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INTRODUCTION

Preserving confidentiality during communica-
tions is always considered a hard task; encryp-
tion is one solution for such a problem. The 
simplest, yet proved (Shannon, 1949) secure, 
encryption method is one-time pad (Vernam, 
1926); which uses symmetric keys between 
communicating parties. The main two problems 
of one-time-pad is i) the need to always generate 
new keys, and ii) the need to securely distribute 
such keys between the communicating parties; 
while the first problem can be solved using any 
real random number generator, the second is 
harder to solve and known as Key Distribution 
problem (KD).

Diffie and Hellman (1976) were the first to 
solve the (KD) problem, utilizing a mathemati-
cal problem known as discreet log (DL) (Mene-
zes, Oorschot, & Vanstone, 1997). Based on DL 
problem and utilizing another mathematical 
problem known as factorization problem (FP) 
Rivest, Shamir, and Adleman (1978) introduced 
the asymmetric encryption technique RSA using 
two correlated keys; Multiple methods were 
introduced to generated such keys see FIM 
(Abu-Ayyash & Jabbar, 2003).

Another recent solution for key distribution 
was achieved by utilizing a well-known scien-
tific problem related to quantum physics known 
as uncertainty (Price, Chissick, & Heisenberg, 
1977); were two co-related properties of a 
quantum particle cannot be measured with high 
precision at the same time, Wiesner (1983) 
was the first to suggest using it, followed by 
Bennett and Brassard (1984); Since then, lots 
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of quantum key distribution (QKD) protocols 
were proposed (Nung & Kuo, 2002; Bennett, 
1992; Ekert, 1991; Kak, 2006; Kanamori, Yoo, 
& Al-Shurman, 2005; Bostrom & Felbinger, 
2002; Lucamarini & Mancini, 2004; Wang, Koh, 
& Han, 1997; Barrett, Hardy, & Adrian, 2005).

Some well-known protocols, in addition to 
implementations, suffers from big losses com-
paring the size of the final key to the number 
of quantum states (particles) used. The loss 
is due to the protocol implementation steps, 
in addition to the characteristics and imple-
mentations of physical devices and channels 
used (Abu-ayyash & Ajlouni, 2008; Bennett 
& Brassard, 1992).

Researchers have already tried to solve 
this problem in a multi-dimensional space: 
first by enhancing the physical devices, chan-
nels, parameters and implementations (Chou, 
Polyakov, Kuzmich, & Kimble, 2004; Santori 
et al, 2004; Tisa, Tosi, & Zappa, 2007); sec-
ond by increasing the information content in 
the quantum particle states used (Groblacher, 
Jennewein, Vaziri, Weihs, & Zeilinger, 2005; 
Kuang & Zhoul, 2004); third by using other 
quantum phenomena such as EPR (Einstein, 
Pololsky, & Rosen, 1935; Ekert, 1991; Kuang 
& Zhoul, 2004); fourth by changing or enhanc-
ing the way the protocol works (Abu-ayyash & 
Ajlouni, 2008; Nung & Kuo, 2002; Kak, 2006; 
Kanamori, Yoo, & Al-Shurman, 2005; Barrett, 
Hardy, & Adrian, 2005).

For example Ching and Chen (Nung & Kuo, 
2002) enhanced the gain of Bennett protocol 
B92 (Bennett, 1992) by using another stage back 
from Bob to Alice; where he sends back a new 
qubits using the same bases he used initially at 
the times where he fails to measure a qubit sent 
by Alice, this increases the key size by around 
3.6% on the expense of more qubits. Another 
example, RUQB, uses a different technique for 
improving the gain, based on discovering the 
relationship among the original random bits that 
were used during the protocol to aid in enhanc-
ing the gain (by 5.5% for BB84) (Bennett & 
Brassard, 1984). In this research it is intended 
to investigate permuting RUQB sets to increase 

gain, and study the effect of this permutation 
on the security of this method.

First, the QKD idea is presented along with 
RUQB; then we discuss the studied method of 
P-RUQB, afterwards we discuss gain analysis, 
followed by a discussion on security aspect of 
P-RUQB and then we conclude with the results.

