
1

Integrating Wearable Haptics and Teleimpedance Methods for
Augmented Human-Robot Interaction

with Synergy-inspired Robotic Systems
Simone Fani†,‡,∗∗, Simone Ciotti†,‡,∗∗, Manuel G. Catalano‡, Giorgio Grioli‡,

Alessandro Tognetti†,§, Gaetano Valenza†,§, Arash Ajoudani‡,Λ and Matteo Bianchi†,§,Λ

Abstract—In recent years, wearability has become a new
fundamental requirement for an effective and light-weight design
of the human-robot interfaces. Among the different application
fields, robotic tele-operation represents the ideal scenario that can
largely benefit from the wearable paradigm, in order to reduce
constraints to human workspace (acting as a master) and to en-
able an intuitive and simplified information exchange within the
tele-operator system. This effective simplification is particularly
important if we consider the interaction with synergy-inspired
robotic devices, i.e. endowed with a reduced number of control
inputs and sensors, with the goal of maintaining a simple control
and communication between humans and robots. In this work,
we present an integrated approach for augmented tele-operation
where wearable hand/arm pose under-sensing and haptic feed-
back devices are combined with teleimpedance techniques, for a
simplified yet effective position and stiffness control of a synergy-
inspired robotic manipulator in real-time. The slave robot consists
of a Kuka lightweight robotic arm equipped with the Pisa/IIT
SoftHand, both controlled in impedance to perform a drilling
task, an illustrative example of dynamic tasks with environmental
constraints. Experimental results on ten healthy subjects suggest
that the proposed integrated interface enables the master to
appropriately regulate the stiffness and pose of the robotic
hand-arm system through the perception of interaction forces
and vision, contributing to successful and intuitive executions
of the remote task. The achieved performance is presented in
comparison to the reduced versions of the integrated system,
in which either teleimpedance control or wearable feedback are
excluded.

I. INTRODUCTION AND MOTIVATION

Bilateral robotic teleoperation or telerobotics, i.e., robotics
at distance with force feedback to the user, represents a well-
studied problem in literature. The ideal goal is to enable
the user not only to interact with the remote environment
but also to perceive it as if touched directly. At the same
time, due to the closed-loop operation of the system, the
stability of the master-slave control loop should be also
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Figure 1: The integrated system and experimental set-up.

ensured. In literature, the trade-off between transparency and
stability has been elucidated by several important studies [1],
[2]. Indeed, while force feedback is essential to increase
realism and effectiveness of the interaction in teleoperation
tasks, it is challenging to avoid instabilities due for example
to the presence of latencies in the communication channel.
Among the different approaches for stable teleoperation, it is
worth to mention passivity-based approaches (see e.g. [3]),
which analyze the flow of energy of the system and imply a
sufficient but not necessary and overly conservative condition
for stability, and the Virtual Environment-based approach (see
e.g. [4]), which generates a geometric and dynamic model
of the remote physical environment. Other techniques rely
on the substitution of grounded kinaesthetic force feedback
[5] with other forms of feedback, such as visual/auditory or
purely tactile [6], or to scale down the kinaesthetic feedback
to satisfy passivity, at the cost of reducing transparency [7].
Visual-haptic feedback can be also combined with a virtual-
based approach as in [8]. In our recent work, we proposed
an alternative approach to ensure the stability in teleopera-
tion, named teleimpedance, which consists in measuring and
replicating the master’s limb endpoint impedance on the slave
robot in real-time [9]. Interestingly, such a direct mapping
enables to exploit very useful characteristics of the human
muscular-skeletal system, e.g., energy efficiency, resilience,
and safety, which are typical of human behavior and that are
specifically targeted by the development of soft robots [10].
Nevertheless, effective regulation of the interaction parameters
in teleimpedance control requires a priori knowledge about
the task or a good perception of the environment by the
master. Although the integration of grounded force feedback
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into teleimpedance control would be a feasible option, this
kind of feedback commonly imposes additional constraints to
the human limb and severely limits its overall workspace.

To overcome such limitations and hence enhance trans-
parency and intuitiveness of human robot interaction (HRI),
wearable systems for haptic rendering and sensing gained
an increasing attention in recent years [11]. Wearable haptic
systems (WHS) are mainly thought to deliver tactile cues
rather than kinaesthetic information, thus ensuring a good
trade off between stability and transparency. These systems
can indeed be comfortably worn by humans, carried around
and integrated into their everyday life, with ideal applications
related (but not limited) to assistive technologies, virtual
reality, and telemanipulation of remote robotic systems [12].

Teleimpedance and wearable haptics/sensing can play a
crucial role especially considering the overall simplification
approach introduced by the concept of synergies, with special
focus on hands. Synergies can be regarded as main covariation
schemes in human hand joints defining principal patterns of
actuation and sensing of human hands that reduce the burden
for the control of human sensory-motor apparatus, see e.g.
[13]. The synergy idea has hence found a fertile application
field in robotics, inspiring the design, control and sensing of
artificial systems with a reduced number of actuators, control
inputs and sensors (See e.g. [14] for a review on this topic).

