
04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 1 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Supporting Material: Imbalanced Learning in
Astronomy
Author: Dr. Robert Lyon

Contact: robert.lyon@manchester.ac.uk

Institution: University of Manchester

Affiliation: SKA Group, Time Domain Team (TDT)

Version: 1.0

Date: 04/04/2018

Acknowledgements: This notebook utilises data obtained by the High Time Resolution Universe
Collaboration using the Parkes Observatory, funded by the Commonwealth of Australia and managed by
the CSIRO. The data was originally processed by Dr. Daniel Thornton & Dr. Samuel Bates. I gratefully
acknowledge their efforts.

I make use of a Python library called in this notebook. This was written by Guillaume
Lemaître, Fernando Nogueira and Christos Aridas as part of their work,

"Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning",
Journal of Machine Learning Research (JLMR), vol.18, number 17, 2017.

Their work can be found via the JLMR website (http://jmlr.org/papers/v18/16-365).

I greatly appreciate their efforts.

Introduction
This notebook explores the issues that reduce the accuracy of Machine Learning (ML) algorithms, used
for candidate classification. It was written to support a talk I delivered at European Week of Astronomy
and Space Science (EWASS) meeting in 2018. The talk is entitled:

Imbalanced Learning In Astronomy

The notebook dissects the class imbalance problem through interactive Python code (Python version
3.6). I explore the key concepts and issues via a tutorial style. To run the code you require the ,

, , and libraries. The notebook assumes some basic background
knowledge in statistics and machine learning, but is pitched at a general astronomy audience that may
have limited ML experience.

Code & License

imblanced-learn

numpy
scipy scikit-learn imbalanced-learn

http://jmlr.org/papers/v18/16-365

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 2 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

The code and the contents of this notebook are released under the GNU GENERAL PUBLIC LICENSE,
Version 3, 29 June 2007.

Citation Request
I kindly request that if you make use of the notebook, please cite the work using the following
source and using the repository DOI.

@misc{Lyon:2018:ewassNotebook, author = {{Lyon}, R.~J.}, title = {{Supporting Material: Imbalanced
Learning in Astronomy}}, journal = {European Week of Astronomy and Space Science (EWASS)}, year =
{2018}, }

I also humbly request that you cite the paper that this notebook supports to make the work more visible.

@inproceedings{Lyon:2018:ewassProceeding, author = {{Lyon}, R.~J.}, title = {{Imbalanced Learning in
Astronomy}}, booktitle = {European Week of Astronomy and Space Science (EWASS)}, note = {Session S6,
Software in Astronomy}, month = {April}, year = {2018}, }

Background
If comfortable with ML, statistics or decision theory, please feel free to skip the following sub-sections.
They are meant primarily for those new to the field.

Observations and Data
We use instruments to measure the world around us. For example we can use a thermostat to measure
temperature, a questionnaire to measure opinions or record details, and ground-based telescopes to
measure electromagnetic radiation arriving at the Earth's surface. In each case, measurements yield
data.

When we take a measurement, we're making an observation. Observational data can be numerical,
textual, categorical, or a combination thereof. In the case of a thermostat, it takes temperature
measurements at a specific point in time, producing a single numerical value. If the temperature within a
room drops below a pre-determined level (i.e. becomes too cold), the measurements from the thermostat
can be used to automatically turn a heating system on to compensate. The performance of the system
depends on the thermostat providing accurate measurements. Otherwise a room or building could
become too hot, or too cold.

There are many factors that contribute to cooling or heating an arbitrary room. These include the current
state of a potential heating system (on/off), the temperature outside, the time of day, the time of year, or
even the body heat emitted by people within the room. There are many variables to consider, and these
are but a few.

Usually we don't care about all the details - the room is either too hot, or too cold. But what about in
situations where heat management is critically important? Say, in the heart of a computer server room or
nuclear reactor. Here temperature changes can cause problems. In these scenarios is it generally

Bibtex

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 3 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

desirable to keep equipment cool for optimal performance. If the temperature increases too much, it may
become necessary to cool things down. Perhaps by increasing the airflow, using air conditioning/cooling
liquids, or even turning some machines/the reactor off. Such actions have safety implications and a
financial cost. Ideally we'd like to take pre-emptive action to stop any adverse conditions arising.
Perhaps by making predictions.

Making such predictions is hard! There are many variables to consider. To proceed we usually make a set
of assumptions regarding which variables matter most, and focus on those. So for example, let's not
worry about the heat added to the server room by people. This is the best we can do with imperfect
knowledge. Ideally we'd like to fully understand the processes at play in these scenarios. But what does
"understand the process" actually mean?

Functions
We can quantify this mathematically via functions. A function is just an input/output box. It accepts input
in the form of data, and produces data as output via a mathematical formula. We can use functions to
model very complicated scenarios more easily.

Example

Consider the server room example. There are a large number of factors determining the room's
temperature at any given moment (outside temperature, airflow, number of computers, computational
load, time of day etc.). We can't keep track of all these variables - that would be incredibly impractical.
Yet we can think of the room as an input/output box that accepts all these variables as inputs, and yields
the temperature as output.

In nature there exists a mathematical formula for this function. Given all (potentially infinite) input
variables, it would return the exact temperature that results, without error. This function can be
represented via:

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 4 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Where represents the input. In many cases we'd like to obtain this function. For the server room it
would allow us to predict the state of the room now, and anytime in the future with complete certainty -
for any set of input variables. This predictive power could be used to great effect. The cost savings
achievable in terms of power alone would be huge - decreased power consumption, increased
equipment life-time, fewer hardware failures etc.

However to find we require a dataset accurately describing the infinite variety of input variables and
output states. This is clearly infeasible!

Instead we can observe a server room over a fixed period of time - perhaps we can use that information?
Experts collect monitoring data over weeks, months and sometimes even years. The data provides a
detailed picture of how input variables map to output states. As more data is collected, the picture
becomes clearer.

Suppose a server room is monitored from January to March. The data collected describes a subset of
the inputs and outputs of . It doesn't cover the summer months, so we don't have data associated
with higher summer temperatures. The data we have is therefore incomplete compared to what's needed
to produce .

Instead we have a data sample that describes a simplified version of the server room, who’s input and
output states are produced by the closely related function:

This function represents an approximate view of , in this case from January to March. It is important
to remember that it is obtained using technological observing instruments and tools. Such human made
devices are imperfect and inadvertently introduce errors/noise (e.g. system noise, human-induced bias
etc.). Thus the approximation is imperfect in many ways.

Why relevant to Machine Learning?

Suppose we want to make predictions using the monitoring data collected in the server room. The data
consists of input variables from a set , and a set of resulting output states from a set . For example, if

CPU temperature greater than 90 degrees, then overheating.

The goal of machine learning classification (also known as pattern recognition) is to perform the
mapping from to on new, unseen data; i.e. data not described by . This is depicted in a
summary diagram below.

x

f (x)

f (x)

f (x)

f (x)

X Y
x = y =

X Y f (x)′

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 5 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In other words, can we use the data from January to March to predict for the rest of the year? Machine
learning classifiers can achieve this. Principally, by computing a mathematical function that automatically
performs the mapping from to , as accurately as possible. The computed generic classification
function can be denoted as:

X Y

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 6 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Yet this function is imperfect too! In fact, it has more imperfections than . This is because it's made
additional assumptions inorder to perform the mapping from to . To illustrate this, suppose that when
the server room was observed, the external temperature never rose above . Therefore the room's air
conditioning was never observed under the strain of warm summer months. Since doesn't currently
capture this temporal pattern, neither can . The classification function will thus likely produce
unhelpful predictions during the summer months.

What if our experts take some new observations during the summer months - but forget to account for
the time of day as an input variable? Here is certainly more complete, yet it fails to capture the
temperature fluctuations that occur during a normal day. But it's usually cooler in the morning and
warmer in the afternoon when most people are working. This is important, since a server room will be
under most load during the working day. As still doesn't capture this, neither will . Once
again, this leads to unreliable predictions.

There are some important lessons here:

we must choose the correct input variables to observe.
we must observe them over a representative period of time.
ideally we must capture all representative states of the process being observed.
we must reduce bias and observing error where possible.

Bringing it together
Taking all these functions together we can paint a simple picture. There is a function describing the
perfect underlying data. Then a function describing the data we actually collect - this is what we begin to
do science with. Then there's the function describing the interpretations we make via ML algorithms and
other methods - this includes errors collected when observing, plus errors we may make during analysis.

f (x)′

X Y
c11∘

f (x)′

f (x)′′

f (x)′

f (x)′ f (x)′′

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 7 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Computing a function?
So far "computing a function" is an abstract concept. It raises questions - how is this achieved? Is a
heuristic used? How is it useful?

It's perhaps best illustrated via a trivial example. Consider the mapping problem in the image below. Here
 contains a set of heating configurations that consume power levels defined in . On the left-hand side

we can see that some examples in have been linked to levels in . For example an input level of 4
corresponds to an output level of 16 (units unimportant). These items in have been mapped to items in

. In other words these have been labelled (the ground truth mapping is known).

The function that does the mapping is missing on the left-hand side. How might one be found? Well, you
search for one...

Machine learning algorithms are fundamentally optimisation functions. These are functions that search
for an optimal set of parameters that minimise or maximise some objective function. Where the objective
is to make as many correct predictions as possible (or the inverse). This can be easily quantified via a
count of the errors made (though more complex in practice!). Such an objective function is given below:

where an indicator function that returns 1 if the condition within it evaluates to true, else 0. So here if
the prediction of doesn't match with the known label , returns 1.

Lets use that function to optimise a contrived classifier,

where is the parameter to be optimised.

