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Abstract 

The widely accepted importance of energy efficiency in the building sector is continuously 

acknowledged by the engineering and research community, as proven by the quantity and 

diversification of relevant modeling proposals in literature. It is often difficult to collect and assess 20 

this plethora of approaches and sometimes the diversity of the features of the available options 

makes it hard to decide what is the most convenient for the purpose required. This work presents a 

comprehensive analysis of the most important results today, along with their various classification 

and assessment approaches for modeling energy building consumption. A critical review of the 

limitations of the different existing approaches is conducted, and open research challenges are also 25 

highlighted. Finally, a horizontal and selective assessment of their suitability according to a 

descriptive set of qualitative comparison contexts and parameters is provided. 
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1. Introduction 

The residential and commercial building sectors account for about 20% of the total energy 35 

consumption in the industrialized world [1]. The sector expansion drives its energy consumption 

increase. More specifically world delivered energy consumption grows by an average 1.4% per year 

                                                 
*Corresponding author 
 E-mail address: rosalia.pacheco@upm.es (R. Pacheco-Torres). 



in the residential building sector and 1.6% per year in the commercial building sector from 2012 to 

2040 [1]. Nevertheless, there is growing interest in the reduction of building energy consumption and 

the associated greenhouse gas emissions. In Europe, the European Union has especially addressed 

the issue of building energy consumption and efficiency [2], in order to reduce its energy 

dependency, and greenhouse gas emissions.  5 

With reference to residential buildings, most of the energy goes towards space conditioning. Top 

four energy end-uses in US residential buildings in 2005 included space heating, space cooling, 

water heating, and lighting with 30.7%, 12.3%, 12.2%, and 11% of total energy consumed in 

buildings respectively. Refrigeration, electronics, wet cleaning, cooking, and computers supplement 

the list of most important residential energy end-uses. On the other hand, when it comes to 10 

commercial buildings, space conditioning remains the primary target for energy end-uses. Top four 

energy end-uses in US commercial buildings in 2005 included lighting, space heating, space cooling, 

and water heating with 25.5%, 14.2%, 13.1%, and 6.8% of total energy consumed in buildings 

respectively. Electronics, ventilation, refrigeration, computers, and cooking supplement the list of the 

most important commercial energy end-uses [3]. 15 

Different parameters affect the degree to which energy end-uses affect overall energy consumption, 

including climate and meteorological conditions, occupancy and occupant behavior, building 

characteristics, building systems and appliances. Furthermore, when it comes to energy consumption 

end-uses may affect one another, as is the case of space heating attributed to appliances. Depending 

on the building site, the source of energy may be diverse, e.g. electricity, natural gas, or oil, and it 20 

may include secondary sources, such as generation (e.g. Renewable Energy Sources - RES), co-

generation, and passive solar gains. 

The modeling of energy consumption and efficiency in buildings is a useful tool that allows the 

quantification of building energy consumption and sharing of end-uses. In this context, it can provide 



a useful prediction of consumed energy that, accumulated to a regional or national scale, can 

determine energy supply requirements. Furthermore, it can provide useful feedback on decision 

support with reference to building retrofits, application of new technologies and materials, so that 

return of investment is calculated for different types of building interventions. 

The focus of this paper is to review approaches for modeling energy consumption and efficiency in 5 

buildings, and propose an assessment methodology of existing approaches, based on a qualitative 

comparison. The rest of the paper is structured as follows. Section 2 provides a classification of 

modeling approaches. Section 3 presents selected state-of-the-art implementations and results. 

Section 4 presents a discussion on the relative suitability of modeling approaches. Finally, Section 5 

summarizes the conclusions. 10 

2. Classification of Modeling Approaches 

Different modeling approaches appear in literature. They utilize input data to calculate or simulate 

energy consumption. Modeling approaches can vary significantly depending on the availability and 

details of the data. Different criteria have been defined for their classification, including the relative 

hierarchical position of data inputs as compared to the building sector, the details of the required 15 

information, and the energy data acquisition approach. A brief description of the main categories in 

each criterion and their strengths and weakness is given below. The limitations and open challenges 

of the existing approaches are also highlighted.  

2.1. Classification according to the relative hierarchical position of data inputs and building 
sector 20 

Two general categories may be discerned: top-down and bottom-up. Bottom-up models calculate the 

energy consumption of an individual building or groups of buildings, and then extrapolate to a 

regional or national scale. Top-down models utilize total building sector energy consumption 

estimation, and map energy consumption to building sector global characteristics. Macroeconomic 

indicators, such as Gross Domestic Product (GDP), price indices, and employment rates are used to 25 



perform regression analysis and obtain the energy consumption. A subsequent microscale approach 

may provide individual consumption. Following this approach, a classification of modeling 

techniques is presented in [4]. According to this, the top-down category includes econometric and 

technological models. Economic indexes, such as energy price, are the main input of the former, 

while technological models attribute energy consumption to broad characteristics of building stock. 5 

The main limitation of this approach is the primary need of massive data that in some cases is not 

available or supplied by building managers. Furthermore, sensitive information such as housing 

surveys may be needed, which is not always accessible. An existing gap in methodological resources 

to explain energy consumption of singular buildings or buildings under very specific energy use 

conditions is evident. Due to the fact that this approach does not distinguish energy consumption due 10 

to individual end-uses, it is not the most appropriate to identify massive energy consumers in 

buildings. In general, the approach output does not provide detailed information in order to design 

specific energy saving strategies in buildings oriented to reduce energy needs by end-use.  

