by comparing its ability to
predict plasmons for a vast range of nanorod sizes and aspect ra-
tios. We concentrate on modes with polarization along the length
of the rods, as these are more sensitive to retardation and shape
effects. Figure 5 presents a study for gold and silver nanorods (εm

taken from measured data47) embedded in water (εh = 1.77). We
plot extinction cross-section spectra calculated from16

σ
ext(ω) =

8π2
√

εh λ
Im{α(ω)}, (12)

using the polarizability of eqn (5) with the parameters of Table 1
(solid curves). These results are compared with full numerical so-
lutions of Maxwell’s equations obtained from the BEM32 (dashed
curves). We concentrate on the region around the lowest-order
dipolar mode, for which the analytical model is found to be in ex-
cellent agreement with the full numerical results. In particular, it
accurately predicts the redshift in plasmon energy with increasing
aspect ratio R and rod length L for both metals under considera-
tion. The redshift with R was anticipated in Fig. 3 from the evo-
lution of the mode permittivity ε1 and is generally known to be
the result of a shape-dependent depolarization. In contrast, the
redshift with L originates from retardation: as the size increases,
it takes longer time for the electromagnetic field generated by in-
duced changes in one end of the rod to reach the other end, thus
reducing the frequency at which they oscillate collectively. Addi-
tionally, plasmons in silver nanorods are blue shifted with respect
to those in gold, for the same geometry, as a result of weaker d-
band screening (i.e., εb is smaller in silver, see eqn (9) and Table
2). Also, gold plasmons are broader because the intrinsic lifetime
τ is shorter in this material.

Transversal plasmons excited with polarization across the
nanorods are typically observed in measurements of non-oriented
nanoparticles. For this polarization, several modes are piled up in
a narrow spectral range, so we have to include the three lowest-

order ones in order to achieve good agreement similar to that of
Fig. 5 with fully numerical calculations (see Fig. S4 of the ESI).

We find a similar degree of agreement between analytically and
numerically calculated extinction spectra in other common types
of nanoparticles, such as gold nanotriangles and cubic cages (Fig.
6), except that the additional features on the short-wavelength
side of the lowest-order mode in cages are not well described with
one single mode in the retardation regime, so that higher-order
modes should be included for this intricate geometry. We offer
additional model parameters in the ESI (Fig. S2 and Table S1)
for other particle morphologies (ellipsoids, rings, bicones, disks,
bipyramids, square rods, etc.), along with analytical fits as a func-
tion of the particle aspect ratio. Comparison of analytical and
numerical simulations for the extinction cross-section is in excel-
lent agreement for those geometries as well (not shown). As a
whole, the analytical model and the parameters offered in this
work cover most of the homogeneous metal nanoparticles inves-
tigated in the literature so far.

The spectral dependence of the low-order plasmons under con-
sideration on the details of the geometry constitutes a relevant
question that we analyze here by approximating the spectral re-
sponse of anisotropic particles by the response of more symmetric
ones. In particular, Fig. 7 shows excellent agreement in both line
shape and absolute magnitude of the extinction for pentagonal
bipyramids and bicones having the same length and metal vol-
ume. This prescription of maintaining the volume works rather
well and leads to a considerable reduction in computational ef-
fort by exploiting the axial symmetry of the bicones.32

3.2 Plasmon wavelength and width
An overview of the resonance wavelengths for gold rods and tri-
angles as a function of size and aspect ratio is presented in Fig.
8(A,B), where we observe again a systematic redshift with in-
creasing L and R. A similar trend is observed for other types
of particles composed of either gold (Fig. 8(C,D)) or silver (Fig.
8(E,F)). In all cases, the agreement between analytical (solid
curves) and numerical (dashed curves) calculations is excellent.
Remarkably, the shape and size dependence of the plasmon wave-
lengths are also well predicted by approximating the metal re-
sponse in the Drude limit (i.e., with a constant value of εb to rep-
resent interband transitions (dotted curves in Fig. 8, calculated
from eqn (10)).