Towards the establishment of a teleoperation system that
subsumes the advantages of wearable devices and remote
impedance control, targeting under-actuated synergy-inspired
robotic systems, this work integrates our recent results in
wearable hand pose under-sensing and haptic feedback for the
teleimpedance control of a robotic hand-arm system, see Fig.
1. The robotic system consists of a lightweight KUKA arm,
equipped with the Pisa/IIT SoftHand, an anthropomorphic
robot hand endowed with 19 DOFs actuated with only one
motor, which ensures that the free-hand movement is in
accordance with the first human grasping synergy, i.e. the most
common pattern of actuation observed in human grasping [13].
SoftHand is also robust yet adaptable and can deform with
the external environment to multiply its grasping capabilities
[15]. The force feedback on the grasping force exerted by the
telecontrolled robotic hand is delivered through a wearable
device on the operator’s arm [16]. At the same time, to increase
the naturalness of human-robot interaction, we track human
limb kinematics and the stiffness profiles through light-weight
sensory systems that does not reduce the natural workspace of
the master’s limb. Furthermore, to enable a more ecological
hand pose reconstruction (HPR), i.e. to provide natural inputs
for the remote control of the artificial hand, a wearable under-
sensed solution is here exploited. Indeed, to allow natural
interaction, it is particularly important to avoid cumbersome
solutions, and hence to limit the number of sensors. It is
also important to observe that HPR is provided for all the
joints used for the kinematic hand description, but, through a
suitable projection technique, only the contribution along the
first grasping synergy implemented on the Pisa/IIT SoftHand
is considered to command the position of the artificial manip-
ulator in a more reliable manner.

Both the robotic hand and arm are controlled in torque. In

KUKA the torque control is computed through torque sensing
and actuation [17]. In the Pisa/IIT SoftHand the torque control
is computed through current sensing and control on a custom
control board. The tracking of the human hand movements
in the direction of first kinematic hand synergy is achieved
through an optimally designed under-sensed glove [18] and
mapped to the robotic hand in real-time. Synchronously, an
unidimensional index associates the co-contraction of the
human grasp, estimated from one antagonistic pair of forearm
muscles [17], to the SoftHand stiffness parameter. An interac-
tion toque observer estimates the forces between the SoftHand
and the object, which is fed back to the master using an upper
arm wearable mechano-tactile device [16]. The tracking of
the human right arm kinematics and its translational Cartesian
stiffness components is achieved by reduced-complexity mod-
els that exploit minimum sensory data [19], [17] and replicated
by the robotic arm’s Cartesian impedance controller in real-
time (decoupled from, but synchronous to, the control of the
Softhand). The proposed interface enables the master to use
arm configurations and muscular activations to regulate the
pose and stiffness profiles of the robotic hand/arm system to
generate task-required forces relying on the visual information
and force feedback.

Fig. 2 shows a block diagram of the control scheme em-
ployed, which is explained in more details in the paper.

The manuscript is organized as follows. We will first de-
scribe the main pillars we leveraged upon for our integrated
system and proposed simplification approach, i.e., (i) the
robotic hand and arm system used for the experiments, (ii)
common mode and configuration stiffness principles for real-
time tracking of human arm endpoint and implementation for
the control of the robotic hand; (ii) wearable under-sensing
hand pose reconstruction system to track user’s hand pose
at the master side; (iii) wearable haptic feedback to convey
information on the grasping force of the robotic hand. We
will then describe the integration of these key ingredients
and report on the results of the validation phase, whose
main elements are represented in Fig. 2, carried out through
preliminary experiments with human participants.

Main conclusions that can be drawn is that the integration
proposed here contributes to successful and intuitive execution
of remote tasks. The achieved performance is presented in
comparison with reduced versions of the integrated system,
where either teleimpedance control or wearable feedback are
excluded.

It is worth to underline that the inspiring idea of our
work is a generalized simplification strategy informed by the
neuroscientific concept of synergies. This idea is, indeed, used
for the development and control of the SoftHand and for the
optimal design of HPR. Furthermore, the concept of synergies,
intended in a broad sense, has also driven the implementa-
tion of teleimpedance and force-feedback. In teleimpedance,
synergies led to a simplification of sensing components and
methods, while in the implementation of force feedback it
yields the possibility of rendering the overall force exerted by
the SoftHand along its motion pattern relying on an indirect
estimation of the force based on the current absorbed by the
hand motor without using any extrinsic sensor.
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Figure 2: Block diagram of the integrated system. θm, θm1, θm2 represent SoftHand motor and cuff motors angular positions,
respectively. θref is the synergistic reference configuration (or σ) commanded to the SoftHand through the glove-based kinematic
reconstruction. Im is the current absorbed by the SoftHand motor and measured through current readings. Ilut represents the
contribution to the reconstructed free-hand motion current due to the angular position, velocity and acceleration. Kqs, Kv and
Ka represent the functions related to motor angular position, velocity and accelration, respectively. The term rI is used to
compute the reference angular motor position of cuff motors through the proportional factor βcuff . For further details the
reader is invited to refer to [16]. The other symbols are elucidated in the text.