Bottom-up models estimate separately the energy consumption of a building, and then extrapolate to  

regional or national level. Two different methodologies may be used: statistical or engineering. 15 

Statistical methods exploit established relations between end-uses and energy consumption. Relevant 

models can be applied to predict the energy consumption of representative buildings. Historical 

information is used to establish relations between building energy consumption and end-uses. 

Regression, conditional demand analysis, and neural networks are classified under statistical 

methods. Regression and conditional demand analysis use regression analysis to determine model 20 

coefficients, while the latter takes into account the existence of end-use appliances. Neural networks 

rely on simplified mathematical models seeking to minimize errors.  

Engineering methods estimate final energy consumption based on building characteristics and uses. 

Historical consumption data are used for the calibration of derived models ensuring compliance with 



the building Measuring and Verification guidelines [5]. Distribution, archetypes and samplings are 

classified under engineering methods. Distribution technique relies on the distribution and use of 

end-use appliances aggregating to end-use energy consumption, missing though end-use interactions. 

Archetypes classify buildings to representative building classes. Energy consumption is an estimate 

of modeled archetypes, allowing extrapolation to a larger scale. Sampling technique utilizes energy 5 

consumption data from a sample of buildings or energy consuming units. Providing a wide range of 

buildings and making the sample representative of the building stock can lead to wider energy 

consumption estimation. 

One of the main limitations of bottom-up models is the need for detailed data on energy 

consumption, frequently acquired by advanced metering systems. A considerable amount of 10 

historical data is also necessary, in order to have enough base data to train the predictive model. 

They also present a clear limitation with reference to the need for detailed building constructive 

information. When project documents are not available or accessible, such modeling techniques have 

to rely to a large extent on user/engineer experience and previous knowledge. Engineering models 

are not suitable for ancient or historical buildings, which were built in the absence of technical 15 

guides, making it almost impossible to know such constructive details about the material 

composition and the real status of external walls.  

The top-down modeling’s main strength is the need for aggregated data only, which is generally 

widely available. Top-down approaches rely on historical data and allow the forecast of energy 

consumption on a larger scale, without going into detail on the specific end-uses. Thus, the approach 20 

is quite suitable for the purpose of decision making on energy policies at regional, national or 

international level. Nevertheless, the reliance on historical data is a drawback, since there is no 

possibility to model discontinuous technological advances. Furthermore, when it comes to large 

buildings, the historical data acquisition can be a complex process, while in the case of modeling of 

several buildings there is a need for historical data harmonization. Finally, the lack of end-use details 25 



makes it difficult to identify key consuming areas in the case of modeling for energy retrofitting 

purposes.  

Meanwhile, the bottom-up methodology allows a closer approximation to consumer areas. Also, it is 

related to a range of parameters that affect final energy demand. However, it requires a great level of 

detailed data and may be subject to a number of difficulties in order to choose a sufficiently 5 

representative sample of the building portfolio. 

2.2. Classification according to the details of required information 

According to the details of their required information, modeling techniques can be classified as white 

box, black box, and grey box [6]. White box techniques, or otherwise called physical models, use 

sets of equations to solve building physical phenomena, such as heat transfer. A deep level of detail 10 

about building geometry and description of material properties is required, presenting one of the 

main limitations of these techniques. Yet, there is no need for model training data. White box 

methods are widely used to model the building thermal behavior and their results may be interpreted 

in physical terms. Another limitation of these techniques is the need for an expert to build the model 

and interpret results, a role not suitable for the common energy managers. Furthermore, resulting 15 

models have difficulties in extracting conclusions or being adapted to different buildings bearing 

different physical behaviors. Despite the high impact of building user behavior on final energy 

consumption, the use in these models is usually misleading.  

On the other hand, black box approaches do not require such detailed physical information on 

buildings. Such models utilize samples of training data, describing the behavior of specific systems. 20 

Black box approaches can predict energy consumption, when given a large amount of training data 

over an exhaustive period of time. Trends may be found across different buildings, yet data mining 

techniques are building-specific, leading to needs for new modeling, when a new building is treated. 

Difficulties exist with reference to the interpretation of results in physical terms. The main limitation 



of these models is the difficulty to adapt the model to individual buildings, given that their internal 

calculation engine is not accessible to users or it does not provide a friendly user interface.  

Grey box models combine physical and statistical approaches. A rough description of building 

geometry and parameters is supplemented by a smaller amount of training data over a short period of 

time. Grey box models use the mathematical structure of the physics-based white box models and 5 

measured data to estimate their parameters.  Results can be interpreted in physical terms; yet, this 

hybrid approach that covers two distinct scientific domains may be more difficult to grasp. Grey box 

models represent a balance between the good generalization capability of white box models and high 

accuracy of black box models. Compared to the black-box models, grey box models require more 

effort during the definition stage, having good generalization capabilities, whereas obtaining higher 10 

accuracy compared to the white-box models. 

2.2.1 White box or physical models 

Physical models are based on solving mathematical equations, derived from physical laws, such as 

the energy conservation law. Numerical software is usually used for this purpose. A wide range of 

mechanisms can be taken into account, such as conditioning systems, renewables, hydrothermal 15 

plants, and occupant behavior. There are three main calculations [6]: the Computational Fluid 

Dynamics method, the Zonal method, and the Nodal method.  

The Computational Fluid Dynamics (CFD) method is the most complete approach, since it is three-

dimensional. Each building zone is divided into cells; each cell is a control volume. Thus, quite 

complex building geometries can be studied. The method’s main drawback is its large computation 20 

time and model complexity. The application fields of this method are HVAC systems, indoor air 

quality, and pollutant distribution. 

