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ABSTRACT
In an increasingly connected world, security is a top concern for Internet of Things (IoT). These IoT devices have to

be inexpensive implying that they will be constrained in storage and computing resources. In order to secure such

devices, highly efficient public key cryptosystems (PKC) are critical. Elliptic Curve Cryptography (ECC) is the most

commonly implemented PKC in use today. In this paper, an alternate and a more efficient PKC, called the PEC (Pells

Equation Cryptography) has been proposed based on Pells equation: x2−D ∗y2 ≡ 1 (mod p). It is shown that scalar

multiplication in PEC is significantly more efficient compared to ECC. It is also shown that the Discrete Logarithm

Problem - computing the private key from the public key - in PEC is at least as hard as that of ECC.
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1 INTRODUCTION

Efficient and secure public-key cryptosystems (PKC) are critical to protect Internet communications. Re-
cently, there have been several instances of malware infecting thousands of cheap IoT (Internet of Things)
devices such as IP security cameras and thereby flooding the Internet with traffic and shutting down a lot of
popular websites. In an increasingly connected future, such attacks could result in shutting down our water
and electricity supplies, disabling security systems and even loss of life when medical devices are impacted.
As a result, security is a top concern for IoT devices, almost as essential as affordability. The fact that these
IoT devices have to be cheap implies that they can have only limited storage and computing resources. In
order to secure and authenticate such devices, highly efficient public key cryptosystems that use a combi-
nation of public and private keys are critical. Public-key cryptography, or asymmetric cryptography, is an
encryption scheme that uses two mathematically related, but not identical keys a public key and a private
key [Hel02]. Unlike symmetric key algorithms that rely on one key to both encrypt and decrypt, each key
in public key cryptography performs a unique function. The public key is used to encrypt plaintext whereas
a private key is used to decrypt cipher text. The effectiveness of this cryptographic system is based on the
fact that it is computationally infeasible to compute the private key from the public key. Consequently,
public keys can be freely shared, allowing users an easy and convenient method for encrypting content and
verifying digital signatures, and private keys can be kept secret, thereby ensuring that only the owners of the
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private keys can decrypt content.

Elliptic Curve Cryptography (ECC) has emerged as one of the popular cryptosystems after Miller and
Koblitz independently introduced elliptic curves into cryptography [Kob87]. The security framework of
most of the modern Internet is based on ECC, not to mention that of Bitcoin and other cryptocurrencies.
The biggest differentiator between ECC and RSA (another well-known public key cryptosystem) is key
size compared to cryptographic strength. ECC can offer the same level of cryptographic strength at much
smaller key sizes, thereby offering improved security with reduced computational requirement [Kob87]. In
[Pad06], an RSA type public key cryptosystem based on Pell’s equation is proposed and compared against
the RSA scheme. In [RALB15], a cryptosystem based on Pell’s equation with Jacobi symbol is proposed
along with an efficient implementation. In this paper, we present PEC - a public key cryptosystem based on
Pell’s equation in a finite field and compare the scalar multiplication performance between PEC and ECC.
We show that the scalar multiplication operation in PEC is significantly more efficient and faster than that of
ECC for different values of k, the scalar multiplier and p, the prime field. To our knowledge, no prior work
exists that shows this result.

The paper is organized as follows: Section 2 provides an overview of ECC in a finite field, including scalar
multiplication and the discrete logarithm problem. Section 3 introduces Pell’s equation and proves how
the solution space to Pell’s equation in a finite field forms a closed abelian group. In this section, we
prove certain properties of scalar multiplication in PEC and also discuss how points in the group form a
closed cyclic subgroup. In addition to describing an approach to find the order of such a subgroup, we
also outline an algorithm to choose an optimal base point. Section 4 describes both the theoretical as
well as simulation results showing the performance difference between ECC and PEC scalar multiplication
algorithms. Conclusions and some directions for future research are presented in Section 5.