II. THE ROBOTIC HAND AND ARM SYSTEM

The Pisa/IIT SoftHand (SH) [15] is an anthropomorphic
hand designed with 19 DOFs, 4 on each of the long fin-
gers, and 3 on the thumb. The fingers are capable of flex-
ion/extension as well as ab/adduction. For ab/adduction of
the fingers and at the equivalent of the carpometacarpal joint
of the thumb, traditional revolute joints were employed. The
rest of the joints incorporate rolling contact joints with elastic
ligaments, which ensure physiologically correct motions when
actuated, but easily disengage on impact to allow safe inter-
action with humans while preserving the hand. The elastic
ligaments also allow deformation while ensuring the hand
returning to its original configuration. Afterwards this design
enables the SH to softly interact with the environment and
adapt to the items, exploiting the external constraints. A single
tendon runs though all joints to simultaneously flex and adduct
the fingers upon actuation. The hand is actuated by a single
DC motor which moves the fingers on the path of the first
synergy [13], hereinafter referred to as S described in R19,
allowing the SoftHand to mold around the desired object.
For further details the reader is invited to refer to [15]. More
information and CAD files of this robotic hand can be freely
downloaded from Natural Machine Motion Initiative (NMMI)
www.naturalmachinemotioninitiative.com/.

In this work, we used a myo-electric version of the Pisa/IIT
SoftHand. More specifically, exploiting the concept of syn-
ergies that drive concurrent muscle activation, only one pair
of antagonistic muscles (two surface EMG channels, from
the major finger antagonist pair, i.e., the extensor digitorum
communis (EDC) and flexor digitorum superficialis (FDS))
was used to drive the stiffness and postural synergy references
tracked by the hand controller, as detailed later in the text, see

also [17]. The hand is mounted over the wrist of a 7 DOF
Kuka LWR IV+ arm. The position and end-point stiffness are
controlled using the techniques detailed in the next section.

III. COMMON-MODE (CMS) AND CONFIGURATION
DEPENDENT STIFFNESS (CDS) PRINCIPLES FOR

TEAL-TIME TRACKING OF THE HUMAN ARM ENDPOINT
IMPEDANCE

There are several important reasons why humans principally
explore the control of arm configurations to perform tasks
that require dynamic dexterity. One explanation for such a be-
haviour is the ergonomic efficiency of the postural adjustments
in the generation of certain endpoint force manipulability or
stiffness profiles in comparison to the muscular (co)activations
[20]. Another important factor is the major contribution of
the arm pose to effective modifications in the geometry of
the endpoint stiffness ellipsoid. The latter can mathematically
be described by transformations from muscle stiffness matrix
(Km) to arm joint stiffness (KJ ), and consequently to the
Cartesian stiffness matrix (Kc) by1

Kc(p, q) = J+T (q)[JT
m(q)KmJm(q)]J+(q), (1)

with KJ(p, q) = JT
m(q)K̂m(p)Jm(q), and p, q and Km being

the muscle activation and joint angle vectors and muscle
stiffness matrix, respectively. The quadratic effect of the arm
kinematics through arm J(q) and muscle Jm(q) Jacobians on
the Cartesian stiffness matrix is evident in this equation.

The tracking of the arm kinematics is achieved through pas-
sive marker motion capture system (Vicon) using the concept
of arm tangle, as explained in [19]. Three rigid-body markers

1The effects of gravity and external load are neglected in this equation.

www.naturalmachinemotioninitiative.com/
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can be attached to the hand, elbow and shoulder segments and
used for the tracking of the arm Jacobian. Using the muscle
attachment points [21], and the length variations over the joint
angles, the muscle Jacobian can be computed online.

The effect of muscle stiffness matrix (Km) in joint and
endpoint stiffness variations is commonly described using
Hill’s activation dynamic equations which provide a map-
ping between the muscular activities, usually measured by
the EMGs, and the corresponding muscles’ stiffness profiles.
This, however, requires that the EMG activities of several
muscles are processed and passed through a complex sys-
tem of equations to account for the muscle stiffness matrix,
eventually resulting in costly (need for several EMG sensors
and amplification) and computationally intensive system. On
the other hand, dense literature gives solid evidence on the
existence of synergistic relationships between the arm mono-
and bi-articular muscle activities which realize a coordinated
stiffening profile across the arm joints [22], [23]. As a result,
co-contractions of the arm muscles mostly contribute to the
modifications in the volume of the endpoint stiffness ellipsoid
rather than to its direction [9]. This strategy is deemed to be
exploited by the Central Nervous System (CNS) to solve for
the motor complexity in an efficient and coordinated manner
[24].