The Zonal method represents a two-dimensional simplification of the CFD method. Each building 

zone is divided again into cells; each cell is the division of a room. It permits the determination of 



local state variables, such as temperature, concentration, pressure and air velocity in a large volume. 

Despite being simpler than the CFD method, it remains quite time-consuming, while requiring 

detailed descriptions of factors affecting indoor flow profiles. Application fields of this method 

include indoor thermal comfort, artificial and natural ventilation. 

The nodal method represents the simplest of the physical methods. Each building zone is regarded as 5 

a homogeneous cell, a node, with uniform distribution of physical quantities (e.g. ambient 

temperature) modeled as state variables. Equations are solved per node, offering a one-dimensional 

approach. The implementation is easier and the calculation times are reasonable. Yet, it is difficult to 

study large volume systems and it is impossible to address local effects like heat or source of 

pollutant. The application fields of this method are the determination and time evolution of total 10 

energy consumption, average room temperature and cooling and heating loads. 

2.2.2 Black/grey box or statistical models 

Statistical methods do not require any physical information about the building, yet, they rely on 

training data to extract system functions. Multiple regression, Artificial Neural Networks (ANN) and 

decision trees represent three statistical techniques used for predicting electrical energy consumption 15 

[7]. Regression models are commonly used due to the interpretability of model parameters and ease 

of use; yet they can only ascertain the relationship among the selected variables about the underlying 

causal mechanism, but there might be uncertainties, when a relevant variable is missing or badly 

measured. Neural networks are useful for energy prediction, when mathematical formulas and prior 

knowledge on the relationship among inputs and outputs are not known, yet they have difficulty in 20 

testing parameter significance. Despite solving this problem, decision tree models are complex, as 

they are susceptible to noise. 

When comparing the ANN-based model and the physical simulation model (based on the 

EnergyPlus® software for example), as predicting tools for energy consumption forecasting of a 



non-residential building, models based on physical principles typically offer the possibility to 

evaluate new strategies for reducing energy consumption, while ANN models appeared more limited 

in this sense [8]. 

The performance of grey-box models and black-box models focusing on residential heating, 

ventilation and air conditioning systems (HVAC) is compared in [9]. Grey box models consist of a 5 

combination of energy balance equations and parameter estimation based on sensor measurements of 

subsystem inputs and outputs. Black box models that were compared were based on Multiple-Input 

and Multiple-Output (MIMO) ANN, transfer function process, state-space and autoregressive 

exogenous model. ANN models performed best among compared models. 

Two aspects to consider with reference to statistical methods are data dimensionality and obtained 10 

model interpretability versus accuracy balance [6]. An important amount of data is required by 

statistical techniques. The preferable measurement resolution is the hour or days; the resolution of 

months is hardly useful. With reference to the number of variables, there is a tendency to use as 

many variables as possible, without considering the redundancy or correlation, since current machine 

learning techniques can deal with large numbers of variables and variable selection, so that 15 

processing can be applied. When it comes to the aspect of interpretability versus accuracy, 

techniques like Support Vector Machines (SVM) or ANN produce models that are not 

understandable by humans, thus being useful for behavior simulation, but not for reasoning 

explanation.  On the other hand, decision trees or rule sets (such as greedy or genetic algorithms) are 

easily understood and can help better analyze variables and relationship causalities. In between, 20 

regression or graphical models can be interpreted in a general way. On the one hand, applying 

different statistical techniques to the same problem and data can generate more accurate but more 

illegible models for prediction, while on the other hand, more easily interpretable but less accurate 

models for description. 



2.3. Classification according to the energy data acquisition approach 

The energy performance assessment method is based on a relevant energy quantification process, 

which in turn depends on an energy data acquisition approach. Energy quantification methods may 

be classified into three categories: calculation-based, measurement-based, and hybrid methods [10]. 

Many of the physical and statistical methods are categorized under the broader Calculation-based 5 

class of energy quantification methods [6] [10]. Measurement-based methods focus mainly on the 

Building Management System (BMS) / Sub-metering utilization and on energy disaggregation. 

Energy disaggregation can be achieved either by means of pattern recognition setups trained by 

available sub-metering information, or through approximations summing up to the total energy 

consumption known from the energy bills.  10 

Calculation-based methods are diverse with reference to their consideration of building and system 

dynamic effects.  They are classified into dynamic and steady-state methods. Dynamic methods 

capture building and system dynamics resulting in calculation complexity often implemented 

through detailed simulation. Dynamic simulations usually use a forward modeling approach, 

although dynamic inverse modeling is also reported (classified under hybrid methods). Typical input 15 

parameters include building, system and component descriptions along with weather conditions.  The 

details of the mathematical simulation algorithms are described in the simulation engine and involve 

thermal load calculations, based either on heat balance or weighting factor methods, various air-

handling and control systems simulation according to their schedules and calculation of final 

electricity and fuel use based on system component characteristics. Different simulation tools include 20 

e-Quest® (DOE-2), EnergyPlus® (DOE), ESP-r, and TRNSYS®.  