2 ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curves belong to a class of cubic equations of the form y2 = x3 + Ax + B, where A and B are
integer coefficients and 4A3 + 27B2 6= 0. This equation is the Weierstrass normal form for elliptic curves.
The interesting property of elliptic curves is that points (P (x, y)) on the curve form a closed abelian group
[ST92]. The inverse of a point P (x, y) is the one symmetric about the x axis, P ′(x,−y). The identity element
is the point at infinity O. The binary operation represents the addition of two points on the curve resulting
in a third point on the curve. This third solution can be generated either through a geometrical construction
or algebraically using polynomial equations [ST92].

Most ECC implementations are based on elliptic curves restricted to finite fields [Lu04] [SK12]. A finite
field, denoted as Fp, is a set with a finite number of elements. An example of a finite field is the set of
integers modulo p, where p is a prime number. This set consists of all the integers from 0 to p − 1. Let
P = (x1, y1) and Q = (x2, y2) be two points on the elliptic curve E defined by y2 = x3 + Ax + B. A new
point R(x3, y3) = P ⊕Q is given by equation (1)

x3 = m2 − x1 − x2 (mod p) (1)

y3 = m(x1 − x3)− y1 (mod p)
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m =


y2−y1

x2−x1
if P 6= Q

3x2
1+A
2y1

if P = Q

An elliptic curve defined over a finite field has a finite number of points that satisfy the elliptic curve equa-
tion, called the order of the group. The interesting result is that elliptic curves in Fp still form a closed
abelian group.

One of the most important operations in ECC is scalar multiplication which is used to generate the public
key. This term refers to the operation of multiplying an integer by a point on the elliptic curve as shown in
the equation below:

Q = kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

(2)

In this equation, both P and Q are points on the elliptic curve and k is typically a large integer. The
underlying challenge is that in a real world scenario, the integer multiplying the point is very large, so
the ability to do the multiplication efficiently and in a high-performing fashion is critical [BL07]. This is
especially important if the end devices have limited storage and compute resources such as the emerging
Internet of Things (IoT) devices such as IP cameras and medical sensors. Existing ECC implementations
support operations for doubling a point and adding two points. Thus ECC scalar multiplication operation is
typically done by doing a series of point doublings and additions until the required point is multiplied by the
large integer. One of the best known algorithms is the Binary Double-Add algorithm (BDA) which is also
referred to as binary exponentiation [Iye12] [KAT06] and [GV11]. This algorithm works by converting the
integer into binary form. The algorithm then traverses the binary representation of the integer and decides
to do a Double or Add based on whether the value of the rightmost bit in the representation is a 1 or a 0. If
doubling and adding are both O(1) operations, then the BDA algorithm is O(log k) or O(m) where there are
m digits in the binary representation of k.

Given k and P , the BDA algorithm provides a polynomial time algorithm for computing Q = kP . In ECC,
the non-secret parameters E, p, P, and n are first chosen and an integer k is chosen randomly from 1 to n. In
this case, k is the private key of the sender andQ is the public key. Q is transmitted over a potentially insecure
channel where the messages could be intercepted. The problem of finding k if P and Q are known is the
discrete logarithm problem (DLP) for elliptic curves restricted to finite fields. This problem is believed to be
a hard problem in that there is no known polynomial time algorithm that can solve this problem [Men12].
This problem is referred to as discrete because they involve finite sets and cyclic subgroups. Clearly, if
EC-DLP is easy, then a Man in the Middle can deduce k from Q. Therefore, the hardness of EC-DLP is
critical for the security of ECC. Although no proof exists that the EC-DLP is a hard problem, the problem
has been extensively studied by researchers for the last 16 years and no general-purpose sub-exponential
time algorithm has been discovered. [Men12] surveys the research work done on EC-DLP.