On the right we see two attempts at finding a function mapping to . The first uses , which
produces 5 errors and 0 correct predictions. By setting we find an optimal solution, which
achieves 0 errors and 5 correct predictions. Typically there would be steps in between during a
parameter search e.g. , ,..., , , ... found via e.g. gradient descent or
some other method.

Here the search is easy as the problem is so simple. Yet at a fundamental level this is how machine
learning classifiers work. Except the functions have multiple terms to be optimised according to the type
of classifier used. Different classifiers use different objective functions, and different methods for
parameter search. There are thousands of potential classifiers.

X Y
X Y

X
Y

δ[f (≠],∑
i=1

n
xi)′′ yi

δ[i]
f (xi)′′ yi δ

f (= ,xi)′′ xa

a

X Y a = 1.5
a = 2

a = 1.6 a = 1.61 a = 1.71 a = 1.7

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 8 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 9 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Materi…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Now we move onto a formal computer science description of machine learning.

Machine Learning
ML is a branch of artificial intelligence (A.I.), concerned with replicating and improving upon the human
ability to learn. ML is comprised of multiple sub-fields, each supported by extremely active research
communities. Here we are concerned with applying the tools from a specific area of ML known as pattern
recognition - also known as statistical classification. The goal of classification is to automatically
categorise items, objects, and data points, as accurately as possible. Human beings are capable of
undertaking sophisticated classification tasks with ease, given appropriate training. This is due to our
innate ability to categorise via trial and error. ML algorithms learn in a similar way, however using
statistical tools (see Bishop 2006, and Lyon 2016 for a review).

The aim of classification is to build functions that accurately map a set of input data points, to a set of
class labels. This means mapping each input example to it's correct label. If
represents an input dataset, then is an individual example represented by variables known as
features. Features describe the characteristics of an example such that , where each
feature for .

The class label is also associated with each example. This can take many possible values so long as
. The class label can be numerical or textual. Though typically each is an integer value

correpsonding to some class category where . It is common for only binary labels
to be considered such that . Where equates to the non-target class
(synonymous with negative) and to target class (synonymous with positive). In the pulsar domain,
we consider the pulsar class to be the target (positive), and all others (noise, interference) to be non-
target (negative)

The features used to describe examples must be chosen after careful consideration. Features must be
useful for separating the classes under consideration. For the binary two-class case, assuming only
positive and negative classes, the feature distributions for examples with the label must differ
from the distributions for examples with the label . These distributions must be separable, which
can be quantified mathematically, i.e. via distance measures. Feature separability is depicted in the
image below according to individual features. Here depicts an optimal separation between the classes.

X = { , … , }x1 xn
xi

= { , . . . , }xi xj
i xm

i
∈ ℝxj

i j = 1, … , m

y
y ∈ Y y

y ∈ Y = { , … , }y1 yk
y ∈ Y = {−1, 1} = −1y1

= 1y2

= −1y1
= 1y1

ϕ

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 10 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

An ML function 'learns' to separate examples from different classes, using the feature data from a
labelled input vector known as the training set . It contains pairs such that

.

Think of the training set as the information available to a student prior to an examination. This information
must be descriptive, (i.e. the features must contain useful information), and reflect what the topic of the
exam. A classifier induces a mapping function between examples and labels based on the data in .
It does this by attempting to minimise the mapping errors it makes on the training examples. This
process is known as 'training'.

The trained function is used to label new unseen candidates in the 'test set' . The test should be a
sample of independent examples used to test the trained classifier, or the real world data the classifier is
asked to classify.

The i.i.d Assumption via an example
Today students are subjected to many formal examinations throughout their time in education. To pass
those exams, students must prepare, typically by studying the material to be covered in the exam. If the
student works hard and learns the subject material, they'll likely do well. Machine learning algorithms are
not much different. They're extremely 'studious' when it comes to learning from the material they are
given.

Occasionally an exam board and/or school make a mistake when preparing for an exam. Sometimes
students are given the wrong exam paper, or taught the wrong subject material. The outcome is usually
not good - especially for the students, as their results will suffer. This outcome doesn't make them bad
students. Rather, the circumstances are less than favourable!

What I've described here via a simple analogy is a violation of the i.i.d assumption. The i.i.d assumption
implies the following.

So long as the data used to train a classifier, is distributionally similar to the information it will be tested
on, it will do well. Otherwise, it will likely perform poorly.

Ttrain
= {(,), … , (,)}Ttrain x1 y1 xn yn

Ttrain

Ttest

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 11 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…arning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Much like for students, violations of the i.i.d assumption are not the fault of an individual classifier. Thus
poor test results say little about i) the classifier used, ii) it's effectiveness on the problem at hand, ii) it's
potential etc. Given the right information, the same algorithm could perform extremely well. It may even
be the best algorithm for a particular problem.

However, whereas it is easy to realise that students have been given the incorrect exam/subject material,
it is much harder to know when we've poorly trained our algorithms. Differences between training data
and real data can be so subtle, that they are impossible to spot via a cursory analysis. Can you spot
subtle distributional differences in an n-dimensional dataset - because I usually can't!

To mitigate these issues we have to be diligent teachers. We have to be sure we are giving our algorithms
the best chance to learn the concepts we're trying to teach them. This means we must understand our
data first, to guard against fundamental i.i.d violations. When the i.i.d assumption is violated, no machine
learning classifier can be expected to perform well. This relates back to the discussion of functions in the
background section.

When i.i.d is Violated
The i.i.d assumption holds when the feature data supplied in the training set , is independent from
the feature data in , yet identically distributed. The i.i.d assumption is violated when,

The data used to train a classifier comes from a different source/data distribution, to the data
the classifier will be applied to. For example, suppose a classifier is trained to recognise RFI
using data collected at the Parkes telescope, but is deployed upon data obtained at the Green
Bank Telescope.
The data used to train and test a classifier, initially comes from the same source/data
distribution. However over time, the distribution of the data being classified changes - either
slowly, or abruptly. For example, the RFI environment surrounding most radio telescopes is
subject to change over varying time-scales due to human activity. Any change causes a
violation of the i.i.d. assumption. In the machine learning research literature, this problem is
known more widely as distributional drift, or concept drift.
The data used to train and test a classifier, initially comes from the same source/data
distribution. However the data is post-processed in a different way to the data collected post-
training. This could happen during a survey. For example, if a problem is spotted in the pre-
processing, and a correction made which alters the data distributions.

These violations can easily occur, and perhaps unwittingly.

Ttrain
Ttest

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 12 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Learning Process
The machine learning process is summarised in the diagram below. The process begins with the
collection of data. The data sample is initially studied by human experts, and labelled as accurately as
possible (human labelling error is possible). Once the labelled data is available, it is re-sampled into
distinct subsets. These include,

a training set.
a test set.
an optional validation set.

Next a classification model is chosen as a candidate solution, after studying available/relevant options.
The classification model is initially 'taught' using the training data. This is known as the 'training' phase.
Once training is complete the 'testing' phase begins. Here data from the test set are passed through the
classification model, and the predictions collected. The predictions are evaluated against the ground
truth labels we already have from the data collection phase. If the model performs well, then the system
can be deployed. If not, we return to the training phase. Either with the same classifier, or a new one. The
entire process is repeated until good performance is achieved. Whilst this is a simplified picture, it should
suffice for this work.

Evaluation
ML classifiers are simply functions. The output of functions can be visualised, making them easier to
understand. Earlier in the background section I introduced the contrived classifier,

We found that was the optimal parameter choice, and we now visualise the function output below.

f (= .xi)′′ xa

a = 2

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 13 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

We can see that the function produces a simple parabola. This isn't very useful for classification! Yet
visualising a classification function's output in the presence of data, allows us to evaluate how well it
works. Suppose there's a classifier described via a simple linear function. It produces a single line
through our data as shown in the image below.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 14 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

This dashed line is more commonly known as a 'decision boundary'. Here the data are partitioned by
the boundary. Data points falling on the left hand side are assigned the positive label, those on the right
the negative label. Depending on the true class of each example and where they fall w.r.t the decision
boundary, there are four possible outcomes in a binary classification problem. These are summarised in
the Table below which is known as a confusion matrix.

Predicted Label Predicted Label

Negative Positive

True Label Negative True Negative (TN) False Positive (FP)

True Label Positive False Negative (FN) True Positive (TP)

From these outcomes we can quantify how well a classifier performs. We do this using some common
metrics such as accuracy, precision, and recall. These are described in the Table below.

Metric Description Definition

Accuracy Measure of overall classification accuracy.

False positive rate
(FPR) Fraction of negative instances incorrectly labelled positive.

Precision Fraction of retrieved instances that are positive.

Recall Fraction of positive instances that are retrieved.

Specificity Fraction of negatives correctly identified as such.

F-Score Measure of accuracy that considers both precision and
recall.

Ideally we'd like a classifier that produces high levels of recall and accuracy, whilst simultaneously
minimising the false positive rate. This becomes especially important as our data becomes increasingly
complex. Complex data usually require more sophisticated decision boundaries to attain a clear class
separation. Even in the trivial example shown in the image below, we can see how a perfect boundary
might look. This greatly improves on the simple linear separator, but is more difficult to compute.

(TP+TN)
(TP+FP+FN+TN)

FP
(FP+TN)

TP
(TP+FP)

TP
(TP+FN)

TN
(FP+TN)

2 × precision×recall
precision+recall

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 15 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Imbalanced Learning Problem
For binary classification problems, the class skew can be characterised by the imbalance ratio ,IR

IR = .|{(,)| ∈ Y ∧ = }|xi yi yi yi y1
|{(,)| ∈ Y ∧ = }|xi yi yi yi y2

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 16 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Here is the minority class such that , and is therefore the majority class.