On these bases, in our recent work [19], the con-
cepts of Common-Mode Stiffness (CMS) and Configuration-
Dependent Stiffness (CDS) were proposed to associate the
arm muscular activities and configurations to variations in
the volume and major axes orientations of the arm endpoint
stiffness ellipsoid, respectively. To design a real-time arm
endpoint stiffness model, we presume that i) there exists a
synergistic relationship between the arm muscle activities, and
ii) each muscle activation contributes to the volume of the
endpoint stiffness ellipsoid with a different ratio. Accordingly
we propose K̂m = acc(p) Ks, with Ks an experimentally
identified time-invariant diagonal matrix which implements the
contribution of each muscle to the active variations of the
volume of the endpoint stiffness with a certain weight. The
scalar and time-varying component, acc(p), which is a function
of the muscular activities, is multiplied to the muscle weights
to compute the overall contribution of muscle activations to
the volume of the endpoint stiffness ellipsoid. Obviously,
depending on the choice of muscles that are used for the com-
putation of active component (acc), the identified scale matrix
Ks would differ. In this study, as the dominant and easily
accessible muscles of the arm for surface electromyography
measurements, we process the EMG activity of the Biceps
Brachii (BB) (PB) and Triceps Brachii (TB) (PT ) muscles to
calculate acc(p) = c1 + c2(PB + PT ), with c1 and c2 being
constant coefficients referring to the intrinsic muscle stiffness
component. By rearranging the above equations we obtain

Kc(p, q) = J+T (q)[JT
m(q)acc(p) KsJm(q)]J+(q). (2)

The parameters of such models are subject-specific and
must be identified off-line. To achieve this, as described in
[19], the endpoint stiffness (Kc(p, q)) of the human arm was
estimated in various arm pose (q) and activation levels of
the arm muscles (P ). The stiffness matrix was estimated by

applying stochastic position perturbations and measurements
of the restoring forces. The estimated stiffness matrices and
the measured data (muscle activities (P ) and arm and muscle
Jacobians calculated from q) can be consequently used for the
identification of the model parameters by minimizing the norm

‖JT
m(q)acc(p)KsJm(q)− JT (q)Kc(p, q)J(q)‖, (3)

with Jm ∈ R8×7, Ks ∈ R8×8, J ∈ R3×7, and Kc ∈ R3×3

(only translational components of the stiffness matrix). In
this model, we exploit arm muscle length functions of eight
dominant muscles acting on the shoulder, elbow and wrist joint
to model the moment arms of the muscles as functions of the
corresponding joint angles (see [25]). Selected eight muscles
are the anterior (DELT1) and posterior (DELT3) portions of
Deltoid, Brachialis (BRA), Brachioradialis (BRD), the long
(BIClong) and short (BICshort) portions of Biceps, and the
long (TRIlong) and lateral (TRIlat) portions of Tricpes, which
present dominant effects in generation of the torque profiles
in the arm joints. Therefore, 10 unknown parameters (Ks, c1,
and c2) must be identified, which define the minimum number
of required trials for the calibration experiments. Based on
this number, the total number of trials was divided into the
calibration and test trials for the validation of the identified
model. The identified matrix Ks represents the coordinated
contributions of the selected muscles to the endpoint stiffness
variations. The other two components c1, and c2 are used for
the definition of the scalar value acc, that represents the active
contribution of muscular activities to the modifications of the
volume of the endpoint stiffness matrix [19].

Once the model parameters are identified, (2) can be utilized
for the real-time computation of the arm endpoint stiffness
profile using electromyography signals of one antagonistic pair
of muscles and the tracking of the arm triangle (please refer to
[19] for details). The EMG signals are acquired by the wireless
Delsys Trigno system (Delsys Inc.), at 1 kHz. The processing
(filtering and normalization to maximum voluntary contraction
(MVC)) is performed on-line. The tracking of the arm triangle
is achieved by 11 Flex-3 cameras of the Optitrack system
(NaturalPoint, Inc.) by attaching three rigid-body markers to
the shoulder, elbow and wrist of the human hand, at 100
Hz. Our real-time model enables the master to modify the
direction of the endpoint stiffness ellipsoid by changing the
arm posture in an intuitive manner, while being capable of
adjusting its volume by increasing the co-contraction of the
dominant arm muscles. As a result, teleoperated tasks which
require significant modulation of the endpoint stiffness and
force can be executed effectively and naturally.

IV. A WEARABLE APPROACH TO DYNAMIC REMOTE
CONTROL OF A SYNERGY DRIVEN ROBOTIC HAND

A. A Wearable Hand Pose Reconstruction Ssystem: Optimal
Design and Under-sensing

The position of the Pisa/IIT SoftHand was controlled based
on the user’s hand posture acquired through a wearable sensing
glove. This glove [18] was endowed with five texile goniome-
ters which can measure five joint angles, see Fig. 3. This glove
has also been integrated with a tactile sensing glove to provide
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a tool to retrieve both kinematic and force information of
human hand in grasping tasks [26]. Textile goniometers consist

Figure 3: Glove with knitted piezoresistive fabrics (KPF)
sensors on the joints of interest.

of two piezoresistive layers connected through an electrically-
insulating layer. The sensing layers of the textile goniometers
were fabricated using knitted piezoresistive fabrics (KPFs).
The output of the sensors is the electrical resistance difference
computed from the two sensitive layers and is proportional
to the flexion angle [27], see Fig. 4. The distribution of the

Figure 4: Representation of a double-layer textile goniometer.
The two external stripes represent the piezoresistive layers.
The grey line is the electrically-insulating layer. The bending
angle (θ), represented by the angle between the tangent
planes to the goniometer extremities (black dashed stripe), is
proportional to the difference of the resistance (∆R) of the
sensing layers.

sensors on the glove was optimal in a Bayesian sense such
that it maximizes the information on the actual hand posture.