3 PELL’S EQUATION CRYPTOGRAPHY

Pell’s Equation Cryptography (PEC), an alternate and a more efficient public key cryptosystem, based on
the solution space to the Pells equation in a prime field has been studied in this paper.
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3.1 Pell’s Equation

Pells equation is any quadratic Diophantine equation of the form x2 − Dy2 = 1, where D is a positive
non-square integer, with integer solutions for x and y. Pell’s equation has an infinity of positive integral
solutions for x and y. The infinite solutions can be computed from the minimal positive solution (also called
fundamental solution) in a recursive fashion [Kos14]. If (x1, y1) is the solution with smallest x1, then every
solution (xk, yk) can be obtained by taking powers as follows:

(x1 + y1
√
D)k = xk + yk

√
D for k = 1, 2, 3, .. (3)

where xk = 1
2

(
(a + b

√
D)k + (a − b

√
D)k

)
and yk = 1

2
√
D

(
(a + b

√
D)k − (a − b

√
D)k

)
. The solutions can

also be derived in a recursive fashion. For example, if (x1, y1) and (x2, y2) are both solutions to the Pell’s
equation x2 −Dy2 = 1, another solution (x3, y3) can be generated as follows:

(x3, y3) = (x1, y1)⊕ (x2, y2) = (x1x2 +Dy1y2, x1y2 + x2y1) (4)

where ⊕ can be treated as a binary operation. Generation of the fundamental solution to Pells equation can
be used to construct infinitely many solutions. Considering a simple example: x2 − 2y2 = 1 where (3,2) is
the fundamental solution to this Pells equation. Other solutions can be recursively obtained as follows:

(x2, y2) = (3, 2)⊕ (3, 2) = (3.3 + 2.2.2, 3.2 + 2.3) = (17, 12)

(x3, y3) = (17, 12)⊕ (3, 2) = (99, 70)

Through the ⊕ operation and the fundamental solution (3,2), it can be seen that infinitely many solutions
can be generated.

3.2 Pell’s Equation in a Finite Field

The goal is to design a more efficient public key cryptosystem compared to that of ECC. In this section we
will prove that the solution space to the Pell’s equation represented as (x, y) forms a closed abelian group
under a binary operation. In addition to proving that the binary operation is associative and commutative,
proof of existence of an identity element and an inverse element for every element in the solution space is
necessary for this step. This forms the basis of the Pell’s Equation Cryptosystem (PEC). Similar to elliptic
curves in a finite field. Pell’s equation in a finite prime field can be represented as follows:

x2 −Dy2 ≡ 1 (mod p) (5)

where p is a prime number. A finite field is a set with a finite number of elements. An example of a finite
field is the set of integers modulo p, where p is a prime number. It is generally denoted as GF(p) or Fp. Let
Cp represent the set of solutions (x, y) ∈ Fp × Fp to the Pell’s equation represented in (5). The solutions
(x, y) also belong to the field Q(

√
D) = {x+ y

√
D;x, y ∈ Fp}.

This solution space (x, y), which was originally{
(x, y) ∈ Z2 | x2 −Dy2 = 1

}
, becomes{

(x, y) ∈ F2
p | x2 −Dy2 ≡ 1 (mod p)

}
DOI:10.5121/ijcis.2018.8101 4



International Journal on Cryptography and Information Security (IJCIS), Vol. 8, No.1, March 2018

A group is a set of elements with a binary operation that satisfies four properties: closure, associativity, exis-
tence of an identity element and existence of an inverse element for every element in the group. Additionally,
if the group is also commutative, it is called an abelian group. [Rei09] provides a rigorous introduction to
basic number theory, rings, fields, groups, algebraic geometry, Pell’s equation and elliptic curves. In ad-
dition, proof that the binary operation satisfies the closure property is also provided in [Rei09]. The basic
elements of the proof are outlined in this section.