In general, plasmons with longer lifetime emerge as narrower
features in the spectra and they are associated with stronger near
fields. A quantification of these properties is provided by the plas-
mon quality factor Q = ω/∆ω, which we define as the ratio of
peak frequency to the FWHM of the plasmon feature in the ex-
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tinction spectrum. This quantity is also equal to 2π times the
number of self-sustained plasmon charge oscillations before the
near-field intensity decreases by a factor of e after the external
illumination stops. Quality factors in the range of a few tens are
common in noble metals nanoparticles, as illustrated in the sum-
mary presented in Fig. 9 for different particle morphologies and
compositions. Once more, excellent agreement in plasmon width
is observed between the analytical model and full numerical cal-
culations. In contrast to the systematic redshift of the plasmon
with increasing size and aspect ratio, the quality factor exhibits
a more complex behavior, which can be understood from the in-
terplay between the L and R dependences of the plasmon lifetime
(see eqn (11)): for fixed R (Fig. 9(A,C,E)), the quality factor de-
creases with increasing L as a result of radiation losses; for fixed
size (Fig. 9(B,D,F)), there is a relatively mild dependence with
aspect ratio that is inherited from the redshift (higher resonant
−Re{εm}) with increasing R. Incidentally, the simple expressions
of eqns (10) and (11) constitute an excellent approximation to
calculate the quality factor as Q = Re{ω̃ j}/∆ω j (Fig. 9, dotted
curves), which works well for gold rods and triangles even when
taking a constant value of the interband contribution to the per-
mittivity (εb = 9.5), although a frequency-dependent εb(ω) (see
Table 2 for a detailed expression) is necessary to obtain good
agreement in the rest of the cases (Fig. 9(C-F)).
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3.3 Plasmon quantum yield

Plasmons are extensively used to modify the lifetime and emission
characteristics of point emitters such as molecules and quantum-
dots. Before we analyze plasmon-emitter coupling in more de-
tail (see below), let us consider an important figure of merit that
characterizes plasmons in this respect: the fraction of energy em-
anating from them in the form of propagating light. This is the so-
called quantum yield of the plasmon, which can be extracted from
far-field measurements as the ratio between elastic-scattering and
extinction cross-sections. For small particles described through
their polarizability, the extinction cross-section is given by eqn
(12), whereas the elastic scattering cross-section reduces to17

σ sca = (128π5/3λ 4)|α(ω)|2. The ratio between these two quan-
tities (i.e., the quantum yield) then becomes

Y =
σ sca(ω)

σ ext(ω)
=

16π3√εh

3λ 3
1

Im{−1/α(ω)}

≈
[

1+
3λ 3

4π2√εhV1
Im
{

1
εh− εm

}]−1

. (13)

The approximate expression at the end of eqn (13) is obtained by
making use of eqn (5), assuming that a single mode j = 1 domi-
nates the scattering spectra. It is remarkable that the retardation
parameters a12 and a14 do not appear explicitly in this result.

The quantum yield is plotted in Fig. 10 as a function of particle
size and aspect ratio for gold nanorods and nanotriangles. We
find again an excellent agreement between the analytical model
(solid curves) and numerical electromagnetic simulations (bro-
ken curves), for which Y is computed as the ratio of cross sections
at the peak frequency of σ ext. Additionally, excellent agreement
is obtained with the analytical approximation of eqn (13) (dotted
curves), using eqn (9) for εm with the frequency-dependent fits
of εb(ω) given in Table 2. These results confirm the expected in-
crease in quantum yield with increasing particle size (Fig. 10(A)),
because the radiative loss channel becomes more relevant due to
stronger coupling to radiation (i.e., the particle dipole roughly
scales linearly with particle volume). Additionally, the quantum
yield decreases with increasing aspect ratio for a fixed size (Fig.
10(B)) because of the combination of two effects: the volume is
reduced, thus making the plasmon dipole smaller; and the plas-
mon redshift discussed above contributes to make the particle
comparatively smaller in front of the emission wavelength, there-
fore reducing the relative contribution of radiation losses.

4 Overview comparison with experiments

We present in Fig. 11 an overview of the resonance light wave-
length corresponding to gold nanoparticles of different sizes and
morphologies, taken from various experimental sources (sym-
bols) and compared with the predictions of the analytical model
(curves). Despite the vast range of aspect ratios and sizes, clearly
extending up to relatively large particles for which retardation ef-
fects are important, the overall agreement is rather satisfactory,
thus confirming the ability of the simple analytical expressions
presented above to explain and predict the measured behavior of
nanoparticle plasmons.
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We illustrate the versatility of the analytical model to cope
with other types of metals in Fig. 12, where we compare exper-
iments taken from Zoric et al.53 for lithographically-patterned
gold, platinum, and aluminum nanodisks (upper panels) with
theory (lower panels). Excellent results are obtained, except for
very small aluminum disks, where the presence of a self-limited
oxide layer53 (not accounted for in theory) can influence the op-
tical response. We stress that the simulations are obtained using
just the entries for disks in Table S1 of the ESI, which are indepen-
dent of size and material, and they cover a wide range of aspect
ratios R = 2−27.