The theoretical work that led to the definition of the design
guidelines was laid out in [28]: the idea was to exploit hand
joint covariation schemes in grasping tasks, or hand synergies
[13] as a priori information to complete hand pose from a
limited number of (noisy) measures and, at the same time, to
decide how and whereto place sensors on the glove taking into
account the knowledge on how humans most frequently use
their hands in grasping tasks.

More specifically, five KPF goniometers were specifically
built and integrated into the glove to fulfill the design require-
ments (i.e., sensor length) and to measure the following joint
angles, according to the kinematic model in [13], i.e., TA, MM,
RP, LA and LM (Thumb Abduction, Middle Metacarpal, Ring
Proximal, Little Abduction, Little Metacarpal, respectively).
Such a sensor placement was inspired by the optimal design
guidelines in [28]: the measurements KPFs provide were then
completed through synergy-based estimation techniques [29]

to obtain hand posture reconstruction according to a 19-
DOF model. More details on the sensing glove can be found
in [18].

B. Kinematic Mapping: from Human Hand to Pisa/IIT Soft-
Hand

Once the hand pose of the user is reconstructed, it is used
to control the position of the Pisa/IIT SoftHand, which is
built to move without obstacles along the vector of the first
human postural synergy S (in our case S ∈ R19) – which also
represents the reference configuration towards which the real
hand position is attracted and, at the same time repelled from,
due to the interaction and grasping with the external object,
according to the soft synergy model [30].

Since the SoftHand is commanded to move along the first
human postural synergy, for this experiment, we need to
estimate the value of σ, i.e. the synergy intensity [30], which
should be commanded to the SoftHand motor.

Vector S is implemented in the SoftHand through a careful
design of spring elements and pulley trains, resulting in a
coordinated closure of all joint angles. To get value σ

σ = STx (4)

where vector x contains the reconstructed human hand joints.
This value needs to be correlated with SH motor position:

to do it, we first get σmax corresponding to the maximum
closure of human hand and related it to motor position (in
ticks). The other intermediate σ values can be obtained via
simple proportion. This reconstruction provides an effective
way to command synergy-based robotic hands and can be
extended to systems with more degrees of actuation, see e.g.
[31].

C. Teleimpedance for Intuitive Control of the Robotic Hand

Following the implementation of teleimpedance control for
teleoperation of a robotic arm described above, we explored
the translation of this approach to the control of a synergy
driven robotic hand, the Pisa/IIT SoftHand ([17]). The refer-
ence configuration commanded to the hand is the difference
of the two EMG signals from FDS and EDC, as previously
mentioned. These signals were acquired through two surface
EMG electrodes by Trigno System. To modulate the stiffness
of the hand, we used an EMG driven P-gain modulation. In
other terms, the proportional gain of the PID controller of the
position control of the SH motor increased with increasing
amplitude of the EMG signal with the smallest amplitude,
normalized to the EMG signal highest amplitude. Upper and
lower bounds for the proportional gain were estimated through
pilot data by selecting the range of values in which the
SH moved smoothly until reaching the reference position.
Accordingly, SH movement velocity and impedance were
modified by changing the proportional gain value. More details
can be found in [32].
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V. WEARABLE HAPTIC DEVICE FOR FORCE FEEDBACK

To convey information about the grasping force produced
by the Pisa/IIT SoftHand we used the Clenching Upper-limb
Force Feedback wearable device (hereinafter referred to as
CUFF) for distributed mechano-tactile stimulation of normal
and tangential skin forces. The device is described with more
details in [16].

CUFF device can be worn by the users on their forearm
and is endowed with two independently controlled DC motors.
The basic design of the device is based on an elastic belt
wrapped around the user’s limb. For this study, the motors
spin in opposite directions to tighten or loosen the band on
the arm in accordance with estimated grasp force.

(a)

(b)

Figure 5: Device overview and working modes.

In Fig. 5 the real prototype and a 3D render of the CUFF
system are shown, highlighting some details of its mechanical
implementation. The CUFF weights ≈ 230 g, while its overall
dimensions are 12.4× 7.0× 5.8 cm.

One possible application of CUFF is to enhance haptic
interaction with the environment, in particular as a haptic
feedback device for robotic/prosthetic hands, with the goal
of achieving better grasp stability by conveying grip force
information [17]. The Pisa/IIT SoftHand was equipped with a
custom-made µ-controller, which controls the opening/closing
level of the hand in position by acting on the current that
drives the motor. The complete scheme of the control is
represented in Fig. 2. The basic idea is to use the hand motor
current to have a rough estimate of the applied force to the
external environment. This approach is motivated by the fact
that there is a net difference in the motor current, in free
motion (maximum value of ≈ 800 mA) or when the robotic
hand grasps an external object (maximum value of ≈ 1200
mA). The CUFF is then controlled through the residual current
rI , defined as the difference between the current absorbed
by the SoftHand motor and the current reconstructed. The
reconstructed current represents the motor current in free hand
motion, which will be subtracted from the current sensed by
the µ-controller. More details can be found in [16].