Algorithms trained upon such data exhibit two general properties:

High training accuracy as the approaches zero, where the cardinality of the majority class
approaches infinity. This is achievable, since the majority class examples form an increasingly
large proportion of the training set. Therefore the strategy that yields the greatest reduction in
training set error, involves always predicting the majority class label. Thus classification models
trained on such data, can become biased towards the majority class.
Poor minority class generalisation performance, particularly with respect to recall. Given that the
training set is so imbalanced, (probability of for) approaches zero as .
In such cases is rarely if ever predicted.

These are effects of what is known as the imbalanced learning problem. Imbalanced learning is
concerned with overcoming these issues, in data sets that exhibit severe class imbalances where

 and worse. There are many discernible types of data imbalance that cause such problems (see
He & Garcia, 2009). There are i) intrinsic imbalances, which are caused by the nature of the data space.
There are ii) extrinsic imbalances caused by data collection techniques, and perhaps not attributable to
a naturally imbalanced data distribution. Then there are iii) relative imbalances, occurring when a
minority class is not rare, just small relative to the majority class. Whilst iv) absolute rarity pertains to
situations where the minority class instances are genuinely rare, which naturally makes learning difficult.
Finally there may be v) sub-class imbalances, whereby a single class is made up of numerous distinct
subclasses, that are themselves imbalanced in one of the ways already described.

Training a classifier on an imbalanced dataset does not necessarily mean poor generalisation
performance. If the training data are discriminative enough to separate the different classes in data
space, then the classifier will perform well regardless of the imbalance. A contrived example of this is
shown in the image below.

y1 0 < | | < | |y1 y2 y2

IR

P(|)y1 xi y1 xi → 0limIR
y1

IR < 0.1

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 17 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

It demonstrates that the underlying class distribution alone is not the root cause of poor performance on
imbalanced data. Rather it is characteristics often possessed by imbalanced data sets, that make it
difficult for a classifier to separate the minority and majority classes. These include,

class inseparability, which describes the overlapping nature of data from different classes. See
a) in the image below.
small disjuncts, which occur when a concept is comprised of smaller disconnected sub-
concepts. Small disjuncts are a problem as they cover only a few training cases. Many training
examples are therefore usually required to characterise all the individual disjuncts. See b) in the
image below.
the small sample size problem, which occurs when there are too few minority class examples
available for learning. See c) in the image below.

Ultimately these characteristics conspire to make it difficult for a classifier to construct an optimal
decision boundary, leading to sub-optimal classifier performance.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 18 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Solutions
There are three generic approaches used to tackle a classification task.

Methods that assign labels to examples, according to their distance from some cluster centre.
This is shown in a) below.
Methods that attempt to separate classes using decision boundaries. Class labels are assigned
according to which side an example falls upon. Typically requires a region in data space that has
a low density of examples, through which the boundary can be drawn. This is shown in b)
below.
Instance-based methods, that assign labels to new examples according to the majority label of
their nearest neighbours. This is shown in c) below, via a typical nearest neighbour approach.

There are other approaches, but these suffice for now.

For each of these approaches, there are many ways to overcome the problems associated with class
imbalance. Here we consider the most generic, often very succesfully applied.

Random Under-sampling
In Random Under-sampling (RUS), majority class are instances are randomly omitted from the data set to
balance the class distribution. Suppose we begin with data as shown in the image below.

n

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 19 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

The goal is to randomly under-sample producing a more balanced data set:

Next let's create some imbalanced data to play with. We'll create a reasonable imbalance first. We'll use
a 1:20 ratio, i.e. there are 20 majority class examples for each minority class example. In total 800
examples will be created.

In [178]: # This is a modified version of the code originally
written by Christos Aridas and Guillaume Lemaitre
<g.lemaitre58@gmail.com>, released under the MIT
License.

Plotting library.
import matplotlib.pyplot as plt

For some math we need to do.
import numpy as np

Use the Sklearn library to make datasets,
and perform an anlysis.
from sklearn.datasets import make_classification
from sklearn.decomposition import PCA

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 20 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

The code that actually does the random undersampling.
from imblearn.under_sampling import RandomUnderSampler

Generate a dataset to experiment with. Here I explain what this
function does, and what the parameters mean on their first use.
Where I use them elsewhere, return to here for a recap.

n_classes : int, optional (default=2)
The number of classes (or labels) of the classification problem.
#
class_sep : float, optional (default=1.0)
The factor multiplying the hypercube size. Larger values spread
out the clusters/classes and make the classification task easier.
#
weights : list of floats or None (default=None)
The proportions of samples assigned to each class. If None, then
classes are balanced. Note that if len(weights) == n_classes - 1,
then the last class weight is automatically inferred. More than
n_samples samples may be returned if the sum of weights exceeds 1
.
#
n_informative : int, optional (default=2)
The number of informative features. Each class is composed of a
number of gaussian clusters each located around the vertices of
a hypercube in a subspace of dimension n_informative. For each
cluster, informative features are drawn independently from
N(0, 1) and then randomly linearly combined within each cluster
in order to add covariance. The clusters are then placed on the
vertices of the hypercube.

n_redundant : int, optional (default=2)
The number of redundant features. These features are generated
as random linear combinations of the informative features.
#
flip_y : float, optional (default=0.01)
The fraction of samples whose class are randomly exchanged.
Larger values introduce noise in the labels and make the
classification task harder.
#
n_samples : int, optional (default=100)
The number of samples.

random_state : int, RandomState instance or None, optional (defau
lt=None)
If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the
random number generator; If None, the random number generator
is the RandomState instance used by np.random.
#
For more details of this sklearn function, visit:

http://scikit-learn.org/stable/modules/generated/sklearn.datasets
.make_classification.html

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 21 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

X, y = make_classification(n_classes=2, class_sep=1, weights=[0.05,
0.95],
 n_informative=3, n_redundant=1, flip_y=0
,
 n_features=20 , n_clusters_per_class=1,
 n_samples=800 , random_state=10)

So now have a dataset to play with...

Build a PCA object for visualisation. PCA decomposes a dataset
of high dimensionality, into one of low dimensionality. It conver
ts
a set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal com
ponents.
#
See https://en.wikipedia.org/wiki/Principal_component_analysis
for more details.
pca = PCA(n_components=2)

Now we have data reduced to just 2 principal components - this ma
kes
it much easier to plot (can't plot high dimensionality data!).

Fit and transform x to visualise inside a 2D feature space. What
does this
mean? It means we take the original data from the higher dimensio
nal space,
and apply the principal component analysis output, to reduce it t
o just 2
dimensions.
#
For more details of this function checkout,
http://scikit-learn.org/stable/modules/generated/sklearn.decompos
ition.PCA.html
X_vis = pca.fit_transform(X)

Now apply the random under-sampling method.
#
return_indices : bool, optional (default=False)
Whether or not to return the indices of the samples randomly sele
cted
from the majority class.
#
We need the indices of the selected majority class exmaples for p
lotting.
rus = RandomUnderSampler(ratio=0.8,return_indices=True)

Produce the resampled data sets for X and Y
X_resampled, y_resampled, idx_resampled = rus.fit_sample(X, y)

Now apply the same PCA as earlier, to get the reseampled X data,
in to the 2D space.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 22 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

X_res_vis = pca.transform(X_resampled)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

idx_samples_removed = np.setdiff1d(np.arange(X_vis.shape[0]),
 idx_resampled)

idx_class_0 = y_resampled == 0

Here we add the scatter points for each class, using an alpha
of 0.8. so they have some transparency.
plt.scatter(X_res_vis[idx_class_0, 0], X_res_vis[idx_class_0, 1],
 alpha=.8, label='Class #0')
plt.scatter(X_res_vis[~idx_class_0, 0], X_res_vis[~idx_class_0, 1],
 alpha=.8, label='Class #1')
plt.scatter(X_vis[idx_samples_removed, 0], X_vis[idx_samples_remove
d, 1],
 alpha=.8, label='Removed samples')

Build the plot
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.set_xlim([-6, 6])
ax.set_ylim([-6, 6])

Make it visible...
plt.title('Under-sampling using random under-sampling')
plt.legend()
plt.tight_layout()
plt.show()

To help understand whats happened, lets double check the
sizes of the variables involved.

print ("Size of the variables involved")
print ("y length: ",len(y))
print ("X length: ",len(X))

print ("y resampled length: ",len(y_resampled))
print ("x resampled length: ",len(X_resampled))

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 23 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

But how does under-sampling affect classification performance on this data? There are some
experiments we can do. But we also need an evaluation metric insensitive to class skew.

The G-Mean is not sensitive to class distributions. It describes the ratio of positive to negative accuracy
irrespective of class size. We'll use it here along with some other standard metrics.

There are two simple experiments to try now.

1. Test how well a simple classifier performs on the original data.
2. Compare that to how well the same classifier performs on the randomly undersampled data.

In [179]: # We have a couple of relevant data sources. There is,
#
X - the input data.
y - the labels corresponding to the examples in X

G-Mean = ×TP
TP + FN

TN
TN + FP

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

/Users/rob/anaconda/envs/py36/lib/python3.6/site-packages/sklearn/
utils/deprecation.py:75: DeprecationWarning: Function _ratio_float
is deprecated; Use a float for 'ratio' is deprecated from version
0.2. The support will be removed in 0.4. Use a dict, str, or a cal
lable instead.
 warnings.warn(msg, category=DeprecationWarning)

Size of the variables involved
y length: 800
X length: 800
y resampled length: 90
x resampled length: 90

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 24 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

X_resampled - the randomly undersampled version of X.
y_resampled - the labels corresponding to the examples in X_resam
pled
#
#
There is then a simple experiment we can do:
#
1. Test how well a simple classifier performs on the original dat
a.
2. Compare that to how well the same classifier performs on the
randomly undersampled data.
#
For each test we have to build and evaluate a seaprate classifier
.
For simplicity we use the Naive Bayes classifier, for details see
:
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Experiment 1a.