On the other hand, steady-state methods ignore or simplify dynamic effects thus decreasing 

complexity and achieving high computation speeds. They may adopt forward or inverse modeling 

approaches. The Simplified Building Energy Model (SBEM), adopted from the current Energy 



Performance Building Directive (EPBD) related standards such as the EN ISO-13790, is a typical 

steady-state forward model, which follows a quasi-steady state method for the monthly heating and 

cooling demands, taking into account dynamic effects through correlation factors called utilization 

factors. Modeling examples using an inverse modeling approach relate energy performance 

indicators to energy influential factors and can be applied either to a whole building level or to a 5 

HVAC system level. Thus, the whole building energy consumption can be regressed in various ways 

against influencing parameters. Examples of steady-state inverse models are included in the 

ASHRAE Inverse Modeling Toolkit [11]. Such models include constant or mean models, two-

parameter, three-parameter, four-parameter, five-parameter and multivariate models. Typical 

examples of other methods for building load calculation are the degree-day method, variable base 10 

degree-day method, BIN and modified BIN methods and the equivalent full load hour method. 

Measurement-based quantification is based on measured data that represent actual building energy 

consumption, ranging from energy bills to more detailed energy sub-metering and monitoring. 

Energy bills represent a source of high quality energy measurement data that need to be 

disaggregated into end-uses, in order to develop a better understanding on energy use. Different 15 

disaggregation methods have been proposed such as the bottom-up calculation method, bottom-up 

short-term measurement method, and top-down disaggregation algorithm. Different methods have 

been proposed to increase disaggregation accuracy and detail, investigating sources of inaccuracy 

and introducing metrics for performance quantification [12]. The monitoring-based methods provide 

such accuracy and detail through metering and monitoring systems and platforms. Examples of such 20 

approaches include end-use sub-metering, installing separate energy meters on relevant circuit 

branches, the Non-Intrusive Load Monitoring (NILM) method, which is a pattern recognition-based 

method capable of firstly determining end-use operating characteristics and secondly distributing 

monitored energy into end-uses, and Building Management System (BMS) based methods.   



Hybrid quantification methods are actually a combination of calculation-based methods and 

measurement-based methods, where measurements are used to reduce calculation discrepancies or 

identify model parameters. Usually, calibration procedures are based on hybrid methods using a 

building simulation program to tune input values, so that the program energy predictions follow 

closely energy data measurements and the Dynamic inverse modeling, being capable of capturing 5 

building dynamic effects, yet introducing a higher degree of complexity and needing measurements 

for model tuning. Typical examples of Dynamic inverse modeling include AutoRegressive Moving 

Average (ARMA) models, Fourier series models, ANN models and grey models. 

3. Combined Insight on Classification and Methodologies  

With the exception of a first level classification of top-down vs. bottom-up [4], all other surveys 10 

focus mainly on the bottom-up sub-tree. All recent works tend to agree on a second-level 

classification, although with partial overlaps, and the use of slightly different terminology for the 

same underlying principles:  physical / statistical / hybrid or white / black / grey, close to calculation 

/ measurement / hybrid, close to engineering / statistical / hybrid approaches; all aligned with the 

classical (forward) and data-driven (inverse) relevant classification [13], with their dynamic or 15 

steady-state variances. The large picture relationships among current classification approaches, 

having combined the dimensions of pure modelling methods and quantification methods appear in 

Fig.1. This presentation indicates on the one hand the clear sub-classes of distinct methodologies at 

the two ends of the spectrum and the lack of a similar analysis as we approach the middle point 

(hybrid methods). On the other hand, it clarifies the fact that the quantification methods cannot be 20 

assumed as orthogonal to or disconnected from the modeling approaches. For instance, there is 

evident dependency between a white-box model (i.e. physics) and its usage in a calculation method 

to quantify the energy consumption of an element. Another example is related to dependencies 

between a monitoring-based data collection method (e.g. a BMS) and the exploitation of 



measurement data in order to develop a statistical model (e.g. train an ANN or extract a regression 

function).  

The following sections shed light into representative approaches from the literature in order to: a) 

make clear what are the current state-of-the art and quality limits of the forward and inverse 5 

modeling methodologies, and b) point out the benefits of hybrid methods that combine elements 

from the far ends of the modeling and quantification spectrum limits, as well as demonstrate their 

heterogeneity and multi-disciplinarity, explaining why current classifications do not typically 

provide generic subclasses of them. Table 1 summarizes the revised studies grouped by modeling 

approach.  10 



 

 



 

 



 

 



 

 



 

 



3.1. White box / Physical / Forward models 

A comprehensive introduction to important physical properties, processes and respective 

improvements related to important building envelope components appears in [14], including energy-

efficient walls, fenestration technologies, advances in energy-efficient roofs and effects of thermal 

mass and phase change material on building air tightness, infiltration and cooling/heating loads and 5 

peak loads. The effects of microclimate around a building are discussed in [15], presenting a building 

energy performance quantitative analysis method, linking a microclimate model to the EnergyPlus® 

simulation program, in order to study effects of solar and long wave radiation, temperature, 

humidity, and wind speed. One limitation of  [15] is the assumption that the surface temperatures of 

the ground and the obstructions are the same as the outdoor air temperature, assuming that the 10 

obstruction materials have no impact on the microclimate model. In this context, the positive effect 

of passive energy-saving techniques, such as façades shading by trees, cannot be simulated entirely, 

minimising the effect of urban contexts on the simulation process.  

A methodology based on dynamic simulations analyzing the parameters that mostly affect the 

cooling energy performance of the building space is discussed in [16], showing the secondary role of 15 

thermal and solar parameters of the opaque surface in contrast to the glazed surface, as well as the 

weak influence of the office building envelope compared to the more significant influence of internal 

heat sources in contrast to residential buildings. The effects of thermal insulation and in particular the 

usage of Phase Change Materials (PCM) are studied in [17] through an experimental validation of a 

semi-empirical model for the simulation of the phase change process.  20 

The unbalanced study of summer versus winter performance indicators is the driving force behind 

the work [18], presenting results of comparison between actual and normalized energy performance 

of a cooling plant that equipped a Milan residential building. Real energy requirements, estimated via 

monitoring, were lower than those calculated with the Lombardy standard energy certification 

procedure, yet consistent with EnergyPlus® building simulation calculations. The real performance 25 



calculated for the winter case is consistent with the certification procedure calculation [19]. User 

behavior may lead to output differences. 