VI. INTEGRATION AND EXPERIMENTAL TASK

In our experimental setup, we integrated the aforemen-
tioned techniques, i.e. teleimpedance, sensing glove and force-
feedback device. We implemented two control loops: one
controlled the sensing glove, the Pisa/IIT SoftHand (both in
position and stiffness) and managed the force feedback. The
other one controlled the Kuka robot, through a developed
Cartesian impedance controller to replicate the masters’ arm
endpoint trajectories and stiffness. EMG signals were acquired
by a third computer that sent these values in broadcast on
a local wired network. The two control loops, running on
two distinct computers, took data of interest directly from
the network. These two loops run at a frequency of 100 Hz
and 200 Hz, respectively. During the experiments, we asked
participants to control the pose and stiffness of the Pisa/IIT
SoftHand mounted on Kuka. The arm teleimpedance control
(described in section 2) was used to command the position of
the robotic arm and to regulate the impedance of the system
online. The task consisted in grasping a drilling tool and using
it to drill a block of autoclaved aerated concrete. The task was
considered successful if participant was able to grasp the tool
placed on a table, use it to drill the block (to produce a hole
with length of at least 4 cm) and remove the drill from the
hole.

Ten right-handed volunteers (8 males and 2 females, age
27.4 ± 2.63) took part in the experimental tests. All partici-
pants in these studies gave informed consent to perform the
experiments. No subjects reported physical limitations that
would affect their ability to perform the task. Average arm
length is 29.47cm with a standard deviation of 2.41cm from
the shoulder to the elbow, and 24.02cm with standard deviation
4.06cm from the elbow to the wrist. Average hand measures
are 10.21 ± 0.93cm width (from the tip of the thumb to the
tip of the little finger in flat hand posture) and 18.48±0.79cm
length (from the wrist to the middle finger tip). For any subject
a fast calibration for the sensing glove (see section 3) and for
the teleimpedance controllers for the arm and the hand was
performed (see sections 2 and 3, respectively).

Six experimental conditions were considered: (i) Low Stiff-
ness (LS), (ii) High Stiffness (HF), (iii) teleimpedance (TI),
with and without the usage of the cuff force feedback, (C)
and (NC), respectively. In the LS condition the stiffness of
the SH was also low and we set the P-gain of the SH
controller as 0.005, and the Cartesian stiffness of the KUKA
robot was set to 800 N

m and 50 Nm
rad in all translational and

rotational directions, respectively. For the HS condition the
P-gain of the SH was set to 0.05, with the KUKA Cartesian
stiffness values of 2000 N

m and 200 Nm
rad in all translational

and rotational directions, respectively. These represent lower
and upper bound guaranteeing a stable performance. In the TI
condition the P-gain and the robot endpoint stiffness profile
were modulated as described in Section before.

At the end of the experiments, we asked subjects to answer
the following questions according to a seven-point bipolar
Likert-like scale:

1) I had the feeling of performing better while receiving
force feedback by the cutaneous device
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2) I had the feeling of performing better while modulating
impedance of end effector

3) I was feeling uncomfortable while using teleimpedance
with cutaneous device

4) Teleimpedance control was intuitive
5) I felt hampered by the cutaneous device
6) It was easy to move my hand and fingers while wearing

the sensing device
7) Please rate your impression on how close the robot

behaved as an extension of your body (including the
feeling to directly interact with the remote environment
to assess somehow transparency)

where score 1 means completely disagree and 7 completely
agree.

VII. RESULTS

As performance evaluation metrics, we considered: success
in task accomplishment and modulation of EMG signals and
interaction forces. We will discuss the main experimental out-
comes in this section, considering the effect of teleimpedance
modulation and force feedback. A video of an exemplary trial
performed with teleimpedance control and force feedback can
be found in the accompanying video.

A. Success Rate

In Fig. 6 we report the success rate for the different condi-
tions. Regarding conditions TI, LS, HS we can observe that TI
exhibits the highest success percentage (83.3%), although high
stiffness also provides high success rate (78.3% w.r.t. 60.0%
for LS).

We have performed χ2 non-parametric statistical tests con-
sidering the relative frequency of succeeding trials between the
three different experimental conditions (Teleimpedance, Low
stiffness, High stiffness) and for the two factors (CUFF and
No CUFF).

Considering Teleimpedence condition, the contingency table
of observed frequencies is associated with a p < 0.085 (χ2 =
3, df = 1) as calculated considering the Yates correction for
the χ2 calculation due to the low value of expected frequen-
cies, meaning that in this experimental condition the use of
CUFF device tends to increase the chances of success trial
rate. Nevertheless, we can only claim on this ”trend” because
of the formal acceptance of the null-hypothesis considering
a statistical significance of 5%. Likely, a higher number of
subjects involved in our experimental protocol would allow
reaching a proper statistical significance.