First lets get our inputs together.
X_before = X
Y_before = y

Now lets generate test and training sets from the data before
random undersampling was applied. We use the function,
train_test_split() to do this. The parameter test_size simply
insicates what proportion of the data should be used for the
training set. Here we simply say half in the training set,
half in the test set.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X_before, Y_bef
ore, test_size=0.5)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

First train the classifier with call to fit.
classifier.fit(x_train, y_train)

Now make some predcitions for the likely labels
using the trained classifier.
y_predicted = classifier.predict(x_test)

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 25 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

If we import some metrics we can evaluate the results.
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

print ("\nAccuracy :", accuracy_score(y_test,y_predicted))
print ("Recall :", recall_score(y_test,y_predicted))
print ("Precision:", precision_score(y_test,y_predicted))
print ("F1 Score :", f1_score(y_test,y_predicted))

Next we can get the confusion matrix:
cm = confusion_matrix(y_test,y_predicted)

I have provided my own custom class that can be used to
evaluate classifier performance. I use this now to verify the
values obtained above, and to obtain the G-mean. This is a
metric insensitive to the imbalance. This custom class expects a
confusion matrix as an input, with the following formatting:

[[TN FN]
[FP TP]]

Import custom code
from EvaluationStats import ClassifierStats

Create object
stats = ClassifierStats(cm)

Print the results
print ("\nCustom accuracy: ", stats.getAccuracy())
print ("Recall :", stats.getRecall())
print ("Precision:", stats.getPrecision())
print ("F1 Score :", stats.getfScore())
print ("G-mean :", stats.getGMean())

print("\n The outputs should match - but look a the G-mean... that'
s very low.")
You'll notice the custom results are more precise.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 26 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Now we determine how under-sampling impacts performance.

In [180]: # Experiment 2a.
We do the same as before, except with the undersampled data.

Let's get our inputs together.
X_after = X_resampled
Y_after = y_resampled

Now lets generate test and training sets from the data before
random undersampling was applied. We use the function,
train_test_split() to do this. The parameter test_size simply
insicates what proportion of the data should be used for the
training set. Here we simply say half in the training set,
half in the test set.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X_after, Y_afte
r, test_size=0.5)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

Examples in training set: 400
Examples in testing set: 400
Dimensions of training set: (400, 20)
Dimensions of testing set: (400, 20)

Accuracy : 0.9325
Recall : 0.958115183246
Precision: 0.970822281167
F1 Score : 0.96442687747

Custom accuracy: 0.9325
Recall : 0.9708222811671088
Precision: 0.9581151832460733
F1 Score : 0.9644268774703557
G-mean : 0.5435693615261898

 The outputs should match - but look a the G-mean... that's very l
ow.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 27 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

First train the classifier with call to fit.
classifier.fit(x_train, y_train)

Now make some predcitions for the likely labels
using the trained classifier.
y_predicted = classifier.predict(x_test)

If we import some metrics we can evaluate the results.
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

print ("\nAccuracy :", accuracy_score(y_test,y_predicted))
print ("Recall :", recall_score(y_test,y_predicted))
print ("Precision:", precision_score(y_test,y_predicted))
print ("F1 Score :", f1_score(y_test,y_predicted))

Next we can get the confusion matrix:
cm = confusion_matrix(y_test,y_predicted)

I have provided my own custom class that can be used to
evaluate classifier performance. I use this now to verify the
values obtained above, and to obtain the G-mean. This is a
metric insensitive to the imbalance. This custom class expects a
confusion matrix as an input, with the following formatting:

[[TN FN]
[FP TP]]

Import custom code
from EvaluationStats import ClassifierStats

Create object
stats = ClassifierStats(cm)

Print the results
print ("\nCustom accuracy: ", stats.getAccuracy())
print ("Recall :", stats.getRecall())
print ("Precision:", stats.getPrecision())
print ("F1 Score :", stats.getfScore())
print ("G-mean :", stats.getGMean())

print("\n The outputs should match - and the G-mean has increased -
sampling has made it easier to find the minority class.")
You'll notice the custom results are more precise.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 28 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

We see the G-mean improve between experiment 1 and experiment 2. Thus under-sampling has made it
easier to identify the minority class. However the results are not great. Accuracy has dropped - but that's
ok. You now have to take into consideration that in experiment 1, there were 400 examples in the training
set. Whilst in experiment 2, there were only 90 examples. Thus in experiment 2 there was much less
information to learn from. The key then is to carefully under-sample, without removing examples that
contain a lot of information.

Random Over-sampling
In Random Over-sampling (RUS), minority class are instances are randomly dupliacted to balance the
class distribution. Suppose we begin with data as shown in the image below.

The goal is to randomly over-sample producing a more balanced data set:

Examples in training set: 45
Examples in testing set: 45
Dimensions of training set: (45, 20)
Dimensions of testing set: (45, 20)

Accuracy : 0.822222222222
Recall : 0.884615384615
Precision: 0.821428571429
F1 Score : 0.851851851852

Custom accuracy: 0.8222222222222222
Recall : 0.8214285714285714
Precision: 0.8846153846153846
F1 Score : 0.8518518518518519
G-mean : 0.8224783208299743

 The outputs should match - and the G-mean has increased - samplin
g has made it easier to find the minority class.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 29 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

So how does this over-sampling affect classification performance? We'll use the G-mean again, and
mostly the same code to keep things simple. First we'll create some new data. This time we'll make the
imbalanced worse. We'll use a 1:20 ratio, i.e. there are 20 majority class examples for each minority class
example. In total 800 examples will be created.

In [185]: # This is a modified version of the code originally
written by Christos Aridas and Guillaume Lemaitre
<g.lemaitre58@gmail.com>, released under the MIT
License.

The code that actually does the random oversampling.
from imblearn.over_sampling import RandomOverSampler

Make a dataset, same as before.
X, y = make_classification(n_classes=2, class_sep=1, weights=[0.05,
0.95],
 n_informative=3, n_redundant=1, flip_y=0
,
 n_features=20 , n_clusters_per_class=1,
 n_samples=800 , random_state=10)

Used to more easily visualise the data, as before.
pca = PCA(n_components=2)
X_vis = pca.fit_transform(X)

Now apply the random over-sampling method...
ros = RandomOverSampler(ratio='minority')

Produce the resampled data sets for X and Y
X_resampled, y_resampled = ros.fit_sample(X, y)

Now apply the same PCA as earlier, to get the reseampled X data,
in to the 2D space.
X_res_vis = pca.transform(X_resampled)

X_resampled, y_resampled = ros.fit_sample(X, y)
X_res_vis = pca.transform(X_resampled)

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 30 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Two subplots, unpack the axes array immediately
f, (ax1, ax2) = plt.subplots(1, 2)

c0 = ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class #
0",
 alpha=0.5)
c1 = ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class #
1",
 alpha=0.5)
ax1.set_title('Original set')

ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled =
= 0, 1],
 label="Class #0", alpha=.5)
ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled =
= 1, 1],
 label="Class #1", alpha=.5)
ax2.set_title('Random over-sampling')

Make a nice plot.
for ax in (ax1, ax2):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()
 ax.spines['left'].set_position(('outward', 10))
 ax.spines['bottom'].set_position(('outward', 10))
 ax.set_xlim([-6, 8])
 ax.set_ylim([-6, 6])

Show the plot.
plt.figlegend((c0, c1), ('Class #0', 'Class #1'), loc='lower center
',
 ncol=2, labelspacing=0.)
plt.tight_layout(pad=3)
plt.show()

To help understand whats happened, lets double check the
sizes of the variables involved.

print ("Size of the variables involved")
print ("y length: ",len(y))
print ("X length: ",len(X))

print ("y resampled length: ",len(y_resampled))
print ("x resampled length: ",len(X_resampled))

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 31 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

As before, lets do two experiments to better understand how classifier accuracy is impacted by over-
sampling.

In [186]: # Experiment 1b.

First lets get our inputs together.
X_before = X
Y_before = y

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X_before, Y_bef
ore, test_size=0.5)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

First train the classifier with call to fit.
classifier.fit(x_train, y_train)

Now make some predcitions for the likely labels

Size of the variables involved
y length: 800
X length: 800
y resampled length: 1520
x resampled length: 1520

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 32 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

using the trained classifier.
y_predicted = classifier.predict(x_test)

If we import some metrics we can evaluate the results.
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

print ("\nAccuracy :", accuracy_score(y_test,y_predicted))
print ("Recall :", recall_score(y_test,y_predicted))
print ("Precision:", precision_score(y_test,y_predicted))
print ("F1 Score :", f1_score(y_test,y_predicted))

Next we can get the confusion matrix:
cm = confusion_matrix(y_test,y_predicted)

I have provided my own custom class that can be used to
evaluate classifier performance. I use this now to verify the
values obtained above, and to obtain the G-mean. This is a
metric insensitive to the imbalance. This custom class expects a
confusion matrix as an input, with the following formatting:

[[TN FN]
[FP TP]]

Import custom code
from EvaluationStats import ClassifierStats

Create object
stats = ClassifierStats(cm)

Print the results
print ("\nCustom accuracy: ", stats.getAccuracy())
print ("Recall :", stats.getRecall())
print ("Precision:", stats.getPrecision())
print ("F1 Score :", stats.getfScore())
print ("G-mean :", stats.getGMean())

print("\n The outputs should match - but look a the G-mean... thats
pretty much Zero!")
You'll notice the custom results are more precise.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 33 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Now lets see what over-sampling the minority class did.