(x3, y3) = (x1, y1)⊕ (x2, y2) = (x1x2 +Dy1y2, x1y2 + x2y1) (6)

It needs to be shown that (x3, y3) belongs to Cp. i.e., (x23 −Dy23 = 1)

(x1x2 +Dy1y2)
2 −D ∗ (x1y2 + x2y1)

2 = x21x
2
2 +D2y21y

2
2 −Dx21y22 −Dx22y21

= x21 ∗ (x22 −Dy22)−Dy21(x22 −Dy22) = x21(1)−Dy21(1) = 1

Equation (7) shows that the binary operation is commutative.

(x1, y1)⊕ (x2, y2) = (x1x2 +Dy1y2, x1y2 + x2y1) = (x2x1 +Dy2y1, x2y1 + x1y2) = (x2, y2)⊕ (x1, y1) (7)

Equation (8) shows that the binary operation is associative as well.(
(x1, y1)⊕ (x2, y2)

)
⊕ (x3, y3) = (x1x2 +Dy1y2, x1y2 + x2y1)⊕ (x3, y3)

=
(
(x1x2 +Dy1y2) ∗ x3 +D(x1y2 + x2y1) ∗ y3, (x1x2 +Dy1y2) ∗ y3+

x3 ∗ (x1y2 + x2y1)
)

= (x1 ∗ (x2x3 +Dy2y3) +Dy1(x2y3 + x3y2), x1 ∗ (x2y3 + x3y2)

+ (x2x3 +Dy2y3) ∗ y1)

= (x1, y1)⊕
(
(x2, y2)⊕ (x3, y3)

)
(8)

(x1, y1)⊕ (1, 0) = (x1 ∗ 1 +Dy1 ∗ 0, x1 ∗ 0 + 1 ∗ y1) = (x1, y1) (9)

(x1, y1)⊕ (x1,−y1) = (x21 −Dy21 , x1(−y1) + x1y1) = (1, 0) (10)

Clearly, the trivial solution (1,0) is the identity element as shown in equation (9), while equation (10) shows
that an inverse exists for every element in Cp. ((x,−y) is the inverse of (x, y)). Therefore, the solution space
to the Pells equation in a finite field forms a closed abelian group under the operation ⊕, similar to the
addition of points on elliptic curves.

3.3 Order of Pell’s Equation Group

The next step is to show that the scalar multiplication of a point P from this solution space by a large scalar
multiplier k results in a point Q that also belongs to the same solution space. In this step, it is necessary
to show that irrespective of the initial chose point P , multiples of P always form a closed cyclic subgroup.
The number of points in any group is called the order of the group. The order of the group defined by the
solution space to the Pell’s equation x2 − Dy2 ≡ 1 (mod p) is given by p +

(
D
p

)
, where

(
D
p

)
is called the

Legendre symbol and is equal to {−1, 0,+1}. Legendre symbol is a number theoretic function defined to be
equal to ±1 depending on whether a is a quadratic residue modulo p and has value 0 if p divides a [Sil01].
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Scalar multiplication in PEC is defined in the same way as in ECC. For instance

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

The elements in the solution space of the Pell’s equation form a field as described in the previous section.
Therefore, if u = (x1 +

√
Dy1), then from equation (3) the following is true:

k ⊗ (x1, y1) = (x1, y1)⊕ (x1, y1)⊕ · · · ⊕ (x1, y1)︸ ︷︷ ︸
k times

= u⊕ u · · · ⊕ u︸ ︷︷ ︸
k times

= uk (11)

Scalar multiplication over this solution space (x, y) in Cp has several interesting properties that can be proved
as follows:
Property 1:

(a× b)⊗ (x, y) = a⊗
(
b⊗ (x, y)

)
= b⊗

(
(a⊗ (x, y)

)
= (b× a)⊗ (x, y) (12)

Proof:
(a× b)⊗ (x, y) = (x, y)(a×b) =

(
(x, y)a

)b
=
(
(x, y)b

)a
= (x, y)(b×a) = (b× a)⊗ (x, y)