Considering low-stiffness condition, the contingency table
of observed frequencies is associated with a p < 0.05
(χ2 = 4.44, df = 1), meaning that in this experimental
condition the use of CUFF device significantly increases the
chances of success trial rate. This could be ascribed to the
lower force produced by the SoftHand in this case compared to
the other two ones. In this condition, the information conveyed
by the CUFF is essential to make the subject aware that the
control he/she is acting is not sufficient for lifting, carrying
and handling the driller and hence can increase the grasping
force for a successful task completion.

Considering high-stiffness condition, the contingency table
of observed frequencies is associated with a p > 0.05 (χ2 =
0.884, df = 1), meaning that in this experimental condition the
use of CUFF device does not increase the chances of success
trial rate. This may be due to the fact that in High stiffness
condition the proportional gain of the SH control is very high,
resulting in fast and strong movements of the hand itself. These
movements generate high grasping forces that can be difficulty
regulated even with the usage of the CUFF.

Importantly, regardless of the experimental condition, the
contingency table of observed frequencies is associated with
a p < 0.005 (χ2 = 8.32, df = 1), demonstrating that in
a generic scenario the use of the CUFF device significantly
increases the chances of success trial rate.

We then investigated differences in the trial success rate
regardless of the use of the CUFF device. In this case, the
contingency table of observed frequencies is associated with a
p < 0.01 (χ2 = 9.39, df = 2), meaning that the specific exper-
imental condition does influence the trial success rate. We then
performed χ2 post-hoc test considering Bonferroni correction
of the statistical significance, observing that the teleimpedence
significantly increases the change of trial success rate with
respect to the low-stiffness condition (p < 0.005, χ2 = 8.04,
df = 1). Other multiple comparisons do not reach the formal
statistical significance (as associated with corrected p > 0.05),
although it is worthwhile noting that the low-stiffness vs. high-
stiffness comparison is associated with a corrected p < 0.06
(χ2 = 4.73, df = 1), meaning that the high-stiffness condition
tends to increase the change of trial success rate with respect
to the low-stiffness condition. The non-statistical difference
between Teleimpedance and the High stiffness condition could
be explained by the fact that for this particular task, the High
stiffness condition generates very precise movements that led
to a successful trial execution. However, the integrated usage
of teleimpedance and Cuff produces a different modulation of
the interaction forces, which are generally lower w.r.t the High
Stiffness case and suitably adapted to the different phases of
the trial. This would result in safer interactions and likely to a
reduced fatigue in subjects for longer tasks (see Section VII-E)

Figure 6: Success percentage of task accomplishment for the
different conditions.
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B. Subjective Evaluation

The scores provided by 10 participants (reported in Table
I) were analyzed through descriptive and inferential statistics.

Analyzing the data, we can conclude that cutaneous de-
vice and teleimpedance increase subjective evaluation of task
performance (Q1, Q2). In other terms, participants had the
impression to perform better when teleimpedance control and
force feedback were provided. Furthermore, the integration of
teleimpedance and cuff device was perceived as comfortable
by the subjects, who did not feel hampered by the cutaneous
device (Q3, Q5). The sensing glove for HPR was evaluated
as highly wearable, imposing minimal constraints to fingers
and hand movements (Q6). Regarding the transparency of the
system to the user (Q7), the usersrated the perception of the
robot as an extension of their body when Teleimpedance and
CUFF were used together providing a very high score.

C. EMG modulation and Hand Interaction Forces

This section reports on the effect of feedback (CUFF) device
on the modulation of EMG signals of the EDC and FDS
muscles, and the grasping forces, as a consequence. Figs.
7 and 8 illustrate typical results of the EMG activities and
the corresponding grasping interaction forces of the SoftHand
under teleimpedance control without and with the haptic
feedback, respectively. As observed, haptic interface enables
the user to effectively modulate the EMG activities and the
grasp forces to achieve a stable grasp in different phases of
the task.
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Figure 7: Modulation of EDC and FDS signals and SoftHand
grasping force (expressed in terms of residual current) when
the user (Subject 1) did not use CUFF device.

D. EMG modulation and Endpoint Stiffness (changing the P-
gain)

This section illustrates the results of the regulation of the
robot endpoint stiffness through control of CMS (contribution
of muscular activations) and CDS (through arm geometry).The
impact of varying the hand stiffness (by changing the P gain)
and the Cartesian stiffness profiles of KUKA can be assessed
on the dynamic performance of the system. Indeed, we do
not expect to see any performance degradation using various
P gains or Cartesian stiffness profiles in terms of trajectory
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Figure 8: Modulation of EDC and FDS signals and SoftHand
grasping force (expressed in terms of residual current) when
the user (Subject 1) wore and used CUFF device.

tracking in free space (assuming a reasonable compensation
of system uncertainties such as friction). Nevertheless, the
force response of the two systems (hand and robot arm)
to the environmental displacements would clearly differ, and
determined by the choice of the parameters.