Similar results appear in [20], where the simple hourly dynamic calculation method of EN ISO 

13790 standard is applied using Matlab/Simulink® for an indicative building in 5 climate zones in 

Poland. The normative monthly method calculations show significant differences to EnergyPlus 5 

simulated values. The Dynamic method and steady-state monthly method of Italian standards are 

compared in [21],  showing dynamic method adequacy to deal with structure inertial properties, with 

the model being validated by a measurement campaign. A methodology for heating and cooling 

energy consumption estimations, simplifying dynamic simulation methods, is presented in [22], 

implemented in Excel and validated against actual hospital measurements, as well as against the 10 

EnergyPlus simulation and the EN ISO13790 implementation. 

Besides specialized civil, mechanical and electrical engineering sources, physical / forward models, 

at a building, system or plant level can be also found in literature of building control systems and 

algorithms, especially related to model predictive control, although most of them are better classified 

as grey models, as in [23] and [24]. 15 

As mentioned before, white box models require a thermal engineering expert to model and interpret 

their results. The study of dynamic driving forces, made by the reviewed works, clearly calls for a 

previous extended knowledge on dynamic heat transmission in buildings. The output of these models 

is not directly interpretable by building managers and the adaptation of the technique results to 

manageable information is done under the user criteria, overlooking sometimes interesting 20 

information for building managers. These models perform an exhaustive modeling of outdoor 

conditions, requiring detailed data (usually hourly data) on solar radiation, outdoor temperatures and 

wind velocity. The access to these databases is not always free for researchers and users. In addition, 



it is common to find data gaps for specific locations far from important cities and climate stations, 

making it difficult to model buildings in certain locations.     

3.2. Black box / Statistical / Inverse models 
 
3.2.1 Conventional Statistics / Regression-based models 5 

An improved method for the application of Cooling Degree Days (CDD), base temperature 

determination and CDD calculation technique including latent loads is presented in [25]. An 

approach to simplify and avoid detailed hourly simulations that uses predetermined coefficients to be 

applied to monthly energy consumption actual data from energy bills is presented in [26], showing 

errors within 10% [27]. 10 

Simplified regression models producing required data by dynamic simulation can overcome lack of 

adequate measurement data as in [28], utilizing different regression inputs for 16 French cities, with 

the deviation between predicted and simulated results being 5.1% with average error of 2%. The 

same methodology with different regression inputs is used in [29][30]. An extensive Monte Carlo 

simulation campaign is used in [30], with the regression equation showing a maximum error less 15 

than 5% to simulation outputs. The Monte Carlo simulation with the DOE-2 simulator generating 30 

thousand design parameter combinations and using 17 key building design variables is presented in 

[31], with the resulting statistical analysis of data including stepwise regression, linear regression 

equations and the most effective parameter sensitivity analysis. 

Estimation of heat and electricity load profiles based on regression analysis (heat load) and statistical 20 

analysis (electricity load) of district heat and electricity consumption measurements is discussed in 

[32]. Various regression analyses are performed in [33], suggesting the use of both the coefficient of 

determination and the root mean square error metrics for model quality comparison and assessment. 

A computationally efficient autoregressive model for thermal load prediction using different sets of 

coefficients is presented in [34], validating prediction accuracy with the EnergyPlus® simulator. 25 



The Principal Component Regression can solve multi-collinearity effects transforming collinear 

variables to orthogonal components [35]; the method is validated through infrared thermography 

showing superiority against statistical rating method. The prediction accuracy of cooling load in 

office buildings can be improved by simultaneous application of Principal Component Analysis of 

meteorological factors, cumulative effect of high temperatures and dynamic two step correction; the 5 

validation was done in Tianjin office buildings showing a prediction accuracy of a mean absolute 

relative error less than 8% [36]. 

Energy labeling data and primary energy consumption of Netherlands dwellings, with nearly 200k 

entries being used in a top-down approach [37][38] reveal different parameter influences of 

theoretical and actual gas and electricity consumptions. The PRInceton Scorekeeping Method 10 

(PRISM) is used to examine the energy-efficiency profile of individual single-family houses from 

Gainesville, Florida [39], by processing weather and usage data as inputs to an iterative regression 

approach computing energy efficiency parameters. Various regressions have been tried over building 

databases of Portfolio Manager/EnergyStar scoring applications; the  most notable and relevant ones 

were those addressing US and Canada hospital population [40–42].  15 

A model approach focusing on medical equipment and over 33,500 hours of measurement in the 

University Medical Centre of Hamburg shows that cumulative load predictions for an entire building 

are possible with an error of less than 6% [43]. The overall energy footprint of a CT scan is 

calculated in [44]. 

The stochastic nature of lighting energy use due to occupant behavior is analyzed in [45], based on 20 

relative measurements from 15 large Beijing and Hong Kong office buildings and a stochastic 

lighting energy use model is proposed to improve simulation accuracy. Similarly, [46] a stochastic 

model is proposed to be used in simulations of residential building cases.   



A specific usage of disaggregation techniques for energy bills has been studied in [47], proposing an 

optimization algorithm to establish best possible cooling energy balances and disaggregate energy 

consumption of different users. The algorithm has been validated through cooling season 

measurement data from two Hong Kong and Beijing buildings. 