Property 2:
a⊗

(
(x1, y1)⊕ (x2, y2)

)
=
(
a⊗ (x1, y1)

)
⊕
(
a⊗ (x2, y2)

)
(13)

Proof:

a⊗
(
(x1, y1)⊕ (x2, y2)

)
=
(
(x1, y1)⊕ (x2, y2)

)
⊕
(
(x1, y1)⊕ (x2, y2)

)
⊕
(
(x1, y1)⊕ (x2, y2)

)︸ ︷︷ ︸
a times

=
(
(x1, y1)⊕ · · · ⊕ (x1, y1)

)︸ ︷︷ ︸
a times

⊕
(
(x2, y2)⊕ · · · ⊕ (x2, y2)

)︸ ︷︷ ︸
a times

(⊕ is commutative)

=
(
a⊗ ((x1, y1)

)
⊕
(
a⊗ ((x2, y2)

)
where ⊕ is the binary operation and ⊗ is the symbol for the scalar multiplication operation. These properties
will be used in the later sections when the PEC version of the Diffie-Hellman algorithm is described.

Consider the Pell’s equation, x2 − Dy2 ≡ 1 (mod 19) and the point P = (2,7). All the multiples of P are
shown in Figure 1: 2P = (7, 9); 3P = (7, 10); 4P = (2, 12); 5P = (1, 0) which is the identity element;
6P = (2, 7); 7P = (7, 9); 8P = (7, 10); 9P = (2, 12) and 10P = (1, 0). It is clear that only five distinct points
appear cyclically and the other points representing the other solutions to the Pell’s equation do not appear at
all. The fact that they repeat cyclically can be represented by the equation

kP = (k mod 5)P (14)

It can also be verified that these five points are closed under addition. Irrespective of how these points are
added, the result is always one of these five points. The other points in Fp never appear in the results. This
same holds for every point, not just for P = (2,7). In fact,

kP +mP = P + · · ·+ P︸ ︷︷ ︸
k times

+P + · · ·+ P︸ ︷︷ ︸
m times

= (k +m)P

which implies that if two multiples of P are added, another multiple of P is generated (i.e. multiples of P
are closed under addition). This shows that the set of the multiples of P is a cyclic subgroup of the group
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Figure 1: Multiples of P = (2, 7) that are shown repeating in a cyclical fashion.

formed by the solution space to the Pell’s equation (Cp). A ”cyclic subgroup” is a subgroup where elements
are repeating cyclically as shown in this example. The point P is called generator or base point of the cyclic
subgroup. Each cyclic subgroup generated by a point P may have an order which is different from the
order of the full group represented by the solution space. This leads to the definition of the order of a cyclic
subgroup as follows: the order of the subgroup of which P is a member, is the smallest positive integer n
such that nP = 0. In the previous example, the subgroup contained five points, which implies 5P = 0.

3.3.1 Order of a Subgroup

For a cryptographically strong PEC, subgroups with a high order need to be chosen. The question becomes
- given a point P , what is the order of the subgroup(s) generated by that point? The order of the subgroup
of which P is a member is linked to the order of the full group by Lagrange’s theorem, which states that for
any finite group S, the order (number of elements) of every subgroup H is a divisor of the order of the parent
group S [Rot01]. This implies that if the order of Cp is N and one of the subgroups comprises n points, then
n is a divisor of N . This theorem provides an approach to determine the order of a subgroup containing the
point P .

• Calculate the order N of Cp using
(
p+ D

p

)
• Compute all the divisors of N .

• For every divisor n of N , compute nP .

• The smallest n where nP = 0 is the order of the subgroup containing the point P .