QUANTUM KEY 
DISTRIBUTION AND RUQB

The basic element of quantum key distribution 
will be illustrated using the original four - state 
QKD protocol developed by Bennett and 
Brassard in 1984 known as “BB84” protocol. 
Assume that the individual photons, precisely 
the polarization states of photons, serve as the 
quantum bits for the protocol. The protocol 
starts by one of the two parties transmitting 
a sequence of photons to the other party. The 
parties publicly agree to make use of the two 
distinct polarization bases which are chosen to 
be maximally non-orthogonal. In a completely 
random order, a sequence of photons are pre-
pared in states of definite polarization in one 
or other of the two chosen bases and transmit-
ted by one of the parties to the other through 
a channel that preserves the polarization. The 
photons are measured by the receiver in one or 
the other of the agreed upon bases, again chosen 
in a completely random order. The choices of 
bases made by the transmitter and receiver thus 
comprise two independent random sequences. 
Since they are independent random sequences of 
binary numbers, about half of the basis choices 
will be the same and are called the “compatible” 
bases, and the other half will be different and 
are called the “incompatible” bases. The two 
parties compare publicly, making use for this 
purpose of a classical communication channel, 
the two independent random sets of polariza-
tion bases that were used, without revealing the 
polarization states that were observed.

Cryptographic protocols, in the absence of 
real random bit generator RBG, uses pseudo-
random bit generator (PRBG). for that, it is 
required that the PRBG used for cryptography 
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passes what is known to be the next bit test in 
which it is unlikely to predict the next bit the 
PRBG generates given the previous sequence 
that were generated, at this point the PRBG that 
passes this test is classified as “cryptographi-
cally secure” pseudo-random bit generator 
CSPRBG (Menezes, Oorschot, & Vanstone, 
1997); for that, and for maximum security, 
QKD protocols uses RBG based on physical 
phenomena like radiation.

RUQB is based on the idea that, in-spite 
that random bits are generated in random, there 
are some relationships between the random bits 
generated, those relationships are approximately 
different for each bit; RUQB technique seeks to 
find a relationship, based on dividing the original 
random sequence of bits into subsets, P-RUQB 
will further seeks to find other relationships by 
permuting the subsets.

PERMUTED RUQB (P-RUQB)

Most QKD algorithms start by using random 
(not a pseudo-random) numbers generated by 
any physical phenomena, a lot of such random 
numbers are used for testing the presence of 
an eavesdropper which reduces the gain of 
the protocol. P-RUQB is based on the idea of 
permuting the subsets that was used by RUQB 
for discovering the relationship of the random 
bits, the actual recovery process will concentrate 
on recovering such random numbers by making 
use of the agreed bits from the random number 
list. The following will emphasize P-RUQB:

1. Alice generate a list of n  random bits,

 = = ∈−
−{ , , , }, ,a a a n l Z

n
l

0 1 1
12 where .

2.	 Alice encodes the bits into quantum states 
to have a list � �= 〉 〉 〉−{| ,| , ,| }q q q

n0 1 1
 

and sends the quantum states to Bob.

3.	 Bob measures each quantum state received 
based on any QKD method to obtain the 
list = −{ , , , }b b b

n0 1 1
 .

4. 	 Alice and Bob start a sifting process based 
on the same QKD method result in a list 
  (a list of agreed on locations of bits).

5. 	 Alice and Bob directly compare | |
2

 bits 

to estimate the number of errors e
T

 and 

its percentage given by  =
2e
T

| |
, if the 

percentage is more than an agreed on 
threshold t  they abort the protocol and 
start again, if not, they start an error cor-
rection process to eliminate the list  
  of bits to obtain the init ial 
key string K A F E

I
A

i i
a a i= ∀ ∈ ∈ −{ | , } , 

K B F E�
I
B

i i
b b i= ∀ ∈ ∈ −{ | , } ,  no te  tha t 

 A
I

B
I

=  and | | | | 
I
A

I
B n= < .

