

PROJECT SUREAL-23: UNDERSTANDING, MEASURING AND REGULATING SUB-23 NM PARTICLE EMISSIONS FROM DIRECT INJECTION ENGINES INCLUDING REAL DRIVING CONDITIONS

Aerosol and Particle Technology Laboratory (APTL)

ICE2017, Capri, September 10-14, 2017

Outline

- > The problem
- SUREAL-23 approach
- Project's methodology
- Advanced particle sampling/treatment
- Advanced instrumentation
- Indicative applications
- Conclusions

Connecting Europe Facility

The Problem

- > Vehicles are subject to regulation of **solid-only particle** number (PN) since Euro 5/6 homologation for light duty, Euro 6 for heavy duty.^[1]
- > Protocol developed by the PMP^[2]: hot dilution and an Evaporator Tube and particle counting with **50% cut-off** at 23 nm to avoid re-nucleation artifacts.
- > Initial PN regulation **aimed at Diesel**, extended to Gasoline. GDI engines have greatly increased in number.
- Evidence of significant solid PN emissions missed due to the 23 nm cut-off.^[3]
- Health effect significance: enhanced deposition in the respiratory track and potential translocation.^[3,4]

How to measure below 23 nm?

^[1] Science of the Total Environment 408:5106–5116 (2010). ^[2] Aerosol Sci. Technol., 42:528–43 (2008). ^[3] Aerosol Sci. Technol., 51:5, pp. 626-641 (2017). ^[4] Inhal Toxicol., 16(6–7):437–45 (2004).

Connecting Europe Facility

SUREAL-23 Approach

Focus

The *SUREAL-23* project focuses on the particles, smaller than the current regulation cut-off limit of 23 nm, emitted from Light Duty engines (Diesel and gasoline).

Objectives

- Complement and extend existing instrumentation for particles below 23 nm.
- Characterize in detail the nature of the particulate emissions below 23 nm.
- Support future emissions compliance through technical developments in RDE.

Innovation

- Size and composition analysis methods suitable for transient engine emissions.
- Novel instrumentation for measuring aerosol particles below 23 nm, providing backward compatibility with established PN measurement technology.
- Enhancement of instrument specifications to allow operation with less demanding sample conditioning requirements.
- Integration of the most suitable components of the extended sub-23 nm measurement toolset into PEMS and verification in real driving conditions.

SUREAL-23 Partnership

SUREAL-23 Workplan

Technology Development and Testing

Sampling / Conditioning

Advanced Catalytic Stripper

Solid particles with condensed volatile fraction

- A plethora of mixed oxides were synthesized and tested for their SO₂ adsorption capacity
- A double function monolith was impregnated with the most efficient powders and addition of Pt

- C40 removal efficiency \succ
- SO₂ adsorption \succ
- Solid particle penetration

CS Evaluation

The catalytic stripper meets the current but also possible future PMP demands with >99.9% oxidation efficiency up to Q=20 lpm for concentrations >10⁶particles/cm³.

- The complete S adsorption capacity is 3.5mg or 0.27g/l of catalyst volume while the overall 11.8mg or 0.91g/l.
- CS completely adsorbs SO2 for approximately 250 NEDC cycles in raw exhaust (no dilution).

Flexible Dilution System

The system developed can operate in a wide variety of DRs (10-400) and can host additional dilution stages and/or volatile treatment devices.

Connecting Europe Facility

The half-mini DMA (SEADM)

- Capable of operating up to 200 ° C sample.
- Components are sized for high resolution below 10 nm. Down-sizing (5× for pump/heater) possible for region of interest 3 – 30 nm.

- Reduced exhaust aerosol conditioning:
 - Less dilution (cold dilution obsolete)
 - Fewer / smaller / lower power consuming devices for sample conditioning

Practical advantages:

- Easier to detect low sub-23 nm particle concentrations
- Fewer diffusive particle losses
- Compactness

Automotive ICAD (FHNW)

The concept of Diffusion Charging

- Operate at high temperature (150°C) to allow minimum dilution
- ➢ 50% counting efficiency at 11.5nm
- Absolute sensitivity increased

Testing Platforms (APTL, IM, IFPEN, CRF)

- Vehicle Testing on chassis dyno
 - Euro 6 DIESEL
 - Euro 6 Gasoline Direct Injection Engine with turbocharger
- Vehicle Testing on road
 - Euro 6 DIESEL
 - Euro 6 Gasoline Direct Injection Engine with turbocharger
- Portable emissions measurement system (PEMS) instrumentation

Testing with Combustion Aerosol Standard (CAST) Particle Generator

CAST produces aerosols with user tailored characteristics by fine tuning the flow rates of the oxidation/quenching gas mix

- 2.5E+06 —M10 **Dilution** gases Particle output Quenching gases —M15 2.0E+06 N/dlog(Dp), #/cm³ **Dilution** gases —M20 .5E+06 Flame region 1 **♦ ↑** 1.0E+06 Air Air 5.0E+05 Gaseous Fuel (C_3H_8) 0.0E+00 10 100 Dm (nm) 35 D_{mean}= 17.3 nm counts 30 —logfit 25 20 15 10 5 50nm 10 100 size, nm
- Nanoparticles are amorphous, lacking a well defined perimeter, exhibiting a semi-solid nature of elliptical/spherical shape
- Image analysis showed that particle sizes lie in the range of 10-30nm, with a mean value of 17.3nm

-

Connecting Europe Facility

Effect of VPR Treatment on Particle Size Distributions

Effect of HM-DMA Operation Temperature on CAST Particles

Soot from Diesel engine operation with fuel additive – TEM

SAE INTERNATIONAL

Effect of VPR Treatment on Particle Size Distributions

HM-DMA Measurements (Diesel with Fuel Additives)

Conclusions – Next Steps

- Advances in particle sampling / treatment / measurement systems for sub 23nm particle emissions are necessary
- > SUREAL-23 proves that these are possible with:
 - Increased resolution below 23 nm
 - Advanced chemical treatment
 - Lower sampling requirements
- > Next Steps:
 - Finish developments for alla proposed instruments
 - Perform measurements to a variety of testing platforms (Test Matrix)
 - Chose among best solutions for PEMS application

We especially acknowledge the contribution of our colleagues at APTL:

Penelope Baltzopoulou Leonidas Chasapidis Danis Deloglou Manos Daskalos **Anastasios Melas**

The work presented was conducted within the EU-funded project **SUREAL-23** (Grant Agreement no. 724136)

Thank you all

Dimitrios Zarvalis/APTL Thessaloniki, Greece dzarv@cperi.certh.gr