For example, the Pell’s equation x2 − 2y2 ≡ 1 (mod 61) has order 62. The subgroups can have order
n = 1, 2, 31 or 62. If P = (17, 49), 1.P 6= (1, 0), 2.P 6= (1, 0) but 31.P = (1, 0), implying that the order of P is
31. On the other hand, if P = (3, 59), 1.P 6= (1, 0), 2.P 6= (1, 0), 31.P 6= (1, 0), 62.P = (1, 0), so the order of
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P is 62. Yet another example is x2 − 2y2 ≡ 1 (mod 37), whose order is 38. The subgroups can have order
n = 1, 2, 19 or 38. If P = (17, 25), 1.P 6= (1, 0), 2.P 6= (1, 0) but 19.P = (1, 0), implying that the order of P
is 19. On the other hand, if P = (3, 35), 1.P 6= (1, 0), 2.P 6= (1, 0), 19.P 6= (1, 0) while 38.P = (1, 0), so the
order of P is 38.

3.3.2 Choosing a Base Point

For a strong PEC, subgroups with a high order need to be chosen. The order N of a Pell’s equation in a
finite field is computed, after which a high divisor is selected as the order n of the subgroup. A base point P
belonging to this subgroup is then chosen as the generator.

Lagrange’s theorem implies that the number h = N/n is always an integer (because n is a divisor of N).
The number h is called the cofactor of the subgroup. For every point P in Cp, N.P = 0, given that N is the
order of the group. Given the definition of cofactor,

n(hP ) = 0

nG = 0

The last equation implies that the point G belongs to a subgroup of order n except when G = hP = (1, 0),
when n = 1. The following algorithm selects an appropriate base point.

• Select a number n which is prime and a divisor of N . n is the order of the subgroup.

• Calculate the cofactor h = N
n .

• Choose a random point P belonging to Cp. Compute G = hP . If G = (1, 0), choose another point P .
If G 6= (1, 0), G is the base point or the generator belonging to a subgroup of order n and cofactor h.

• n has to be a prime. If n was not a prime, the order of G could be one of the divisors of n.

It is useful to compare the order of PEC with that of ECC for the same prime field. The order of an elliptic
curve is given by the following inequality (also known as Schoof’s algorithm [Sch85].

p+ 1− 2
√
p ≤ (Order of elliptic curve E in prime field p) ≤ p+ 1 + 2

√
p (15)

Figure 2 shows the order values for both ECC and PEC for different values of p, the prime field. The Sage
routine, E.order(), was used to determine the group order for ECC. As shown in the figure, the group
order values for both ECC and PEC are in the same range for different values of p. This implies that it is
possible to choose a generator G belonging to a cyclic subgroup of a very high order in the case of PEC.

3.4 PEC Diffie-Hellman Algorithm

The PEC version of the Diffie-Hellman algorithm will be described to show how keys are exchanged and a
shared secret is established between two parties. Scalar multiplication operations are used in this step as well
and any efficiency and performance advantage discussed in the results section will be applicable at this stage.
PEC Diffie-Hellman algorithm is a variant of the Diffie-Hellman algorithm that defines how keys should be
generated and exchanged between the two parties, specifically adapted for PEC. A detailed description of
the Diffie-Hellman algorithm is described in [DH76]. Alice and Bob want to exchange information securely,
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Figure 2: Group order comparison for different values of p.

so that a Man in the Middle may intercept them, but should not be able to decipher the keys. The algorithm
(shown in Figure 3) works as follows:

• Firstly, Alice and Bob generate their own private and public keys respectively. Alice generates the
private key dA and the public key PA = dA.G whereas Bob generates his private key dB and public
key PB = dB .G. where G is the generator for the same Pell’s equation on the same finite field. Alice
and Bob exchange the parameters D and p beforehand.

• Alice and Bob exchange their public keys PA and PB over an insecure channel. The Man in the
Middle can intercept the public keys PA and PB , but will not be able to compute the private keys, dA
or dB without solving the Discrete Logarithm Problem, which is known to be a non-polynomial time
algorithm for large values of p.