6. 	 P-RUQB: Alice construct multiple lists L
p

 
and send them to Bob as follows:
a. 	 Let l  denotes the number of bits 

needed to represent any location of 
the originally (Alice) generated ran-
dom bits. i.e., l log n= 


 +2

1 .
b. 	 LetP  denote the set of permutations 

that Alice and Bob agreed on, such 
that  p P∈ , 0 ≤ ≤p l ! .

c. 	 for each permutation number p  Alice 
do the following:
i.	 Construct multiple lists of bits of 

size l  from the initial key bits

S K
K

ip
A

j j I
A

I
A

c c

i j i l i l

= ∀ ∈

≤ ≤ + − ≤ ≤ −

{ | ,

}, | |1 0 .	

ii. 	 Let 
ip
A  denote the permutation of 

the set �S
ip
A , using permutation 

number p .
iii.	 construct a temporary set of results 

 
Tp
A

i i I
Ar l i i l= ≤ ≤ −{( , , )}, | |0 ,

where r
i
 is the result of XORing 

the elements of the set 
ip
A , l

i
 is 

the binary location calculated 
from set 

ip
A  as shown in Equation 

(1) and (2) respectively:
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r c c
i

j l
j j ip

A= ⊕ ∈
≤ ≤ −0 1

,  	 (1)

l c n c
i

j l
j
j

j ip
A= ∈

≤ ≤ −
∑

0 1

2 mod ,  	 (2)

iv.	 Construct indexing listsL
p

 for 
each permutation p ,

L i r l i a

r l a l L w p
p i i Tp

A
l

i i l i w

i

i

= ∀ ∈
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{ | ( , , ) ,

, , , }

K
F E A ,	

note that the location l
i
 should 

not be within any previous lists.
d.	 Alice key is A

i
k= { },  such that for 

all L
p

k

a a A i

r r l i i L

p p l
i

i i

i i i Tp
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=

∀ ∈ ∈ −

∀ ∈ ∀ ∈
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,
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K
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


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
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(3)

7. 	 Once Bob receives all lists L
p

 he will 
calculate the following:
a. 	 l log n= 


 +2

1 .
b. 	 for each permutation number p  used, 

0 ≤ ≤p l !  do the following:-

i. 
S K
ip
B

j j I
B

p

c c

i j i l i L

= ∀ ∈
≤ ≤ + − ∀ ∈

{ | ,

},1 .

ii. 	 
ip
B a permutation of the set 

ip
B , 

using permutation number p .

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B

i i p
r l i i L= ∀ ∈{( , , )},  where

r c c
i
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i
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j
j

j ip
B= ∈
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∑
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c. 	 Bob key is B
i
k= { },  such that for 

all L
p

k

b b i

r r l i i L

l p p l
i

i i

i i i Tp
B
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(6)

Based on step (6) points (a),(b) and (c) 
above, the complexity of this algorithm is re-
lated to three internal loops, they are the num-
ber of permutations used p , the size of each 
set which is l log n= 


 +2

1  and the number of 

bits used from the key K F
I
A =

| |

2
, i.e., 

O
p F logn

(
| |

)
2

.

Gain Analysis

To calculate the gain of P-RUQB it is needed 
to have a deeper analysis of the gain of RUQB. 
The new analysis is based on finding the prob-
ability of having single gain after performing 
each iteration, and then extending the analysis 
for P-RUQB.

RUQB Analysis

The analysis of gain G  done by Abu-ayyash 
and Ajlouni (2008) for RUQB was shown to 
be calculated as

G
F

E l P P P
clu cv lr

= − −










−
| |

| | ( )
2

1 	

(7)

where | |F  the size of the sifted key {for BB84 

it is approximately n
2

 and B92 is approxi-

mately n
4

 }, | |E  is the expected number of 

bits to be eliminated if there is an error, in the 
best case the algorithm eliminates only the er-
rors, but this is not the case (it depends on the 
algorithm used to eliminate those errors, Shan-
non estimated the minimum limit for the num-
ber of bits that need to be communicated to 
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eliminate errors based on the probability of 
error for each transmitted bit   to be nh( ) , 
some algorithms needs more ynh( ) , where 
y ≥ 1 , see Gilbert and Hamrick (2000), 
l log n= 


 +2

1 , P
clu

 the probability that the 
calculated location of RUQB will not be used 
within the initial key {for BB84 it is approxi-

mately 1

2
 and for B92 3

4
}, P

cv
 probability of 

correct value found at unused location and it is 

approximately 1
2

, P
lr

 is the probability of re-

dundant locations which is a random number 
generator (RNG) dependent.