Although allowing a detailed energy consumption comprehension, the statistics and regression-based 5 

techniques rely on a large amount of historical information, apart from the data needed to calibrate 

and validate the model. This sort of information may not be always available to users, both due to 

technical and managerial reasons. One of the main limitations is that energy consumption must be 

assigned beforehand to end-uses, lacking the chance of detecting marginal consumers [4]. 

Furthermore, these techniques require a former estimation of occupant behavior, taking into account 10 

the demonstrated variability in determining occupant behaviour in building energy modelling.  

Although these techniques perform accurate predictions and reduce error from 6% [43] to 2% [28], 

they are not the best option for detecting the reasons of consumption and designing energy saving 

measures, as the models are more focused in the prediction, rather than the identification of energy 

saving opportunities.  15 

The Regression analysis is a validated technique for explaining major consumers in buildings. 

However, residuals are usually not accurately explained, as no specific pattern is found [29].  

There is still a gap in knowledge about regression techniques for explaining residuals, those smalls 

energy consumers that, although may not be significant in amount, reflect non-considered 

phenomena in the buildings that hide behaviors or appliances beyond the building manager’s control. 20 

The accurate consideration and explanation of residuals is still an open research challenge in the 

evolution of these techniques.  

3.2.2 Machine Learning 



A large number of papers exploit the potential of Artificial Neural Networks (ANN) in energy 

consumption predictions. A multi-layer perceptron ANN, based on a backpropagation training 

algorithm for load prediction is presented in [48]. Various types of ANNs for the prediction of the 

heating energy consumption of a university campus are studied in [49], trained and tested on actual 

measurement data; usage of an ensemble of more than one types leads to better results. Different 5 

Matlab implemented neural network topologies for the prediction of outdoor air temperatures using 

data from four European cities are shown in [50]. A short-term (15 min) forecasting model  for a 

commercial building energy usage based on an ANN with Bayesian regularization is presented in 

[51].  

An Adaptive Neural Fuzzy Inference System (ANFIS) is proposed for residential lighting load 10 

prediction in [52], showing better correlation and root mean square error to regression models on 

metered data. The ANN and Case-Based Reasoning (CBR) techniques were used for an hourly 

electricity consumption prediction in a Canadian facility in [53], with ANN models outperforming 

CBR models. Simplified CBR (S-CBR) was applied on the energy performance of a Seoul school 

building and validated in [54]. A comparison of the application of 7 machine learning techniques to 15 

data from the residential and commercial building sector is presented in [55], with ANN-based 

methods performing better in the commercial building and the Least Square Support Vector 

Machines outperforming ANNs in the residential buildings. 

Besides the ANNs, other approaches receive attention in literature. A decision tree-based predictive 

model is presented in [56], facilitating the easy extraction of information, accurately predicting 20 

building energy demand levels (92%) and providing a combination of factors and thresholds, leading 

to high building energy performances. A hybrid Genetic Algorithm-Adaptive Network based Fuzzy 

Inference System (GA-ANFIS) is presented in [57], providing better prediction accuracy to ANNs. A 

random forest-based statistical machine learning framework is used in [58] to estimate heating and 

cooling load, validated through simulation of 768 residential buildings. The same dataset is used in 25 



[59] for residential building load estimation, via a genetic programming-based framework combined 

with a local search method and linear scaling. 

Similar to regression techniques, a large amount of historical data is necessary for training and 

predicting energy consumption. Another limitation is the time-consuming calculations and specific 

software tools user-expertise. One disadvantage observed in the reviewed works is the need for pre-5 

processing a large amount of data in order to decide the number of networks before building the 

model [48]  or identify significant variables and outliers [49]. Like regression models, machine 

learning techniques do not give any explanation to outliers as residual data is removed in the pre-

processing analysis [49]. 

Such techniques could predict energy consumption more accurately. However, they face the 10 

challenge of a deeper explanation of existing phenomena, as they do not calculate dynamic heat 

transfer phenomena. In fact, from the user point of view, it could be claimed that machine learning 

techniques represent an opposite approach to white box and physical techniques.  

Machine learning developers also face the problem of easy generalization to different buildings 

without requiring significant change of the model or by endangering the precision of predictions. 15 

3.3. Grey box / Hybrid models 

A recent review of approaches to model calibration is presented in [60], assessing various analytical 

and mathematical/statistical tools. Yet, no consensus exists on standard calibration procedures and 

methods to be generally used on a variety of buildings. 

A systematic evidence-based methodology for calibration of simulation models is presented in [61–20 

64]. Parameter values reference the source of information used to make changes to the initial model, 

using version control software to store the records of the calibration process. A demonstration case 

calibrating an Ireland Intel campus four-floor office building is presented in [62], with the results 

showing excellent correlation with measured HVAC consumption data. The methodology is 



combined with statistical Monte Carlo-based optimization techniques in [63][64], applied in a 

naturally ventilated library building at the National University of Ireland, Galway.  

A detailed example of calibration flow for an EnergyPlus® simulation of a building with underfloor 

heating system and natural ventilation is shown in [65], taking into account heat pump, energy 

consumption and zone temperature measurements. The possibility of poor calibrated models based 5 

on only one measured parameter is shown in [66], showcased for a medieval building EnergyPlus 

model. A similar example appears in [67], where a set of two environmental sensors and a weather 

station are used for annual space air temperature predictions. 