Large nanoparticles of high aspect ratio present a real chal-
lenge for the analytical model because their size is not small as
compared to the light wavelength. We explore this situation in
Fig. 13 by comparing analytical spectra and numerical solutions
of Maxwell’s equations for long silver nanowires. These types
of particles have been recently synthesized by growing silver on
small gold nanorods, in such a way that silver is preferentially
deposited along the particle tips, maintaining the wire thickness
constant (∼38 nm) and reaching a total length proportional to
the duration of metal reduction.56 The agreement between the-
ory and experiment for the plasmon-resonance wavelength is re-
markable up to long wire lengths, as shown in Fig. 13(B).

In contrast to the good agreement obtained between measured
and calculated plasmon light wavelengths, the plasmon widths
are generally larger in experimental spectra as a result of aver-
aging over the finite distributions of particle sizes and shapes in
colloidal samples. This effect is observed in Fig. 13(B), where
the calculated Q’s (right scale) are found to be roughly twice the
measured values. A more systematic comparison with experimen-
tal data available in the literature is offered in Fig. S3 of the ESI
for the same particles considered in Fig. 11, also confirming the
reduction of Q in experimental spectra. It is worth noting that

the disks of Fig. 12, fabricated using electron-beam lithography,
have a smaller dispersion of size and shape,53 and consequently,
the observed and calculated widths are in closer agreement. How-
ever, the polycrystalline nature of the metal typically used in litho-
graphic samples, which contains domain boundaries and surface
defects, constitutes another source of broadening that can vary
depending on the techniques used for metal growth and pattern-
ing.

5 Coupling to optical emitters

The extraordinary field enhancement and confinement produced
by plasmons have been extensively used to amplify the interac-
tion of light with molecules, quantum dots, up-conversion centers
and other types of point-like optical elements. The probability as-
sociated with electronic transitions in these systems (e.g., those
involved in absorption by a molecule, excitation of an electronic
state, and inelastic emission associated with Raman scattering)
are directly proportional to the so-called local density of optical
states (LDOS), which is the sum of intensities of photonic modes
as a function of position and frequency.57 Because the optical
electric field is a vector, the LDOS can be defined for any direction
specified through a unit vector n̂. In practice, it can be calculated
from the electric field E generated by a unit dipole oriented along
n̂ as LDOSn̂ = Im{n̂ ·E}/(2π2ω), where the field is evaluated at
the position of the dipole. We use this expression for the evalua-
tion of the LDOS from full electromagnetic simulations,32 while
the analytical model leads to (see Sec. V of the ESI)

LDOSn̂
LDOS0

n̂
≈

6π
√

εh

k3
hL3

Im

{
(n̂ ·E1(r))2

(1/(ε1−1)+A1)−1− (εm/εh−1)

}
, (14)

where we assume a dominant mode j = 1.

We study the LDOS normalized to its value in free-space
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LDOS0
n̂ = ω2/3π2c3 (this is the projection along any direction n̂,

while sometimes the LDOS in vacuumm is given as the sum over
all three Cartesian directions, 3×LDOS0

n̂) as a way to estimate the
ability of plasmons to interact with optical emitters in their vicin-
ity.

Figure 14(A,B) shows the LDOS near one of the tips of gold
and silver nanorods of different aspect ratios as a function of rod
length. We consider polarization n̂ along the rod long axis of
symmetry and present the LDOS normalized to LDOS0

n̂ for a fre-
quency corresponding to the peak of the lowest-order plasmon in
their respective extinction spectra. The LDOS enhancement pre-
dicted by the analytical model is in good agreement with the re-
sult of fully numerical electromagnetic simulations, reaching val-
ues above 106 in silver, and roughly a factor of ∼ 10 lower in gold;
this is consistent with the scaling of the peak LDOS as ∝ τ2 with
relaxation time (see below) and the ratio τAg/τAu ≈ 3.4 (see Ta-
ble 2), although radiative losses tend to reduce the actual ratio
between total relaxation times.