The idea of RUQB starts with no gain (the 
original QKD key length), then after the first 
iteration, the gain is either increased by 1 or 
not with probability p

0 1→ and p
0 0→  respec-

tively, such probabilities is based on the random 
result of the interpretation on the sets used, with 
respect to the percentage of the length of the 
original key to the total number of qubits used. 
From Figure 1, a more comprehensive analysis 
for the probability to have gain x  after m  it-
erations, where P x

m
( ) is the sum of all the 

products of the paths from 0 (top most node) 
to the node x  at level (iteration) m :

P x p

p

m
i

x
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y x

y m x
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k k

y
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k
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( )
=
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∏

∑ ∏

=

0
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1

0 0

0



















	 (8)

Where p
i i→ +( )1

 is the probability for having 
a gain value of ( )i +1  after single iteration 
when the previous gain was i, p

k k→  is the prob-
ability of no change of gain after single iteration.

A simplified recursive version of Equation 
(8) can be defined as:

P x P x p

P x p
m m x x

x xm

( ) ( )

( )
( )

= ( )
+ −( )

− →

− →−

1

11
1 	 (9)

Where

p p
i i i i→ → += −( )1

1
	 (10)

and

p p iD
i i→ + →= −

1 0 1
( ) 	 (11)

Figure 1. Probability diagram for the gain value of � ,�, ,0 1… m  after iterating m  times where 
pi j→ is the probability of having gain j  if the previous gain was i
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Where D  is the decrease in probability 
due to increase of gain by 1 ; typically equal 

to 1

n
).

For example the probability of having no 
gain 0  after m  iterations is

� ( ) ( )...( ) ( ) (P p p p p
m

m times

m0 1
0 0 0 0 0 0 0

= = = −→ → →

 � ������� �������
→→1

)m

Hence, the probability of having no gain 
after one iteration is � ( )P p p0 1

1 0 0 0 1
= = −→ →

.
And the probability of having the maximum 

gain m  after m  iterations is

P m p p p p
m m m

i

m

i i
( ) ( )( )...( ( ).)

( ) ( )
= =→ → − →

=

−

→ +∏0 1 1 2 1
0

1

1

Hence, the probability of having one gain 
after one iteration is � ( )P p1

1 0 1
= → .

The expected gain after m  iterations is

E iP i
i

m

m
=

=
∑

0

( ) 	 (12)

����=
−



















→
=

− − −

∑p
n

m

j
j

m m j

0 1
0

1 1
1

2
	 (13)

���� ( )= − −








→2 1 1

1

20 1
np

n
m 	 (14)

Note that the expected gain depends on 
three factors;  n  number of all qubits used by 
original QKD protocol, p

0 1→  probability to 
have a gain of one bit after one iteration when 
previously no gain was found (it is also a QKD 
protocol dependent) and m  the number of it-
erations used by RUQB protocol.

Note that m  dependents on n  the total 
number of original random bits, the size of the 

final sifted key 
F

2
 after eliminating more bits 

due to errors found within the key 
F h ( )

2
, 

list size l n= +log
2

1 and I
e

 information 
gained by the eavesdropper, let’s sum all that 
in a function divided by n  and call it:

f
F

n

F h

n

n

n n

I

n
e


( ) = −

( )
− − −











2 2

12
log

	

(15)

�
| |
[ ( )]

log
= − − − −










F

n
h

n

n n

I

n
e

2
1

12 	

(16)

Where h( )  is the Shannon limit, I
e

 is the 
Information gained by an eavesdropper, so 
replacing m  maximum iterations by nf ( ) the 
expected gain is

E np
n
nf= − −









→2 1 1

1

20 1
( ) ( ) 	 (17)

����
( )

= −










→

−
2 1

0 1
2np e
f 

	 (18)

For BB84 and RUQB

p
0 1

1

4→ = ,	

f
h n

n n
( )

( ) log



= − − −












1

4 4

12 ,	

where h( )  is Shannon limit. In general, for 
no errors and large values of n , Equation (18) 
results in

E
n

e
RUQB

= −











−

2
1

1

8 	 (19)

Which mean that the expected gain for 
BB84 using RUQB for large values of n  is
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E n
RUQB

� . 0 0588 	 (20)

In Table 1 of Abu-ayyash and Ajlouni 
(2008) no errors where assumed, and n  was 
not a large value, therefore by using Equation 
(17) and solving for b  (gain percentage)

E nb
n

nBB

n
n

84
4

1

2
1 1

1

2
= = − −












− −
� ( )

log
	

(21)
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	 (22)

�
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−
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1
1

1
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1

8

1

	 (23)

b ≈ 0 0564. 	 (24)

This result is approximately similar to the 
results obtained by Abu-ayyash and Ajlouni 
(2008).