In [187]: # Experiment 2b.

Let's get our inputs together.
X_after = X_resampled
Y_after = y_resampled

Now lets generate test and training sets from the data before
random undersampling was applied. We use the function,
train_test_split() to do this. The parameter test_size simply
insicates what proportion of the data should be used for the
training set. Here we simply say half in the training set,
half in the test set.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X_after, Y_afte
r, test_size=0.5)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

First train the classifier with call to fit.

Examples in training set: 400
Examples in testing set: 400
Dimensions of training set: (400, 20)
Dimensions of testing set: (400, 20)

Accuracy : 0.9175
Recall : 0.94502617801
Precision: 0.967828418231
F1 Score : 0.956291390728

Custom accuracy: 0.9175
Recall : 0.967828418230563
Precision: 0.9450261780104712
F1 Score : 0.9562913907284768
G-mean : 0.46375961642753455

 The outputs should match - but look a the G-mean... thats pretty
much Zero!

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 34 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

classifier.fit(x_train, y_train)

Now make some predcitions for the likely labels
using the trained classifier.
y_predicted = classifier.predict(x_test)

If we import some metrics we can evaluate the results.
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

print ("\nAccuracy :", accuracy_score(y_test,y_predicted))
print ("Recall :", recall_score(y_test,y_predicted))
print ("Precision:", precision_score(y_test,y_predicted))
print ("F1 Score :", f1_score(y_test,y_predicted))

Next we can get the confusion matrix:
cm = confusion_matrix(y_test,y_predicted)

I have provided my own custom class that can be used to
evaluate classifier performance. I use this now to verify the
values obtained above, and to obtain the G-mean. This is a
metric insensitive to the imbalance. This custom class expects a
confusion matrix as an input, with the following formatting:

[[TN FN]
[FP TP]]

Import custom code
from EvaluationStats import ClassifierStats

Create object
stats = ClassifierStats(cm)

Print the results
print ("\nCustom accuracy: ", stats.getAccuracy())
print ("Recall :", stats.getRecall())
print ("Precision:", stats.getPrecision())
print ("F1 Score :", stats.getfScore())
print ("G-mean :", stats.getGMean())

print("\n The outputs should match - and the G-mean has improved.")
You'll notice the custom results are more precise.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 35 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Once again we can see that re-sampling has greatly improved the G-mean. At the same time, it's
becoming clear that there's a trade-off between accuracy and the G-mean. This is the case. If a classifier
is more likely to predict the minority class, then it is more likely to make false positive predictions.
Perhaps targeted sampling will help?

Targeted Sampling
There are many methods that can be used to achieve targeted re-sampling. We consider just one here
called One Sided Selection (OSS, Kubat & Matwin, 1997). OSS under-samples the majority class
'intelligently'. It does so by removing instances considered noisy, borderline, or redundant. This assumes
noisy examples overwhelm the minority class, thus by removing them an improvement in performance
can be achieved. The OSS approach tries to remove the unhelpful examples using Tomek links. Given
two instances and , each with a different class label, denote by the distance between
them. The pair is called a Tomek link (Tomek, 1976), if there exists no instance such that

 or . This is shown in the image below. If an instance is
part of such a link, then it is considered to be borderline or noisy and removed.

x1 x2 Φ(,)x1 x2
(,)x1 x2 x3

Φ(,) < Φ(,)x1 x3 x1 x2 Φ(,) < Φ(,)x2 x3 x2 x1

Examples in training set: 760
Examples in testing set: 760
Dimensions of training set: (760, 20)
Dimensions of testing set: (760, 20)

Accuracy : 0.882894736842
Recall : 0.856777493606
Precision: 0.910326086957
F1 Score : 0.882740447958

Custom accuracy: 0.8828947368421053
Recall : 0.9103260869565217
Precision: 0.8567774936061381
F1 Score : 0.8827404479578392
G-mean : 0.8833343099334419

 The outputs should match - and the G-mean has improved.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 36 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Lets create some new data, and test out OSS. We'll use an imbalance ratio of 1 to 20, and generate 800
examples.

In [188]: # This is a modified version of the code originally
written by Christos Aridas and Guillaume Lemaitre
<g.lemaitre58@gmail.com>, released under the MIT
License.

from imblearn.under_sampling import OneSidedSelection

Generate the dataset
X, y = make_classification(n_classes=2, class_sep=1, weights=[0.05,
0.95],
 n_informative=3, n_redundant=1, flip_y=0
,
 n_features=20, n_clusters_per_class=1,
 n_samples=800, random_state=10)

To make visualisation easier.
pca = PCA(n_components=2)
X_vis = pca.fit_transform(X)

Apply One-Sided Selection
oss = OneSidedSelection(return_indices=True)

Perform the sampling
X_resampled, y_resampled, idx_resampled = oss.fit_sample(X, y)

Transform to 2D space.
X_res_vis = pca.transform(X_resampled)

Create a plot...
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

idx_samples_removed = np.setdiff1d(np.arange(X_vis.shape[0]),
 idx_resampled)

idx_class_0 = y_resampled == 0
plt.scatter(X_res_vis[idx_class_0, 0], X_res_vis[idx_class_0, 1],
 alpha=.8, label='Class #0')
plt.scatter(X_res_vis[~idx_class_0, 0], X_res_vis[~idx_class_0, 1],
 alpha=.8, label='Class #1')
plt.scatter(X_vis[idx_samples_removed, 0], X_vis[idx_samples_remove
d, 1],
 alpha=.8, label='Removed samples')

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 37 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.set_xlim([-6, 6])
ax.set_ylim([-6, 6])

Show the plot
plt.title('Under-sampling using one-sided selection')
plt.legend()
plt.tight_layout()
plt.show()

Now we determine what classification performance is like, prior to applying OSS.

In [189]: # Experiment 1c.

First lets get our inputs together.
X_before = X
Y_before = y

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X_before, Y_bef
ore, test_size=0.5)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 38 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

First train the classifier with call to fit.
classifier.fit(x_train, y_train)

Now make some predcitions for the likely labels
using the trained classifier.
y_predicted = classifier.predict(x_test)

If we import some metrics we can evaluate the results.
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

print ("\nAccuracy :", accuracy_score(y_test,y_predicted))
print ("Recall :", recall_score(y_test,y_predicted))
print ("Precision:", precision_score(y_test,y_predicted))
print ("F1 Score :", f1_score(y_test,y_predicted))

Next we can get the confusion matrix:
cm = confusion_matrix(y_test,y_predicted)

I have provided my own custom class that can be used to
evaluate classifier performance. I use this now to verify the
values obtained above, and to obtain the G-mean. This is a
metric insensitive to the imbalance. This custom class expects a
confusion matrix as an input, with the following formatting:

[[TN FN]
[FP TP]]

Import custom code
from EvaluationStats import ClassifierStats

Create object
stats = ClassifierStats(cm)

Print the results
print ("\nCustom accuracy: ", stats.getAccuracy())
print ("Recall :", stats.getRecall())
print ("Precision:", stats.getPrecision())
print ("F1 Score :", stats.getfScore())
print ("G-mean :", stats.getGMean())

print("\n The outputs should match - but look a the G-mean... thats
poor!")
You'll notice the custom results are more precise.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 39 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Now lets check what impact OSS had.

In [190]: # Experiment 2c.

Let's get our inputs together.
X_after = X_resampled
Y_after = y_resampled

Now lets generate test and training sets from the data before
random undersampling was applied. We use the function,
train_test_split() to do this. The parameter test_size simply
insicates what proportion of the data should be used for the
training set. Here we simply say half in the training set,
half in the test set.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X_after, Y_afte
r, test_size=0.5)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

First train the classifier with call to fit.
classifier.fit(x_train, y_train)

Examples in training set: 400
Examples in testing set: 400
Dimensions of training set: (400, 20)
Dimensions of testing set: (400, 20)

Accuracy : 0.94
Recall : 0.958224543081
Precision: 0.978666666667
F1 Score : 0.968337730871

Custom accuracy: 0.94
Recall : 0.9786666666666667
Precision: 0.95822454308094
F1 Score : 0.9683377308707124
G-mean : 0.5935654976495854

 The outputs should match - but look a the G-mean... thats poor!

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 40 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Now make some predcitions for the likely labels
using the trained classifier.
y_predicted = classifier.predict(x_test)

If we import some metrics we can evaluate the results.
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

print ("\nAccuracy :", accuracy_score(y_test,y_predicted))
print ("Recall :", recall_score(y_test,y_predicted))
print ("Precision:", precision_score(y_test,y_predicted))
print ("F1 Score :", f1_score(y_test,y_predicted))

Next we can get the confusion matrix:
cm = confusion_matrix(y_test,y_predicted)

I have provided my own custom class that can be used to
evaluate classifier performance. I use this now to verify the
values obtained above, and to obtain the G-mean. This is a
metric insensitive to the imbalance. This custom class expects a
confusion matrix as an input, with the following formatting:

[[TN FN]
[FP TP]]

Import custom code
from EvaluationStats import ClassifierStats

Create object
stats = ClassifierStats(cm)

Print the results
print ("\nCustom accuracy: ", stats.getAccuracy())
print ("Recall :", stats.getRecall())
print ("Precision:", stats.getPrecision())
print ("F1 Score :", stats.getfScore())
print ("G-mean :", stats.getGMean())

print("\n The outputs should match - and the G-mean has improved.")
You'll notice the custom results are more precise.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 41 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Note that this time, the accuracy difference between the non-OSS and OSS results is only around 5%.
Yet the G-mean has improved. That's a decent return for very little work.

