Conference paper Open Access

Culturally-Competent Human-Robot Verbal Interaction

Bruno, Barbara; Menicatti, Roberto; Recchiuto, Carmine Tommaso; Lagrue, Edouard; Pandey, Amit Kumar; Sgorbissa, Antonio


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1211893</identifier>
  <creators>
    <creator>
      <creatorName>Bruno, Barbara</creatorName>
      <givenName>Barbara</givenName>
      <familyName>Bruno</familyName>
      <affiliation>University of Genova</affiliation>
    </creator>
    <creator>
      <creatorName>Menicatti, Roberto</creatorName>
      <givenName>Roberto</givenName>
      <familyName>Menicatti</familyName>
      <affiliation>University of Genova</affiliation>
    </creator>
    <creator>
      <creatorName>Recchiuto, Carmine Tommaso</creatorName>
      <givenName>Carmine Tommaso</givenName>
      <familyName>Recchiuto</familyName>
      <affiliation>University of Genova</affiliation>
    </creator>
    <creator>
      <creatorName>Lagrue, Edouard</creatorName>
      <givenName>Edouard</givenName>
      <familyName>Lagrue</familyName>
      <affiliation>SoftBank Robotics</affiliation>
    </creator>
    <creator>
      <creatorName>Pandey, Amit Kumar</creatorName>
      <givenName>Amit Kumar</givenName>
      <familyName>Pandey</familyName>
      <affiliation>SoftBank Robotics</affiliation>
    </creator>
    <creator>
      <creatorName>Sgorbissa, Antonio</creatorName>
      <givenName>Antonio</givenName>
      <familyName>Sgorbissa</familyName>
      <affiliation>University of Genova</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Culturally-Competent Human-Robot Verbal Interaction</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Social Robotics</subject>
    <subject>Human-Robot Interaction</subject>
    <subject>Culture-Aware Robotics</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-06-26</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1211893</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1211892</relatedIdentifier>
  </relatedIdentifiers>
  <version>Pre-print, accepted for publication</version>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The article describes a system for culture-aware human-robot verbal interaction, that constitutes the basis for designing culturally-competent robots for health-care, i.e., robots able to autonomously re&amp;ndash;configure their way of acting and speaking, when offering a service, to match the culture, customs, and etiquette of the person they are asstisting. The article shows how culture-aware verbal interaction is tightly related to cultural knowledge representation and acquisition, by describing the methodological and technological solutions adopted, and showing in details one of the preliminary experiments performed to design a culturally-competent robot.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/737858/">737858</awardNumber>
      <awardTitle>Culture Aware Robots and Environmental Sensor Systems for Elderly Support</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
30
41
views
downloads
All versions This version
Views 3030
Downloads 4141
Data volume 78.3 MB78.3 MB
Unique views 2929
Unique downloads 3737

Share

Cite as