P-RUQB Analysis

In Equation (14) replacing m  by  xnf ( ) , where 
x  is a multiplication factor that represents 
number of permutations to be used, will result 
in

E np e
xf

= −










→

−
2 1

0 1
2

( )

	 (25)

From Equation (25), as the multiplication 
factor x  increase the gain E  increase, i.e.:

lim
( )

x

xf

np e np
→∞ →

−

→−











=2 1 2

0 1
2

0 1



	 (26)

Table 1. Average of 10 runs for each x  without errors, n = 212  

x
G
¯

G%
¯ E E% r x

G
¯

G%
¯ E E% r

1 236.5 5.70 240 5.87 0.02896 16 1738.8 42.45 1770 43.23 0.01804

2 450.9 11.00 453 11.06 0.00542 17 1765.6 43.10 1803 44.02 0.0209

3 615.7 15.03 640 15.63 0.03839 18 1785.0 43.57 1832 44.73 0.02593

4 797.7 19.47 805 19.67 0.01017 19 1814.2 44.29 1857 45.34 0.02316

5 916.1 22.36 951 23.23 0.03745 20 1835.6 44.81 1879 45.89 0.02353

6 1056.4 25.79 1080 26.38 0.02237 21 1843.9 45.01 1899 46.37 0.02933

7 1158.3 28.27 1194 29.15 0.03019 22 1877.3 45.83 1917 46.80 0.02073

8 1249.7 30.51 1294 31.61 0.0348 23 1898.5 46.35 1932 47.17 0.01738

9 1340.1 32.71 1383 33.76 0.0311 24 1881.8 45.94 1946 47.75 0.03791

10 1431.2 34.94 1461 35.67 0.02047 25 1920.7 46.89 1958 47.80 0.01904

11 1492.0 36.42 1530 37.36 0.02516 26 1922.1 46.92 1968 48.06 0.02372

12 1547.9 37.79 1591 38.84 0.02703 27 1957.2 47.78 1977 48.28 0.01036

13 1609.6 39.29 1644 40.15 0.02142 28 1947.6 47.54 1986 48.49 0.01959

14 1644.2 40.14 1692 41.31 0.02832 29 1969.3 48.07 1993 48.66 0.01212

15 1686.9 41.18 1733 42.33 0.02717 30 1975.0 48.23 1999 48.82 0.01209
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In this case the gain cannot be 2
0 1

np → ; for 
which, an infinity permutations is used, while 
the maximum available permutations is only 
l ! , also note that the gain do not increase lin-
early with the increase of the multiplication 
factor, see Figure 2.

Based on the assumption that the best 
(optimal) x  value for the multiplication factor 
x  (integer value) can be found when the speed 
of change of gain E  at iteration x  is half the 
initial speed of change of gain (i.e., atx = 1 ). 
Differentiate Equation (25) with respect to x :

d

dx
E np f e

xf

= →

−

0 1
2( )
( )




	 (27)

Allow it to equal half the derivative at 
x = 1  and solve for optimal x

np f e

n
p f e

xf

f
0 1

2

0 1
2

2

→

−

→

−
=

( )

( )

( )

( )











	 (28)

x
ln

f
 = +1

2 2�

( )
	 (29)

Note that the optimal value for x  is de-
pendant on the error  , in the following two 
subsections a discussion will be presented for 
running P-RUQB in two situations, the absence 
and presence of errors.

P-RUQB without Errors

Assume that the quantum channel is error free, 
and Eve is not eavesdropping on the quantum 

channel, for BB84 value of | |F
n

=
2

 then 

f ( ) 

1

4
, therefore the optimal value based 

on Equation (29) with no errors is

xne� � 8 2 1 7ln + = 	 (30)

And the optimal expected gain E  is

E np ene
� � 2 1

0 1

7

8
→

−
−










	 (31)

 1 17
0 1

. np → 	 (32)

Figure 2. Gain values for multiple P-RUQB iterations up to 30  iterations for number of photons 
n = 212 See Table 1
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BB84 and RUQB has p
0 1

1

4→ =  so the 

optimal gain is estimated as

E nne
� � 0 29. 	 (33)

See Figure 2. Table 1 lists an average of 
10 runs for each selected x .