Artificial Examples
There are many approaches available for building artificial data points. Perhaps the most popular right
now are Generative Adversarial Networks (GANs). For simplicity, I'm only going to discuss a single
standard method here.

SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE,Chawla et. al., 2002), inserts synthetically
generated minority class examples (based on existing minority examples) in to a sampled data set. It
odes this to balance the class distribution. SMOTE uses -nearest neighbours to determine which nearby
examples are most similar to a minority class example.

The nearest neighbours are then used to generate a new synthetic example. This is done by first
choosing a template minority class example, near which a new synthetic example should be generated.
A random nearest neighbour of this template is then chosen. The features of the neighbouring example
are combined with the features of the template, to form an entirely new example. This process is
repeated until the required number of synthetic examples have been created. The synthetic examples are
combined with the real minority examples to form a new training set. SMOTE ultimately balances the
training set by under-sampling the majority class via random omission, until the desired is reached.

k

IR

Examples in training set: 388
Examples in testing set: 388
Dimensions of training set: (388, 20)
Dimensions of testing set: (388, 20)

Accuracy : 0.932989690722
Recall : 0.967213114754
Precision: 0.961956521739
F1 Score : 0.964577656676

Custom accuracy: 0.9329896907216495
Recall : 0.9619565217391305
Precision: 0.9672131147540983
F1 Score : 0.9645776566757494
G-mean : 0.6203084786585238

 The outputs should match - and the G-mean has improved.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 42 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

As before lets create some data. As for OSS, We'll use an imbalance ratio of 1 to 20, but this time
generate 500 examples.

In [165]: # This is a modified version of the code originally
written by Fernando Nogueira, Christos Aridas and
Guillaume Lemaitre <g.lemaitre58@gmail.com>,
released under the MIT License.

This function is used to produce a more complicated SMOTE plot.
def plot_resampling(ax, X, y, title):
 c0 = ax.scatter(X[y == 0, 0], X[y == 0, 1], label="Class #0", a
lpha=0.5)
 c1 = ax.scatter(X[y == 1, 0], X[y == 1, 1], label="Class #1", a
lpha=0.5)
 ax.set_title(title)
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()
 ax.spines['left'].set_position(('outward', 10))
 ax.spines['bottom'].set_position(('outward', 10))
 ax.set_xlim([-6, 8])
 ax.set_ylim([-6, 6])

 return c0, c1

from imblearn.over_sampling import SMOTE

Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.05,
0.95],
 n_informative=3, n_redundant=1, flip_y=0
,
 n_features=20, n_clusters_per_class=1,
 n_samples=500, random_state=10)

Instanciate a PCA object for the sake of easy visualisation

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 43 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

pca = PCA(n_components=2)
Fit and transform x to visualise inside a 2D feature space
X_vis = pca.fit_transform(X)

Note there a many varieties of SMOTE. I'll leave these
here to play with.
kind = ['regular', 'borderline1', 'borderline2', 'svm']

Apply regular SMOTE
sm = [SMOTE(kind=k) for k in kind]

X_resampled = []
y_resampled = []
X_res_vis = []

Here we loop over all possible SMOTE Methods
for method in sm:

 # For each SMOTE method, apply and resample
 X_res, y_res = method.fit_sample(X, y)
 X_resampled.append(X_res)
 y_resampled.append(y_res)
 X_res_vis.append(pca.transform(X_res))

 # Because this code runs in a loop over all SMOTE
 # methods, we do the before and after experiments
 # pretty much together.
 ###########################
 # Get test/train splits
 ###########################
 # For experiment 1d
 X_before = X
 Y_before = y

 # For experiment 2d
 X_after = X_res
 Y_after = y_res

 from sklearn.model_selection import train_test_split

 examples_before_total = int(len(Y_before))
 examples_after_total = int(len(Y_after))

 # For experiment 1d
 x_train_bef, x_test_bef, y_train_bef, y_test_bef = train_test_s
plit(X_before, Y_before, test_size=0.5)

 # For experiment 2d
 x_train_aft, x_test_aft, y_train_aft, y_test_aft = train_test_s
plit(X_after, Y_after, test_size=0.5)

 ###########################

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 44 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

 # Build classifiers
 ###########################
 from sklearn.naive_bayes import GaussianNB
 classifier_bef = GaussianNB()
 classifier_aft = GaussianNB()

 # Train the before data, and after data classifiers.
 classifier_bef.fit(x_train_bef, y_train_bef)
 classifier_aft.fit(x_train_aft, y_train_aft)

 ###########################
 # Make predictions
 ###########################
 # Now make some predcitions for the likely labels
 # using the trained classifier.
 y_predicted_bef = classifier_bef.predict(x_test_bef)
 y_predicted_aft = classifier_aft.predict(x_test_aft)
 from sklearn.metrics import confusion_matrix

 # Next we can get the confusion matrix:
 cm_bef = confusion_matrix(y_test_bef,y_predicted_bef)
 cm_aft = confusion_matrix(y_test_aft,y_predicted_aft)

 ###########################
 # Evaluate
 ###########################
 from EvaluationStats import ClassifierStats

 # Create object
 stats_bef = ClassifierStats(cm_bef)
 stats_aft = ClassifierStats(cm_aft)

 # Print the results
 print ("\nSMOTE Method: ", str(method),"\n")
 print ("Acc before : ", '{0:.5f}'.format(stats_bef.getAccura
cy()) ,"Acc after : ",'{0:.5f}'.format(stats_aft.getAccuracy()))
 print ("Rec. before : ", '{0:.5f}'.format(stats_bef.getRecall
()) ,"Rec. after : ",'{0:.5f}'.format(stats_aft.getRecall()))
 print ("Prec. before : ", '{0:.5f}'.format(stats_bef.getPrecis
ion()),"Prec. after : ",'{0:.5f}'.format(stats_aft.getPrecision())
)
 print ("F1 before : ", '{0:.5f}'.format(stats_bef.getfScore
()) ,"F1 after : ",'{0:.5f}'.format(stats_aft.getfScore()))
 print ("G-mean before : ", '{0:.5f}'.format(stats_bef.getGMean(
)) ,"G-mean after : ",'{0:.5f}'.format(stats_aft.getGMean()))

 # Here we can evaluate all the SMOTE methods together,
 # before and after they've bee applied.

#############
Plotting

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 45 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

#############

Two subplots, unpack the axes array immediately
f, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2)
Remove axis for second plot
ax2.axis('off')
ax_res = [ax3, ax4, ax5, ax6]

c0, c1 = plot_resampling(ax1, X_vis, y, 'Original set')

for i in range(len(kind)):
 plot_resampling(ax_res[i], X_res_vis[i], y_resampled[i],
 'SMOTE {}'.format(kind[i]))

ax2.legend((c0, c1), ('Class #0', 'Class #1'), loc='center',
 ncol=1, labelspacing=0.)

plt.tight_layout()
plt.show()

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 46 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

SMOTE Method: SMOTE(k=None, k_neighbors=5, kind='regular', m=None
, m_neighbors=10, n_jobs=1,
 out_step=0.5, random_state=None, ratio='auto', svm_estimator=No
ne)

Acc before : 0.98800 Acc after : 0.99368
Rec. before : 0.99578 Rec. after : 1.00000
Prec. before : 0.99160 Prec. after : 0.98760
F1 before : 0.99368 F1 after : 0.99376
G-mean before : 0.91792 G-mean after : 0.99362

SMOTE Method: SMOTE(k=None, k_neighbors=5, kind='borderline1', m=
None, m_neighbors=10,
 n_jobs=1, out_step=0.5, random_state=None, ratio='auto',
 svm_estimator=None)

Acc before : 0.98800 Acc after : 0.99789
Rec. before : 0.99167 Rec. after : 1.00000
Prec. before : 0.99582 Prec. after : 0.99556
F1 before : 0.99374 F1 after : 0.99777
G-mean before : 0.94472 G-mean after : 0.99801

SMOTE Method: SMOTE(k=None, k_neighbors=5, kind='borderline2', m=
None, m_neighbors=10,
 n_jobs=1, out_step=0.5, random_state=None, ratio='auto',
 svm_estimator=None)

Acc before : 0.98000 Acc after : 0.97474
Rec. before : 0.97934 Rec. after : 0.98347
Prec. before : 1.00000 Prec. after : 0.96748
F1 before : 0.98956 F1 after : 0.97541
G-mean before : 0.98962 G-mean after : 0.97453

SMOTE Method: SMOTE(k=None, k_neighbors=5, kind='svm', m=None, m_
neighbors=10, n_jobs=1,
 out_step=0.5, random_state=None, ratio='auto', svm_estimator=No
ne)

Acc before : 0.98800 Acc after : 0.99368
Rec. before : 0.99156 Rec. after : 1.00000
Prec. before : 0.99576 Prec. after : 0.98795
F1 before : 0.99366 F1 after : 0.99394
G-mean before : 0.95671 G-mean after : 0.99343

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 47 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Again we've improved the G-mean, and like with OSS, had little effect on the accuracy rate!

Algorithms Robust to Imbalance
Some machine learning algorithms are more robust to imbalance than others. The decision tree is one
such algorithm, depicted in the image below. It partitions the data space in such a way, that it overcomes
some of the problems associated with disjuncts. I don't describe this algorithm here in detail, more detail
can be found elsewhere (Bishop, 2006).