The objective here is to illustrate that certain endpoint
impedance profiles and hence certain gains (for hand and
KUKA) provide the best performance for certain physical
interaction scenarios, as is the case of a drilling task. Hence,
since the best performance relies on the choice of gains,
we use a human-in-the-loop system to tune them online,
intuitively. Typical results of the teleimpedance control with
haptic feedback are illustrated in Figs. 9(a) and 9(b) for two
typical subjects, respectively. As illustrated in the plots, the
operators could modulate the volume of the Cartesian stiffness
profile (a coordinated increase in the matrix components) by
applying co-contractions, in different phases of the task.

In addition, in robot arm control, if the control of the end-
point stiffness geometry was necessary, the proposed method
enables the operator to use the effect of configuration to
modulate the stiffness in certain axes of the Cartesian stiffness
(e.g. while drilling the arm is extended on x direction to
achieve a stiffer profile in x even in small muscular activation
levels) intuitively. Hence, potential misalignments in other
directions would not achieve unnecessary high interaction
forces. This explains the change of endpoint stiffness in similar
activation levels of the muscles but different arm poses of
the operator. The operators ability to modulate the endpoint
stiffness of the KUKA robot (and the restoring forces as a
consequence) according to the task needs, led to an increase
in the success rate.

E. Interaction Forces

Figure 10 illustrates typical acquired interaction forces at the
KUKA end-effector for the three control modes (LS, HS, TI)
during drilling task. As observed in the plots, while interaction
forces are low in the Low Stiffness case, the time of the
execution is very long compared to the rest of the modes. Stiff
case, on the other hand, achieved unnecessary high interaction
force in directions other than drilling (e.g. in y direction)
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Questions Median I.Q.R. CI m. 95%

Q1 I had the feeling of performing better while receiving force feedback by the cutaneous device. 6 1 (5,6)
Q2 I had the feeling of performing better while modulating impedance of end effector. 6 1 (5,7)
Q3 I was feeling uncomfortable while using teleimpedance with cutaneous device. 2 0 (1,3)
Q4 Teleimpedance control was intuitive. 6 0 (5,6)
Q5 I felt hampered by the cutaneous device. 2 0 (1,2)
Q6 It was easy to move my hand and fingers while wearing the sensing device. 6 0 (4,7)
Q7 Please rate your impression on how close the robot behaved as an extension of your body. 6 1 (5,7)

Table I: These statements, presented in random order, were rated by the subjects using a 7-point Likert scale (1: Strongly disagree, 7: Strongly agree). Data
from the statistical analysis are showed. Q7 is referred to the Teleimpedance condition with CUFF feedback.
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Figure 9: Processed (filtered and normalized) electromyo-
graphy signals of the Biceps Brachii and Triceps Brachii
muscles are illustrated in the upper plot in the two subfigures
during the teleimpedance experiment. The resulting human
arm endpoint stiffness (that is achieved in KUKA endpoint
using the Cartesian impedance controller of the robot), in
KUKA frame of reference is illustrated in the lower plot of
the two subfigures for the subject 1 (a) and subject 4 (b) for
the Teleimpedance controller with haptic feedback.

which could cause damage for the tool or the environment.
On the other case, Teleimpedance control mode enables to
regulate interaction forces according to the task phase and its
requirement, as depicted in the figure.

Figure 10: Typical acquired interaction forces at the KUKA
end-effector for the three control modes. All three modes
include haptic feedback.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we discuss the results of a human-robot tele-
operation in a cooperative object manipulation task, leveraging
upon wearablity paradigm and the generalized simplification
approach of human synergies. The task is a drilling task,
where a human user was required to tele-operate a robotic
synergy-inspired hand-arm system, endowed with the Pisa/IIT
SoftHand, in order to grasp and use a driller. The correct task
accomplishment requires advanced action-perception skills,
which include both knowledge about the object properties and
the execution of motor primitives, but without increasing the
complexity for sensing and control on the robotic side.

To perform this action, we developed a system that inte-
grates in a coherent manner under-sensing and wearable haptic
feedback devices and augmented tele-operation methods based
on teleimpedance, which enables to simply, safely and stably
control the position and the stiffness of a robotic hand and
arm system in the synergy space. Results from a preliminary
experimental validation carried out with human participants
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show that the usage of teleimpedance and force feedback
seems to increase the success rate and was perceived by
participants as a highly valuable and intuitive aid for task
accomplishment. Teleimpedance mode with haptic feedback
enabled subjects to effectively regulate EMG signals and the
interaction forces of the Pisa/IIT SoftHand. Furthermore, the
wearability of the sensing glove used to control the position of
the robotic hand along the first human grasping synergy was
perceived by participants as significantly high. Conclusions
that can be drawn are that the presented system seems to
increase effectiveness, intuitiveness and comfort during collab-
orative tasks performed by a human user and a robot, ensuring
stability and naturalness of HRI for synergy-inspired artificial
devices. It is also important to observe that these techniques
can be successfully applied and extended to robotic devices
with additional degrees of actuation, enabling a simplified and
effective human-robot communication.

Future works will focus on further testing this system with a
greater number of participants and evaluating other modalities
for HPR, e.g., visual based, as well as the effect of other
feedback modes, e.g., vibrotactile. Wearability of the overall
system will be also pushed further. Envisioned applications can
be in medical robotics, entertainment and amusement culture
and tele-operation in hazardous and remote environments.
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