If Eve is eavesdropping on the quantum 
channel but still no errors is detected this may 
indicate that she is using a beam splitting (pho-
ton number splitting PNS) attack, where each 
pulse may contains two or more photons, the 
estimated bits leaked according to Bennett and 
Brassard (1992) is related only to the physical 
(and statistical) characteristic of photon pulse 
generator; the mean number of photons per 
pulse  µ , where the leak is | |F µ  in addition 
to a suggested safe factor of five standard 
divination 5 1| | ( )F µ µ− , so the information 
gained by an eavesdropper is

I F F
e
= + −| | | | ( )µ µ µ5 1 	 (34)

a more comprehensive analysis done by Gilbert 
and Hamrick (2000), includes other physical 
parameters; the attenuation α  of the quantum 
channel between Alice, Eve and Bob, in addi-
tion to Eve’s controlling parameters ρ  and u  
where they represent the degree to which she 
can adjust the transparency of the quantum 
channel and the number of photons that she 
chooses to remove from the multi-photon pulse 
for future use respectively, in addition to the 
efficiency of Bob detector η . The leak is re-
lated to the number of pulses containing more 
than two photons, and (decreased) by the non-
efficient amount that is controlled by param-
eters S u( , , , )α ρ η , so the information gained 
by an eavesdropper now is

I
M

e S u
e
= − + −





−

2
1 1µ µ α ρ η( ) ( , , , ) 	

(35)

Where M  is the total number of laser 
pulses. This leak is included in Equation (16). 
Back to Equation (29) the optimal multiplication 

factor of P-RUQB where f
I

n
e( ) = −

1

4
 for 

BB84 is

x
ln

I

n

ne I

e

e



_ = +

−

1
8 2

1 4

	 (36)

P-RUQB with Errors

If the quantum channel is not error-free (but 
Eve is not eavesdropping on the quantum chan-
nel, and without paying attention to the physi-
cal properties of the equipments) then errors 
will be within the sifted key and they should 
be eliminated, error rate (percentage) can be 
estimated by comparing random bits of the key, 
Shannon theorem (Shannon, 1948) estimates 
the minimum number of bits to be eliminated 

by error correction as | |
( )

F
h

2
 , where

h( ) ( log ( )log( ))    = − + − −
2 2

1 1 	

and F n
=

2
 for BB84, and for big value of n

f h( ) ( ( )) 

1

4
1− 	 (37)

Therefore the optimal x  is

x
ln

h
e
� � 1

8 2

1
+
−

�

( )
	 (38)

And optimal expected gain Ee  is

E
n

ee

h
� �

4
2

1

8−












−
− ( )

	 (39)

The effect of errors percentage   on op-
timal x  and expected gain can be seen in 
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Figure 3 and Figure 4 respectively. Note that 
due to errors, optimal x  should be increased 
to maintain approximately the same expected 
gain percentage. In Gilbert and Hamrick (2000) 
a study to include the physical parameters of 
the devices in the estimation of errors without 
eavesdropping is


e c

dM
r e

r


2
1

2
( )− +













−µαη 	 (40)

Where r
c

 is intrinsic quantum channel 
error rate, r

d
 is dark count rate by Bob detector.

Due to Bennett and Brassard (1992) if Eve 
is eavesdropping on the quantum channel and 
the channel is not error free (using only µ  and 
 ), then

I F

F

e
= +( )

+ − + +

µ

µ µ

2 2

5 1 4 2 2



| | ( ( ) ( ) )
	 (41)

This value should be used in Equation (36), 
a more comprehensive analysis can be found 
in Gilbert and Hamrick (2000).

SECURITY ANALYSIS

It is necessary to identify whether P-RUQB 
causes more information to be leaked than 
RUQB regarding both initial and final keys. 
Assuming that both RUQB and P-RUQB tech-
niques allows Eve to be in possession of all sets 
L
p

 that contains the indexes of the locations 
within the initial key, such sets will contribute 
to more bits within the final key. In this research 
RUQB security analysis will be discussed then 
it will be compared to P-RUQB.