A hybrid physical–statistical approach is described in [68], where stochastic parameters are 

introduced into the physical model and the statistical time series model is formulated to reflect model 10 

uncertainties, while a methodology based on Bayesian calibration of the normative EN ISO 13790 

energy models is presented in [69], focusing on model parameter uncertainty quantification to 

generate probabilistic predictions of retrofit performances. The uncertainty is also quantified in [70] 

by means of stochastic differential equations applied to a general heat balance for an arbitrary 

number of loads and zones in a building, to determine the dynamic thermal response under random 15 

conditions. Uncertainty in energy consumption due to actual weather and building operational 

practices is investigated in [71], using simulation-based analysis of a medium size office building 

and Monte Carlo sampling of possible parameter combinations. 

The need for more accurate occupant behavior models is among the results of [72], showing 

differences of 50% in average between design time predicted energy use of a low-energy building in 20 

Sweden, obtained through dynamic simulation, and actual measurements after tenants moved in. 

State-of-the-art occupant-related data collection and monitoring, modeling approaches, model 

evaluation, and model implementation into simulation tools is presented in [73].  



An indirect data mining approach to learn occupant passive behavior and create the occupancy 

schedules of the EnergyPlus dynamic simulator is also presented in [74]. A similar data mining 

framework in presented in [75], where a learning process is used to extrapolate office occupancy 

patterns and working user profiles from big data streams in order to feed typical building energy 

modeling tools.  5 

Accurate occupant behavior models deal with difficulties in the acquisition of information from 

building occupants. These models rely on their responses for a first modelling stage but need an 

exhaustive fitting once the first results are obtained. The step of occupant interviews and response 

analysis is also time-consuming. In addition, occupants are not always accessible for interview (for 

example in medical buildings).  10 

Visual-based approaches such as the Energy Performance Augmented Reality are considered as 

powerful tools to know the real state of behavior of the building. The authors of [76] proposed a 

model approach that combines digital and thermal imagery with fluid dynamics models. The 

approach proposed consisted of three parts: 1) thermal data and digital building data collection with a 

thermal camera; 2) building energy performance simulation through a computational fluid dynamics 15 

analysis; 3) both models are superimposed in a common 3D environment, obtaining reasonable 

accuracy. In [77] this model was also used to visualize deviations between buildings’ state and 

simulated energy performances and visualize the potential performance problems in the Energy 

Performance Augmented Reality environment. The model identified thermal bridges in the tested 

rooms.  20 

In [78] the authors used a Graphic Processing Unit structured by Motion and Multi-View Stereo 

algorithms to reconstruct in 3D the geometrical conditions of the building that was studied. Then, 

this model was superimposed to a 3D thermal point model. The model was used to represent six 

interior and exterior spaces, concluding that thermal imagery is a feasible and relatively quick 



method for analysing the actual energy performance of existing buildings. In [79] this method was 

used to conduct a cost-benefit analysis of different retrofit alternatives of two existing buildings. The 

results demonstrated the reliability and accuracy of the method in estimating the return on investment 

from retrofitting thermal performance problems. 

Visual models containing thermal values facilitate the recognition of temperature distribution and the 5 

detection of building performance failures. These methods facilitate the detection of building 

performance deviations and identify disparities between building information and real conditions. 

Usually, these techniques are combined with more detailed approaches in order to extract 

information from the visual analysis.  

Vision based methods have potential in reducing time and effort in collecting data and high level of 10 

accuracy in detecting thermal bridges and defaults in the building. These methods present an 

adequate balance between effort and quality of the analysis that they perform, and they also present a 

great advantage by facilitating the visualization of the data and the immediacy of their analysis. To 

the contrary of other approaches, visual-based methods do not require detailed previous information 

of the building in order to provide immediate results without the need of exhaustive data analysis. 15 

These methods accurately examine the exterior energy performance of the building in real time. 

However, they2 are not easily applicable to interior performance and generally they need to be 

supported by another approach.  

Compared with the approaches cited in previous sections, these models have the limitation that are 

not applicable in all the project’s phases, but only in the operation phase of existing buildings. Some 20 

aspects still need to be improved: for example, achieving more accuracy and reliability in the 

identification of the threshold for performance detection under different external and internal 

conditions.  These approaches require an exhaustive on-site inspection of the building, and some 



drawbacks could come across during this process, such as difficulties accessing some rooms or 

conflict with the performed activities (for example, in educative buildings or medical centers).  

 
4. Discussion on the Suitability of Approaches 

Some authors [6][80] provide qualitative comparison frameworks for the identified methods on the 5 

axis of the application and use-case on the level of building details or on the amount of measurement 

data needed, on the computation time and on the level of insight to the underlying physical processes 

revealed. Quantitative comparisons exist in the literature too, but they are inherently less generic, as 

they must compare a restricted set of explicit method instances (i.e. explicit model implementations) 

[7–9]. 10 

In this work, we follow a horizontal, selective but highly generic view. We sort out three of the 

presented approaches: bill-based methods, monitoring-based methods and dynamic simulations 

offering a comparison against a set of specific parameters as shown in Table 2 and Fig. 2. 

The selected approaches are characterized based on the following features: 

• Simplicity: inversely relates to development effort, the total work done to apply the approach, the 15 

required information volume, specialized skills of staff, need of an interdisciplinary team, etc. 

Lower values of these concepts lead to a higher simplicity (lower complexity) which is preferable, 

as it has a higher guarantee of being successfully and on time applied. 

• Completeness: is the quality of explaining the total reality involved in an energy consumption 

system. This property depends largely on the degree of specificity reached and can vary 20 

significantly among different methods of the same approach.  