Hopefully the examples provided thus far will help you get to grips with the imbalanced learning problem.
Perhaps you’ll be able to apply the code to some of your own data.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 48 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Bonus - Pulsar Data
Pulsar data is extremely imbalanced. The is typically as low as . That’s 10,000 non-target
class examples, for every example of interest. In the sections that follow I show how pulsar data can be
read, pre-processed, scaled, and machine learning features extracted. This will demonstrate the basic
principles behind how we do machine learning in practice.

Example Data
The input data consists of integrated pulse profiles, collected during the Medium Latitude portion of the
High Time Resolution Universe Survey (HTRU) (see Thornton 2013 and Bates et. al. 2012). The data is
comprised of pulsar and non-pulsar candidate profiles. Each profile contains exactly 128
phase bins. The data contains 725 of the known 1,108 pulsars (known at the time) in the Medium
Latitude survey region (see Levin 2012), along with re-detections and harmonics. The data also contains
noise examples, along with strong and weak forms of Radio Frequency Interference (RFI). This data is not
to be confused with the HTRU 2 feature data (https://dx.doi.org/10.6084/m9.figshare.3080389.v1) made
available by Lyon et. al. (2016) - the feature data contains only machine learning features extracted from
candidates, whilst this data set is made up of integrated pulse profiles only.

Loading the Data
Here we simply load in the integrated pulse profile data, from files in the provided distribution. There are
two files to be read in. The first contains integrated profiles for pulsars, the second contains noise and
RFI profiles.

IR 0.0001

1, 586 8, 852

https://dx.doi.org/10.6084/m9.figshare.3080389.v1

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 49 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [191]: # The HTRU 2 profile data is split - one file containing the real p
ulsar
profiles, one file containing noise/interference profiles. We loa
d both
these data sources here. First we construct relative paths to the
files.
data_dir = 'data/HTRU2'
pulsar_file = data_dir + '/HTRU2_pulsar.csv'
nonpulsar_file = data_dir + '/HTRU2_nonpulsar.csv'

Now simply load the data.
pulsar_data = genfromtxt(pulsar_file, dtype=np.int,delimiter=',')
non_pulsar_data = genfromtxt(nonpulsar_file, dtype=np.int,delimiter
=',')

Print overview details.
print ('\n\nTotal number of pulsar profiles: ', len(pulsar_data))
print ('Total number of noise/RFI profiles: ', len(non_pulsar_data)
)

Now we plot a single example of both classes, to show what the data looks like. First the pulsar example.

In [192]: figure(1)
plot(pulsar_data[7], 'r')
xlabel('Bin')
ylabel('Normalised Intensity')
title('Example Integrated Profile for a pulsar')
show()

Total number of pulsar profiles: 1586
Total number of noise/RFI profiles: 8852

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 50 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

It is clear that the peak is not in the centre. For most examples it is, but not for all. How about for the
non-pulsar examples?

In [168]: figure(2)
plot(non_pulsar_data[0], 'b')
xlabel('Bin')
ylabel('Normalised Intensity')
title('Example Integrated Profile for a non-pulsar')
show()

The non-pulsar example doesn't appear to be correctly centred either. So we centre the data using a
simple function. We define this function below:

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 51 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [169]: import operator

def centre_on_peak(data):
 """
 Centre the data such that the maximum y-axis value is in the
 centre of the data.

 Parameters

 :param data: the data to be centred.

 Returns

 :return: the centred data array.
 """
 # Stores the centred data.
 centred_data = []

 # Get the index of the maximum value.
 index, value = max(enumerate(data), key=operator.itemgetter(1))

 # Find midpoint of the data.
 midpoint = int(len(data)/2)

 # Figure out the shift required to centre the data (put max val
ue in centre bin).
 n = midpoint - index # N gives the number of bins the data sho
uld be shifted.
 a = n % len(data)

 # Apply the correction.
 centred_data = numpy.concatenate([data[-a:],data[:-a]])

 return centred_data

Now we execute this centering function.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 52 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [170]: # Here we simply loop over each item in the data arrays,
and update their values.
for i in range(0, len(pulsar_data)):
 pulsar_data[i] = centre_on_peak(pulsar_data[i])

for i in range(0, len(non_pulsar_data)):
 non_pulsar_data[i] = centre_on_peak(non_pulsar_data[i])

figure(3)
plot(pulsar_data[7], 'r')
xlabel('Bin')
ylabel('Normalised Intensity')
title('Example Integrated Profile for a pulsar - Centred')
show()

figure(4)
plot(non_pulsar_data[0], 'b')
xlabel('Bin')
ylabel('Normalised Intensity')
title('Example Integrated Profile for a non-pulsar - Centred')
show()

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 53 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

Now the data is correctly loaded and centred, we can move on. How about we compute some machine
learning features from the data? We can use the features devised by Lyon et.al. 2016. The code provided
below will allow us to extract these.

In [171]: def compute_features(data):
 """
 Computes machine learning feature values for the supplied data
array.

 Parameters

 :param data: a data array.

 Returns

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 54 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

 :return: the computed machine learning features as a list [mean
, stdev, shew, kurtosis].
 """
 if data is not None: # Check data is not empty

 if len(data) > 0:

 # Sums computed during calculation.
 mean_sum = 0
 mean_subtracted_sum_power_2 = 0
 mean_subtracted_sum_power_3 = 0
 mean_subtracted_sum_power_4 = 0

 # The number of data points in the array.
 n = len(data)

 # Necessary first loop to calculate the sum, min and ma
x
 for d in data:
 mean_sum += float(d)

 if mean_sum > 0 or mean_sum < 0: # If the mean is less
than or greater than zero (should be)

 # Update the mean value.
 mean_value = mean_sum / float(n)

 # Now try to compute the standard deviation, using
 # the mean computed above... we also compute values
in
 # this loop required to compute the excess Kurtosis
and
 # standard deviation.

 for d in data:

 mean_subtracted_sum_power_2 += power((float(d)
- mean_value), 2.0)

 # Used to compute skew
 mean_subtracted_sum_power_3 += power((float(d)
- mean_value), 3.0)

 # Used to compute Kurtosis
 mean_subtracted_sum_power_4 += power((float(d)
- mean_value), 4.0)

 # Update the standard deviation value.
 stdev = sqrt(mean_subtracted_sum_power_2 / (n - 1.0
))
 # Next try to calculate the excess Kurtosis and ske
w using the
 # information gathered above.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 55 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

 one_over_n = 1.0 / n # Used multiple times...

 kurt = ((one_over_n * mean_subtracted_sum_power_4)
/ power((one_over_n * mean_subtracted_sum_power_2), 2)) - 3

 skew = (one_over_n * mean_subtracted_sum_power_3) /
power(sqrt(one_over_n * mean_subtracted_sum_power_2), 3)

 return [mean_value, stdev, skew, kurt]

 else: # Data sums to zero, i.e. no data!
 return [0,0,0,0]

 else: # Data empty for some reason...
 return [0,0,0,0]

Feature Extraction Unit Test
Now we want to test our feature extraction function works correctly. To do this, we write two important
types of test.

Test 1: Expected Outputs from Theory

A Gaussian distribution with a mean of 0, and a standard deviation of 1, should have a skew of 0, and a
kurtosis of 0. These values are derivable from theory, and are known to be correct. We can test our
function works well, by comparing the values it computes for such a Gaussian distribution. However, I
don't have the data points describing a perfect Gaussian distribution readily at hand. So to perform such
a test, I use a simple trick. I instead use a Gaussian random number generator, to generate an
approximately perfect distribution. I can then compare the outputs of my function computed over this
distribution, to the expected values from theory. Whilst the results will not match exactly, it should give us
an indication of how the function is performing.

Test 2: Our output vs. Numpy

We can also compare the values obtained by our function, to those produced by the in-built numpy
functions. If our function produces outputs close to those expected from theory, and identical to those
produced by numpy, we can have confidence that our function is correct.

At this point, you may wonder why I bother with the comparison to the theoretical. Perhaps you're
thinking, "Geez Rob, why not just compare to the numpy function?". Well, sometimes numpy functions
have bugs, and we need to be sure that we are robust against them.

Ok, now we perform the first two test for a approximately perfect Gaussian distribution. Note that we use
the sample standard deviation, and values are rounded to 12 decimal places.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 56 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [172]: import random as rnd
from scipy.stats import skew
from scipy.stats import kurtosis

Now generate some random data, and test the extracted values.
gaussian_data = []
for i in range(0, 100000):
 gaussian_data.append(rnd.gauss(0.0, 1.0))

Get the feature data
[mean_,stdev_,skew_,kurt_] = compute_features(gaussian_data)

Check the results
print ('Test 1 for Gaussian Distribution: Our computed values vs. t
heoretical values\n')
print ('\tGaussian data mean: ' , str('%.12f' % mean_) , '\t\texpec
ted: 0.0')
print ('\tGaussian data stdev:' , str('%.12f' % stdev_), '\t\texpec
ted: 1.0')
print ('\tGaussian data skew: ' , str('%.12f' % skew_) , '\t\texpec
ted: 0.0')
print ('\tGaussian data kurt: ' , str('%.12f' % kurt_) , '\t\texpec
ted: 0.0\n\n')

Check the results
print ('Test 2 for Gaussian Distribution: Our computed values vs. n
umpy function values\n')
print ('\tGaussian data mean: ' , str('%.12f' % mean_) , '\t\tnumpy
: ' , str('%.12f' % mean(gaussian_data)))
print ('\tGaussian data stdev:' , str('%.12f' % stdev_) , '\t\tnump
y: ' , str('%.12f' % std(gaussian_data,ddof=1)))
print ('\tGaussian data skew: ' , str('%.12f' % skew_) , '\t\tnumpy
: ' , str('%.12f' % skew(gaussian_data)))
print ('\tGaussian data kurt: ' , str('%.12f' % kurt_) , '\t\tnumpy
: ' , str('%.12f' % kurtosis(gaussian_data)), '\n\n')

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 57 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

It's clear that the function is producing values very close to those expected from the theory. It is also
clear that our function is giving the same answers to the numpy function. So it appears to be working
well. Now for another test, this time on the uniform distribution.