RUQB Security Analysis

In the RUQB algorithm an eavesdropper will 
be able to get the list of indexes that Alice sends 
to Bob, let L i i i

s
= { , , , }

1 2
 denote the list of 

indexes,x
lj

denote the new bit value calculated 

based on the list L starting at index i
j
 using a 

maximum of l sequential bits and l
j
be the 

calculated location for x
lj

, then an eavesdrop-

per will be able to construct the following 
system of equations

Figure 3. The effect of error percentage   on optimal x

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x x x x x
l i i i i l1 1 1 1 11 2 1
= ⊕ ⊕ ⊕ ⊕+ + + −( ) ( ) ( )

 	

l x x x
i i i1

0
1

1
2

2

1 1 1
2 2 2= + + + ++ +( ) ( )

 	

x modn
i l

l
( )1 1

12+ −
− 	

x x x x x
l i i i i l2 2 2 2 21 2 1
= ⊕ ⊕ ⊕ ⊕+ + + −( ) ( ) ( )

 	

l x x x
i i i2

0
1

1
2

2

2 2 2
2 2 2= + + + ++ +( ) ( )

 	

x modn
i l

l
( )2 1

12+ −
− 	

 	

x x x x x
l i i i i ls s s s s
= ⊕ ⊕ ⊕ ⊕+ + + −( ) ( ) ( )1 2 1

 	

l x x x
s i i is s s
= + + + ++ +2 2 20

1
1

2
2

( ) ( )
 	

x modn
i l

l

s( )+ −
−

1
12 	

Note that the size of the list is  
| |L s gn= = , where g  is the RUQB gain (every 
element within the list contribute to a bit of 
gain), from the above system of equation the 
number of equation   is

 = 2s 	 (42)

Were each element in list L  results in two 
equations; one for location l

j
 and the other for 

resultx
lj

, the number of variables   in the 

system of equation is

 = +s dl( )2 	 (43)

Were each element in list L  results in two 
variables on the left hand side of the equations 
plus on average dl  variables for each equation, 
where l n= +log 1 , d is a percentage depends 
on the distance between elements of L  and can 
be calculated as,

d
d d

d
=







<

≥

 



1

1

1

if

if
	 (44)

Where



d
l s

i i
k

s

k k
=

−
−

=

−

+∑
1

1 1

1

1( )
( ) 	 (45)

And it has a maximum value of 1, see 
Equation (44), denoting that there is no intersec-
tion between the variables used by each equa-

Figure 4. The effect of error percentage   on gain percentage
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tion. The ratio R  between the number of 
equations to the number of variable shows the 
ability for an eavesdropper to solve this system 
of equation to gain full knowledge about the 
original key and the gained bits, so

R =
E
V

	 (46)

�����
( � )

=
+ +

2

2 1d logn
		  (47)

since d  depends on the distance between the 
elements of the list L  it is never 0 since at least 
each element is different than the other by one 
location, also it is uncommon to have the value 
of 1 since then all elements are far away from 
each other, so 0 1< ≤d  and the limit of the 
ratio as n  reach for infinity is 0 (i.e., the num-
ber of variables is far more than the number of 
equation and hence the eavesdropper will not 
be able to solve the system of equations).

P-RUQB Security Analysis

For P-RUQB the number of equation is far more 
than RUQB, applying the same analogy, if the 
list of indexes is Lj 

L i i i
j j j s j
= { , , , }

1 2
 	 (48)

Then the number of equation is

 = =∑2 2
j

j
L g n| | ' 	 (49)

Where | |L
j

 is the length of the listL
j
, g '  

is P-RUQB gain, the number of variables used 
also

 = + = +∑h
F

L h
F

g n
i

j

| |
| |

| |

2
2

2
2 ' 	

(50)

Where | |F  is the initial sifted key size, 
and h  is the percentage used from the initial 
key 0 < ≤h h , so the ratio is

R =
E
V

	

��
| |

’

’

=
+

2

2
2

g n

h
F

g n

	 (51)

And the limit of R  as n  reaches infinity 

is dependent on h  and since | |F
n

=
2

 for BB84 

then the limit

lim
'

'n
R

g

g h→∞
=

+

8

8
	 (52)

And since g '  for BB84 and P-RUQB is 
0.29 then the limit is

lim
.

.n
R

h→∞
=

+
2 32

2 32
	 (53)

based on h,  the ratio R  range from 0.6987 
(for h = 1  ; i.e., all initial key bits are used) to 
0.958 (for h = 0 1. ; only 0.1 of the initial key 
bits are used), in practice approximately all 
initial key bits will be used, so the ratio is 0.7 
since this will give an eavesdropper more in-
formation than RUQB but still not enough to 
solve the system of equations for large values 
of  n . So if an eavesdropper has any or both of 
the following conditions hold:-

1. 	 All the locations within the initial key that 
happen to be within L

j
are known (i.e., 

specific 11% of the initial key is known 
by Eve).