• Alice calculates the shared secret SA = dA.PB (using her private key and Bob’s public key) while Bob
calculates his shared secret SB = dB .PA (using his own private key and Alice’s public key). It can be
seen that both calculate the same shared secret, because dA.(dB .G) = dB .(dA.G). (From equation (12)
which proves that scalar multiplication in PEC is commutative.)

SA = dA.PB = dA.(dB .G) = dB .(dA.G) = dB .PA = SB

• The Man in the Middle knows both public keys PA and PB but will not be able to find out the shared
secret S because he does not know the private keys of Alice and Bob.
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Figure 3: The PEC Diffie-Hellman key exchange: Alice and Bob can easily compute the shared secret. The
Man in the Middle has to solve a ”hard” problem.

The PEC Diffie-Hellman algorithm can be stated as follows: given three points, G, dA.G and dB .G, how can
dA.(dB .G) or dB .(dA.G) can be computed? Given that Alice and Bob have obtained the shared secret, they
can now exchange data using symmetric encryption. For example, they can use the x-coordinate of S as the
key to encrypt messages using symmetric secure cryptosystems such as AES or 3DES.

4 RESULTS

4.1 Theoretical Results

As described in Section 2, the BDA algorithm is commonly used to implement scalar multiplication in ECC
and will be used to benchmark performance between PEC and ECC in this section. For example, let k = 151
whose binary representation is 100101112. This can be represented as a sum of powers of two as follows:

151 = 1.27 + 0.26 + 0.25 + 1.24 + 0.23 + 1.22 + 1.21 + 1.20 = 27 + 24 + 22 + 21 + 20 (16)

As a result, 151.P = 27.P + 24.P + 22.P + 21.P + 20.P , which can be computed by doubling P seven times
and four additions. The elliptic curve formulas for point doubling and point addition, where P = (x1, y1)

and Q = (x2, y2), are as follows:
x3 = m2 − x1 − x2 (mod p) (17)

y3 = m(x1 − x3)− y1 (mod p) (18)

m =

{
(y2 − y1)(x2 − x1)−1 (mod p) if P 6= Q (Point Addition)

(3x21 +A)(2y1)
−1 (mod p) if P = Q (Point Doubling)

(19)

On the other hand, the Pell’s equation formulas for point doubling and addition are as follows:

P +Q = (x3, y3) = (x1x2 +Dy1y2, x1y2 + x2y1) (mod p) (20)

P + P = 2P = (2x21 − 1, 2x1y1) (mod p) (21)

The number of computations required for point doubling and point addition for the case of PEC and ECC
are detailed in Table 1, where S = Squaring, M = Multiplication and I = Inversion. According to [BSS99]
and [ELM03], inversion is a very expensive operation in finite fields and costs anywhere between 3 and 10
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Table 1: Point Doubling and Addition Comparison between PEC and ECC

Type of Cryptosystem Point Doubling Point Addition

ECC 2S+ 2M+ 1I = 10M 1S + 2M + 1I = 9M

PEC 1S + 1M =2M 4M

Table 2: Comparison of Scalar Multiplication Operations between PEC and ECC

Type of Cryptosystem k = 151 k = 155551 k=1555555551
(7 doublings (17 doublings (30 doublings
4 additions) 12 additions) 20 additions)

ECC 106M 278M 480M

PEC 30M 82M 140M

multiplications. For this analysis, it is assumed that I/M = 6 and 1S = 1M. In addition, additions and sub-
tractions are assumed to have negligible cost compared to multiplications. Table 2 shows the performance
difference (in terms of computations) between PEC and ECC for scalar multiplication for different values
of k, the scalar multiplier.

4.2 Experimental Results

SageMath, a free open-source mathematical software [S+17] was used to perform operations on elliptic
curves and Pell’s equation. Sagemath was executed on a MacBook Pro with the following specifications:
2.5GHz Intel Core i5 and 4GB 1600MHz DDR3 memory running OS X El Capitan version 10.11.6. The
timeit() command based on the Python timeit module has been used to determine the best time for
executing the scalar multiplication operation for each cryptosystem.