Test 1 for Gaussian Distribution: Our computed values vs. theoreti
cal values

 Gaussian data mean: 0.007047798441 expected:
0.0
 Gaussian data stdev: 0.997831536301 expected:
1.0
 Gaussian data skew: -0.017723000308 expected:
0.0
 Gaussian data kurt: -0.008814397735 expected:
0.0

Test 2 for Gaussian Distribution: Our computed values vs. numpy fu
nction values

 Gaussian data mean: 0.007047798441 numpy: 0.
007047798441
 Gaussian data stdev: 0.997831536301 numpy: 0.
997831536301
 Gaussian data skew: -0.017723000308 numpy: -0
.017723000308
 Gaussian data kurt: -0.008814397735 numpy: -0
.008814397735

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 58 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [173]: # Now generate some random data, and test the extracted values.
uniform_data = []
for i in range(0, 100000):
 uniform_data.append(rnd.uniform(0.0, 1.0))

[mean_,stdev_,skew_,kurt_] = compute_features(uniform_data)

Standard deviation of uniform distribution is given by:
#
Sqrt((1/12) (b-a)^2)
#
where a is the lower limit, and b the upper limit. So...
expected_std = sqrt((1.0/12.0) * power((1.0-0.0), 2))

Kurtosis of uniform distribution is given by:
#
-(6.0/5.0)
expected_kurt = -(6.0/5.0)

Skew of uniform distribution is given by:
#
0
expected_skew = 0

See this site for details on these computations:
http:#mathworld.wolfram.com/UniformDistribution.html

Check the results
print ('Test 1 for Uniform Distribution: Our computed values vs. th
eoretical values\n')
print ('\tUniform data mean: ' , str('%.12f' % mean_) , '\t\texpect
ed: 0.5')
print ('\tUniform data stdev:' , str('%.12f' % stdev_), '\t\texpect
ed: ' , str(expected_std))
print ('\tUniform data skew: ' , str('%.12f' % skew_) , '\t\texpect
ed: ' , str(expected_skew))
print ('\tUniform data kurt: ' , str('%.12f' % kurt_) , '\t\texpect
ed: ' , str(expected_kurt) , '\n\n')

Check the results
print ('Test 2 for Uniform Distribution: Our computed values vs. nu
mpy function values\n')
print ('\tUniform data mean: ' , str('%.12f' % mean_) , '\t\tnumpy:
' , str('%.12f' % mean(uniform_data)))
print ('\tUniform data stdev:' , str('%.12f' % stdev_), '\t\tnumpy:
' , str('%.12f' % std(uniform_data,ddof=1)))
print ('\tUniform data skew: ' , str('%.12f' % skew_) , '\t\tnumpy:
' , str('%.12f' % skew(uniform_data)))
print ('\tUniform data kurt: ' , str('%.12f' % kurt_) , '\t\tnumpy:
' , str('%.12f' % kurtosis(uniform_data)))

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 59 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

It's clear that the function is producing values very close to those expected from the theory. It is also
clear that our function is giving the same answers to the numpy function. Based on these results, I trust
that the function is correct.

Scaling
Pulsar data is often scaled to some nuermical range, often 0 to 255. Here I provide a function that can
perform the scaling.

Test 1 for Uniform Distribution: Our computed values vs. theoretic
al values

 Uniform data mean: 0.498967811385 expected:
0.5
 Uniform data stdev: 0.288368126465 expected:
0.288675134595
 Uniform data skew: -0.001285213034 expected:
0
 Uniform data kurt: -1.196652838647 expected:
-1.2

Test 2 for Uniform Distribution: Our computed values vs. numpy fun
ction values

 Uniform data mean: 0.498967811385 numpy: 0.
498967811385
 Uniform data stdev: 0.288368126465 numpy: 0.
288368126465
 Uniform data skew: -0.001285213034 numpy: -0
.001285213034
 Uniform data kurt: -1.196652838647 numpy: -1
.196652838647

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 60 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [174]: def scale(data,new_min, new_max):
 """
 Scales data to within the range [new_min,new_max].

 Parameters

 :param data: the data to scale.
 :param new_min: the new minimum value for the data range.
 :param new_max: the new maximum value for the data range.

 Returns

 :return: A new array with the data scaled to within the range [
new_min,new_max].
 """
 min_ = min(data)
 max_ = max(data)

 new_data = []

 for n in range(len(data)):

 value = data[n]
 x = (new_min * (1-((value-min_) /(max_- min_)))) + (new_
max * ((value-min_) /(max_- min_)))
 new_data.append(x)

 return new_data

Pulsar Classification
So far we've loaded the pulsar data, decided upon a scaling, and chosen our features. Now lets do some
basic classification.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 61 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [175]: from sklearn.model_selection import train_test_split

X = [] # Stores the feature data.
Y = [] # Stores the class labels.

Add pulsar examples.
for i in range(0, len(pulsar_data)):

 # Now here we extract the features with the call
 # to compute_features(). We also scale each profile
 # so that its values fall in the range [0,1]. This is
 # done via the call to scale(...).
 X.append(compute_features(scale(pulsar_data[i],0.0,1.0)))
 Y.append(1)

Add non-pulsar examples.
for i in range(0, len(non_pulsar_data)):

 # Now here we extract the features with the call
 # to compute_features(). We also scale each profile
 # so that its values fall in the range [0,1]. This is
 # done via the call to scale(...).
 X.append(compute_features(scale(non_pulsar_data[i],0.0,1.0)))
 Y.append(0)

In [176]: x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size
=0.999)

print ('\nExamples in training set: ' , str(len(x_train)))
print ('Examples in testing set: ' , str(len(x_test)))

There should be 4 features per example. Lets just check this is
the case.
print ('Dimensions of training set: ' , str(np.asarray(x_train).sha
pe))
print ('Dimensions of testing set: ' , str(np.asarray(x_test).shape
))

Now we build and test the classifier.

Examples in training set: 10
Examples in testing set: 10428
Dimensions of training set: (10, 4)
Dimensions of testing set: (10428, 4)

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 62 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

In [177]: from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

First train the classifier with call to fit.
classifier.fit(x_train, y_train)

Now obtain the classifiers 'score'
accuracy = classifier.score(x_test, y_test)
print ("Naive Bayes Classifier accuracy: ", (100* accuracy), "%.")

Here we've built a basic classifier on just the integrated pulse profile data of pulsar candidates. The
results are quite good - however in the real world things aren't so easy. Stay tuned for more datasets that
I'll be able to share - perhaps then you'll find out how tricky pulsar classification is.

Naive Bayes Classifier accuracy: 87.725354814 %.

04/04/2018, 21)51Supporting Material for Imbalanced Learning In Astronomy (EWASS talk)

Page 63 of 63http://localhost:8888/nbconvert/html/EWASS/Supporting%20Mater…rning%20In%20Astronomy%20(EWASS%20talk).ipynb?download=false

References
Bates S. D., Bailes M., Barsdell B. R., Bhat N. D. R., Burgay M., Burke-Spolaor S., Champion D. J., et al.,
2012, "The High Time Resolution Universe Pulsar Survey - VI. An artificial neural network and timing of 75
pulsars", MNRAS, 427, pp.1052-1065, DOI:10.1111/j.1365-2966.2012.22042.x
(https://dx.doi.org/10.1111/j.1365-2966.2012.22042.x).

Bishop C. M., 2006, "Pattern Recognition and Machine Learning", Springer.

Chawla N.V., Bowyer K.W., Hall L.O., and Kegelmeyer W.P., 2002, "SMOTE: Syn- thetic Minority Over-
sampling Technique.", Journal of Artificial Intelligence Research, 16(1), pp.321-357.

Gama J., Zliobaite I., Bifet A., Pechenizkiy M., Bouchachia A., 2014, "A Survey on Concept Drift
Adaptation", ACM Comput. Surv., vol.46(4), pp.44:1--44:37, DOI:10.1145/2523813
(https://dx.doi.org/10.1145/2523813).

He H. and Garcia E., 2009, "Learning from Imbalanced Data", Knowledge and Data Engineering, IEEE
Transactions on, 21(9), pp.1263-1284.

Kubat M. and Matwin S., 1997, "Addressing the Curse of Imbalanced Training Sets: One-Sided
Selection.", In Proceedings of the 14th International Conference on Machine Learning (ICML), pp.179-
186.

Levin L., 2012, "A search for radio pulsars: from millisecond pulsars to magnetars", PhD thesis,
Swinburne University.

Lyon R. J., Stappers B. W., Cooper S., Brooke J. M., Knowles J.D., 2016, "Fifty Years of Pulsar Candidate
Selection: From simple filters to a new principled real-time classification approach", MNRAS, 459
(1):1104-1123, DOI:10.1093/mnras/stw656 (https://dx.doi.org/10.1093/mnras/stw656)

Lyon R. J., 2016, "Why Are Pulsars Hard To Find?", PhD thesis, University of Manchester.

Thornton D., 2013, "The High Time Resolution Radio Sky", PhD thesis, University of Manchester.

Tomek I., 1976, “Two Modifications of CNN.", Systems, Man and Cybernetics, IEEE Transactions on,
SMC-6(11), pp.769-772.

https://dx.doi.org/10.1111/j.1365-2966.2012.22042.x
https://dx.doi.org/10.1145/2523813
https://dx.doi.org/10.1093/mnras/stw656

