Poster Open Access

Serious gaming to train pattern-recognition based myoelectric control

Kristoffersen, Morten Bak; Murgia, Alessio; van der Sluis, Corry; Bongers, Raoul M.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1209317</identifier>
  <creators>
    <creator>
      <creatorName>Kristoffersen, Morten Bak</creatorName>
      <givenName>Morten Bak</givenName>
      <familyName>Kristoffersen</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3901-2856</nameIdentifier>
      <affiliation>University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands</affiliation>
    </creator>
    <creator>
      <creatorName>Murgia, Alessio</creatorName>
      <givenName>Alessio</givenName>
      <familyName>Murgia</familyName>
      <affiliation>University of Gronin gen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands</affiliation>
    </creator>
    <creator>
      <creatorName>van der Sluis, Corry</creatorName>
      <givenName>Corry</givenName>
      <familyName>van der Sluis</familyName>
      <affiliation>University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands</affiliation>
    </creator>
    <creator>
      <creatorName>Bongers, Raoul M.</creatorName>
      <givenName>Raoul M.</givenName>
      <familyName>Bongers</familyName>
      <affiliation>University of Gronin gen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Serious gaming to train pattern-recognition based myoelectric control</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2010</publicationYear>
  <subjects>
    <subject>Serious gaming</subject>
    <subject>Pattern-recognition</subject>
    <subject>Myoelectric control</subject>
    <subject>prosthesis</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2010-09-28</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1209317</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1209316</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;User training of upper-limb myoelectric prostheses using a pattern-recognition based control scheme is currently limited to the clinic and consists of a considerable amount of trial and error due to the lack of appropriate feedback. In this study, feedback in the form of a serious game during the system training procedure, is compared to conventional system training. The objective of the current study, is to test whether feedback in the form of a serious game gives better results than conventional feedback in the system training of prosthesis control based on pattern recognition.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/687795/">687795</awardNumber>
      <awardTitle>Intuitive Natural Prosthesis UTilization</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
27
10
views
downloads
All versions This version
Views 2727
Downloads 1010
Data volume 3.6 MB3.6 MB
Unique views 2424
Unique downloads 1010

Share

Cite as