• Generality: stands for the quality of the obtained results, being general enough as to be useful for a 

standardized comparison among different buildings. Higher generality is preferable as the effort to 



extrapolate conclusions is lower and easiness to introduce the approach in new buildings is 

greater. 

• Usefulness: relates to the utility of the derived knowledge for making decisions on energy 

efficiency strategies. Models that discover complex and interesting variable relationships and get 

further insight are preferable, since they represent an advance in the field. The level of detail of 5 

the results of the models compared in this article is variable. This parameter evaluates the 

exploitation of the results and predictions obtained by the model for its use in a later analysis, 

especially its applicability for the decision-making in the prioritization of economic investments 

in order to reduce the energy demand of the studied building. This feature also values the utility of 

results of each model for the stakeholders in investments for energy efficiency in buildings.  10 

• Innovation: represents the space to provide original results by using cutting edge techniques. 

Although the field of energy modeling has been highly explored and refined in recent years, as it 

has been pointed out in the critical analysis of the limitations of each of the approaches compared, 

there are still open research challenges that need to be addressed in the future. This feature 

evaluates the degree of flexibility that each approach presents in order to improve itself and the 15 

introduction of new tools to continue the innovation in its field of application. 

Table 2 summarizes the level of achievement of the five features above explained by each model 

compared. Three levels of achievement are identified: low, medium and high.  

This tabulation system allows to clearly differentiate the strengths and weaknesses of each of the 

approaches compared. The evaluation has been made based on: the literature review made in the 20 

previous sections, the critical analysis performed during this literature review, the study of the depth 

of detail of the works reviewed. A low level means that the feature is not an identifiable or achieved 

characteristic by the model. A medium level indicates that the model presents this feature, although 



with deficiencies or shows obvious improvement. Finally, a high level means that this feature is 

clearly identifiable at a satisfactory level during the use of the model and the results obtained. 

 

From table 2, it can be seen that the bill-based methods reach a high level of simplicity and 

generality, while an intermediate level in completeness is reported. However, it shows a low score on 5 

both usefulness and innovation. Bill-based methods are more easily applicable and, therefore, more 

general; nonetheless, they do not go beyond the state-of-the-art, so the innovation degree is poor.  

The level of simplicity of monitoring-based methods is low, as it can be hard to implement 

(depending on the measurement they may require sensors or specific information) and may be 

difficult to extrapolate to other environments. However, margin to innovate is very good and the 10 

obtained knowledge very useful for decision-making, reaching a high score on both usefulness and 

innovation. Finally, dynamic simulations need an important development effort and are hardly 

general; however, they provide the most detailed description of energy use distribution and are useful 

for energy retrofitting in buildings, showing a medium score in general. Finally, dynamic simulations 

reach high levels of completeness, as they allow a detailed description of the energy consumption of 15 

the building. Dynamic simulations also reach high levels in usefulness, as the results obtained are 

effective and applicable in decision-making regarding economic investment in energy retrofit of 

buildings. They have a medium score in innovation (halfway between detailed monitoring-based 

methods and generalists bill-based methods). Regarding simplicity, they are characterized by a low 

score given that specific knowledge by the user is necessary prior to perform a simulation. They also 20 

obtain a low score in general, since these models require specific details of the building (especially 



regarding construction materials and occupation profiles) and their exportation to other buildings is 

not direct and requires a detailed change of parameters.   

The advantages of the three approaches are fairly matched, so choosing the best method is a matter 

of importance of the aforementioned properties. To guarantee minimal and general results, bill-based 

methods seem the best option; in order to innovate, monitoring-based methods are recommended; for 5 

obtaining the deepest knowledge, the dynamic system method is preferable. 

With a level of intermediate effort in data collection and by attributing much of the quality of the 

taken information to the user instead of to the existence of monitoring systems (as in machine 

learning), hybrid models allow obtaining predictions with low error rates. In addition, the approach is 

useful for identifying opportunities for energy saving. 10 

Figure 2 compares these approaches according to the five proposed criteria. 

A known barrier among the open research challenges in delivering optimal hybrid models is the data 

collection process. Machine learning and calibrated methods need detailed metered information from 

the building, usually collected by advanced meters, whose cost is still not feasible for most of the 15 



buildings or housing owners. In order to achieve a higher market penetration of such meters, the 

challenge of their cost reduction has to be met.  Furthermore, model predictions are necessary to be 

compared with real energy bills. Researchers usually find barriers in accessing such information, 

usually stored by energy companies. Access to larger portions of information on energy consumption 

of districts or cities would provide a starting point to implement accurate predictive models at high 5 

scale. This would in turn help the identification of big consumers and the implementation of specific 

energy saving measures at district level. This is also associated to a challenge in the legal dimension, 

in order to make such data available to the research community, without including sensitive 

information.  

5. Concluding Remarks 10 

A revision of existing approaches for modeling energy consumption and efficiency in buildings has 

been conducted.  

The main features that characterize the methodologies are identified. A performance analysis of the 

methodologies is conducted, and a rating system is proposed. According to this rating, to guarantee 

minimal and general results, bill-based methods are the best option. Measurement-based methods 15 

present higher degree of innovation, whereas to get the deepest knowledge, dynamic system 

modeling is the best option. 

This assessment methodology facilitates the comparison of different approaches when energy 

modeling in buildings is concerned. The selection of the most appropriate method is relevant to the 

individual expectations and needs. 20 

A hybridization of the analyzed approaches could offer a more complete solution, by taking profit of 

their main advantages and mitigating their individual drawbacks. In this context, bill-based methods 

could be utilized to set dynamic models that can be subsequently optimized by measurement-based 

methods. 
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