Scalar multiplication results for both PEC and ECC are shown for a variety of input parameters: p, the prime
field, k the scalar multiplier, and P the generator point. Each experiment was run 800 times and the best
results were averaged to generate the final value. For ECC computation, the values of A and B were varied
as well. Tables 3 and 4 show the scalar multiplication performance results of ECC and PEC respectively.

Table 4: PEC Scalar Multiplication Performance Results

p k D P (Generator point) Average execution time (in µs)
9973 10000 2 (3,9971) 4.14
9973 1000000 2 (3,2) 3.49
99991 10000 3 (7,99987) 4.16
99991 1000000 3 (7,4) 3.45
999983 1000000 5 (9,4) 4.88
999983 10000 5 (9,99979) 4.04
999983 1000000 5 (9,99979) 5.38
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Table 3: ECC Scalar Multiplication Performance Results

p k < A,B > Average execution time (in µs)
9973 10000 < 101, 203 > 55.9

9973 1000000 < 2828, 5784 > 793.0

99991 10000 < 101, 203 > 55.9

99991 1000000 < 10191, 30483 > 539.1

999983 10000 < 10118, 30337 > 582.0

999983 1000000 < 10118, 30337 > 788.1

Figure 4 compares the performance difference between PEC and ECC for the scalar multiplication operation
for different values of p, the prime field and k, the scalar multiplier.

Figure 4: Performance comparison of scalar multiplication. The Y -axis is shown using a log scale.

Both the theoretical as well as the experimental results show that the scalar multiplication operation in
PEC is significantly more efficient and faster compared to ECC. The theoretical results did not take into
account p, while the experimental results show the effect of varying both p and k. In the case of PEC,
the average execution time for the scalar operation is independent of both p and k. However, for ECC
the same metric increases with increasing values of both p and k. One reason for the significantly worse
performance for ECC in the case of the experimental results could be due to the fact that SageMath may not
have implemented the efficient Double-and-Add algorithm for scalar multiplication for elliptic curves and
could be using a suboptimal algorithm instead. Another reason is that the theoretical results reflect a first-
order approximation and could be understating the penalty for inversion operations. It has been assumed
that the I/M is 6 on an average. Based on p and k, it is possible that the ratio is much higher.
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5 CONCLUSION

In this paper, Pell’s Equation Cryptography (PEC) - an alternate and high-performing public key cryp-
tosystem was designed that is shown to be more efficient than Elliptic Curve Cryptography for the scalar
multiplication operation. Both theory as well as Sagemath was used to show the efficiency advantage. PEC-
DH, a version of the Diffie-Hellman algorithm for PEC - a key-agreement protocol - is also described in
this paper. Finally, it is also shown that the Discrete Logarithm Problem in PEC is at least as ”hard” as
that of the problem in ECC, given that the order of the PEC and ECC groups are relatively similar. Given
that the scalar multiplication operation in PEC is significantly faster than that of ECC, the PEC is a natural
fit for securing IoT devices such as IP cameras and medical sensors, which have limited computing power,
memory and battery capacity, and therefore require efficient and high-performing key exchange protocols.
In conclusion, the cryptosystem designed in this project showed a large improvement in efficiency and speed
(at least 3X times) compared to ECC, one of the most commonly used cryptosystems in use. We believe this
has significant implications for the field of cryptography.

With regards to future extensions, it would be useful to implement PEC in actual hardware and confirm
the efficiency and speed advantage with respect to ECC. This project looked at curves in Weierstrass form.
The scalar multiplication comparisons could be extended for elliptic curves in non-Weierstrass form such as
Edwards, Hessian and Montgomery curves. Finally, it would be useful to determine the PEC key size that
is cryptographically equivalent to a 160-bit ECC key size.
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