As a complementary analysis, we revisit the concept of quan-
tum yield and explore the fraction of energy transfered from
an externally incident field (e.g., the decay of a point emit-
ter) to either inelastic absorption in the particle or far-field ra-
diation emission. We thus consider the metal-absorption and
radiation-emission powers Pabs and Pemi, and explore the intu-
itive picture that the quantum yield must be expressed as the ra-
tio Y = Pemi/(Pemi +Pabs). In this equation, the denominator is
the total power (i.e., total extinction for incident light, or decay
energy for an optical point emitter), which is written as the sum
of emission and absorption powers. Now, Pabs and Pemi can be an-
alytically calculated from the current (∝ E) induced in the metal.
Using eqn (8) for E and assuming only one dominant plasmon
mode j = 1, this procedure leads exactly to the same result as in
eqn (13) (see Sec. VI of the ESI for more details), thus corrobo-
rating the above intuition; namely, the equivalence of obtaining
the quantum yield from the ratio of scattering to extinction cross-
sections or from the ratio of different power transfer channels.
The latter is however more general, as it can be applied to any
external source. Regarding the optical emitters considered in this
section, this implies that Fig. 10 also gives the fraction of decay
energy that is radiated away from the particle. And more impor-
tantly, this fraction is independent of the position of the emitter, as
long as the approximation of a dominant plasmon mode is main-
tained; that is, the quantum yield is indeed an intrinsic property
of the plasmon, independent of how it is excited, or where the
emitting point element is placed.

Intuitively, one expects the field enhancement (FE, defined as
the ratio of near-field to incident-field intensities) to be propor-
tional to the increase in LDOS near the structure times the quan-
tum yield (i.e., the coupling from plasmons to radiation, which in
virtue of the reciprocity principle16 is equivalent to the coupling
of radiation to plasmons). More precisely, we consider the en-
hancement in the component of the near field along a direction n̂
when the incident light is also polarized along that direction. This
intuitive relation is demonstrated in Sec. VII of the ESI, where we

conclude

FEn̂ ≈
Y
√

εh

LDOSn̂
LDOS0

n̂
. (15)

This expression is tested in Fig. 14(C,D), where we find excellent
agreement between the results obtained from the near field inten-
sity calculated using the BEM (dashed curves) and the prediction
of eqn (15) with the right-hand side evaluated either from the
BEM (dotted curves) or from our analytical model (eqns (13) and
(14)).

We stress here that the LDOS and the quantum yield Y are
useful concepts of general applicability, as shown by their di-
rect relation to the field enhancement in eqn (15). For exam-
ple, the enhancement observed in SERS is roughly proportional
to (FEn̂)

2 =Y 2 (LDOSn̂/LDOS0
n̂)

2 for a Raman transition polarized
along n̂, assuming a small Raman shifts (i.e., the product of en-
hancements in both the incident light and the inelastically emit-
ted light).

6 Summary and outlook
As a solution to the complex electromagnetic problem and the
sometimes involved details of the optical response presented by
metallic nanoparticles, we have reviewed and extended an analyt-
ical model capable of describing such a response accurately when
compared with both state-of-the-art numerical methods and ex-
perimental data. Remarkably, each particle shape requires only
four real numbers to describe the extinction spectrum, wave-
length, width, and quantum yield associated with each of its plas-
mons. These quantities are computed by means of simple analyt-
ical expressions involving those real parameters, which are valid
for any composition and size of the particles. Importantly, plas-
mon broadening and redshifts due to retardation are correctly
described for a wide variety of particle sizes and morphologies.

The analytical model takes negligible computation time and
can be readily applied to any particle shape once the noted pa-
rameters are available. As a suggested application to sensing, this
method allows a fast assessment of the ability of a given nanopar-
ticle morphology to detect changes in the dielectric environment
(i.e., the permittivity of the host medium εh, which enters the an-
alytical expressions explicitly) through observed variations in the
plasmonic response. Insight into inhomogeneities of a colloidal
sample can be gained by comparing measurements of the opti-
cal extinction to calculated values convoluted with distributions
of particle size and aspect ratio, for which the analytical model
presents clear advantages. A similar optimization scheme could
be applied to SERS systems. The model may also be used to engi-
neer particle shape, in order to render a desired balance between
quantum-yield and strength of coupling to localized optical emit-
ters, with potential applications in nanoscale quantum optics. Op-
tical heating assisted by plasmons (thermoplasmonics) may also
benefit from this analytical theory. Exploration of the difference
between plasmon maxima in extinction, absorption, and LDOS is
also facilitated by the simplicity of the mathematical expressions.

Future extensions of this theoretical formalism should include
the effect of spatial dispersion (nonlocality) and quantum con-
finement, which can be important when either small particles,
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narrow gaps, thin films, or sharp corners and edges are consid-
ered38,39. A promising route to account for these effects con-
sists in adding a nonlocal surface polarization58, which has been
successfully used for arbitrarily shaped particles.59 Inclusion of
plasmon-enhanced nonlinear optical effects also deserves an ex-
tension of the present formalism. The present theory can be read-
ily adapted to two-dimensional materials,43 which have recently
emerged as a powerful platform for optoelectronics. Fast evalua-
tion of the analytical model should also enable adaptive applica-
tions, for example while monitoring colloidal growth, assisted by
real-time comparison with theory.
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