2. 	 A known sequence of l  or more bits within 
the initial key and the start of this sequence 
must be within L

j
 (i.e., with a probability 

of 11% this sequence contribute to new 
bit).
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Then the system of equation begins to solve.

Randomness Effect

Both algorithms (RUQB and P-RUQB) depend 
on the interpretation of the sequence of bits that 
contribute to the initial key (the original key). 
The higher the randomness of bits generated, 
the higher would be the expected gain obtained. 
This is due to the fact that randomness will 
cause the probability of any location to be in-
terpreted equal, see Equation (11); where both 
p

0 1→ and D  are constants and dependent on 
randomness; the former is QKD protocol de-
pendent, while the latter is only randomness 
dependent (the randomness of the generated 

bits) and equal to 1

n
.

If the bits are not completely random, then 
some interpretations (for new locations) are 
more likely than others, which results in redun-
dancy in interpretation, and hence, degradation 
in gain obtained. Back to Equation (11), both 
p

0 1→  and D  will be degraded by the same 
redundancy factor (percentage) � [ .. ]r = 0 1  
(where 0 is for no redundancy in location in-
terpretations, and 1 is for full redundancy, i.e., 
all interpretations are for the same location, in 
general r  is close to 0 not 1), so

p r p
i

ni i→ + →= −( ) −








1 0 1

1 	 (54)

Replacing 1−( )r  byc , and recalculating 
the expected gain (Equation (12)) will results 
in same factor to be included in the expected 
gain. This is given by

E cnp
nr

m

= − −





















→2 1 1

1

20 1
	 (55)

Where c  is the inverse of the redundancy 
factor (i.e., 0 is for full redundancy and 1 is for 
no redundancy; now c is close to 1 not 0). Note 
that in Table 1 and Figure 2 as it can be seen 
there is a small difference between calculated, 
and the actual gain obtained;  r  varies between 
0.0054 and 0.0384 with average of 0.0234. See 
Figure 5.

Randomness is used for security improve-
ment, however gain is affected by randomness, 
at the same time the number of both variables 
and equations are also affected (degraded). As 
a source of randomness some QKD schemes 
and implementations are using entanglement 
(ERP Based) quantum states as a source for 
both information carrier and randomness, while 
Pironio, et al. (2010) noted that random numbers 

Figure 5. Calculated  r  based on the difference between expected and calculated gain as a result 
of randomness for each x
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(generated and used during QKD protocol us-
ing EPR states) can be certified based on the 
violation of Bell’s inequalities (Bell, 1964; 
Gerhardt et al., 2011) showed that this certifica-
tion can be refuted experimentally if the viola-
tion was not loophole-free, i.e., there is no 
classical communication between communicat-
ing parties used to fake results and there is no 
kind of shared randomness between commu-
nicating parties; both will result in statistical 
violation of Bell’s inequalities, hence false sense 
of randomness and security. Another research 
(Bouda et al., 2012) showed that security of 
QKD will ruined if an eavesdropper is in posi-
tion of partial and limited access to the source 
of randomness that is used by the protocol.

CONCLUSION

QKD protocols uses quantum phenomena as a 
source of randomness to generate bits or qubits, 
sometimes, QKD protocols suffers from a gain 
problem; In this research it was found that P-
RUQB achieved an enhancement over RUQB 
by recovering around 50-60% from the unused 
bits which is equal to around 30% gain, which 
means that some quantum lost bits are recovered.

The recovery is achieved by re-examining 
the initial 50% of the bits assumed to be lost. This 
is based on the process of finding relationships 
between the random bits generated.

A comprehensive analysis for both the gain 
and the security for both algorithms (RUQB 
and P-RUQB) were discussed; it was shown 
that P-RUQB achieves higher gain than RUQB, 
while the latter maintains better security. Both 
RUQB and P-RUQB are randomness dependent 
and the higher randomness the higher the gain. 
The complexity of P-RUQB was shown to be

O
x F logn �

2












;

while for BB84 a near optimal number of per-
mutations 8. The algorithm is of the order 
O nlogn ( ) .
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