Photo Open Access

Near real-time ultrahigh-resolution imaging from unmanned aerial vehicles for sustainable land use management and biodiversity conservation in semi-arid savanna under regional and global change (SAVMAP)

Reinhard, Friedrich; Parkan, Matthew; Produit, Timothée; Betschart, Sonja; Bacchilega, Beatrice; Hauptfleisch, Morgan L.; Meier, Patrick; SAVMAP, Consortium; Joost, Stéphane


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nkm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Ofli, F., Meier, P., Imran, M., Castillo, C., Tuia, D., Rey, N., Briant, J., Millet, P., Reinhard, F., Parkan, M., 2016. Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big data 4, 47–59.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Rey, N., Volpi, M., Joost, S., Tuia, D., 2017. Detecting animals in African Savanna with UAVs and the crowds. Remote Sensing of Environment 200, 341–351. https://doi.org/10.1016/j.rse.2017.08.026</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">savanna</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">sustainable resource management</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ultrahigh-resolution photographic imaging</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">conservation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">remote sensing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">animal detection</subfield>
  </datafield>
  <controlfield tag="005">20190410034005.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">The dataset proposed here was acquired in May 2014 and contains:

-Raw aerial images (non-rectified) in JPEG format. Additional metadata about individual images (timestamp, latitude, longitude, altitude, etc) can be extracted from the EXIF. Each image is named with a Universally Unique Identifier.

-Polygons indicating the locations of animals tagged during the Micromappers crowdsourcing campaign (please be aware that the polygons contain many false positives and should not be directly used as a "ground truth"). The coordinates of the polygons use the image reference system (i.e. column and row number). Each polygon has a Universally Unique Identifier (TAGUUID) and an associated image (IMAGEUUID). Information about the animal species in each polygon is currently not available. The polygons are provided in the ESRI shapefile and GEOJSON formats.</subfield>
  </datafield>
  <controlfield tag="001">1204408</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Geographical Information Systems (LASIG), School of Architecture, Civil and environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, Lausanne, Switzerland</subfield>
    <subfield code="a">Parkan, Matthew</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Geographical Information Systems (LASIG), School of Architecture, Civil and environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, Lausanne, Switzerland</subfield>
    <subfield code="a">Produit, Timothée</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Drone Adventure, Lausanne, Switzerland, droneadventures.org/</subfield>
    <subfield code="a">Betschart, Sonja</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Geographical Information Systems (LASIG), School of Architecture, Civil and environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, Lausanne, Switzerland</subfield>
    <subfield code="a">Bacchilega, Beatrice</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Nature Conservation, School of Natural Resources and Tourism, Polytechnic of Namibia, Private Bag 13388, Windhoek, Namibia</subfield>
    <subfield code="a">Hauptfleisch, Morgan L.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Qatar Computing Research Institute &amp; iRevolution.net</subfield>
    <subfield code="a">Meier, Patrick</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">http://lasig.epfl.ch/savmap</subfield>
    <subfield code="a">SAVMAP, Consortium</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Geographical Information Systems (LASIG), School of Architecture, Civil and environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, Lausanne, Switzerland</subfield>
    <subfield code="a">Joost, Stéphane</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">860</subfield>
    <subfield code="z">md5:4abf4636b87b486e0adcfe00ec6975b4</subfield>
    <subfield code="u">https://zenodo.org/record/1204408/files/readme.txt</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3509832128</subfield>
    <subfield code="z">md5:f87bd2ace593ec742fb03fd91975d566</subfield>
    <subfield code="u">https://zenodo.org/record/1204408/files/savmap_dataset_v2.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-03-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:1204408</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kuzikus.org, P.Bag 13112 Windhoek, Namibia</subfield>
    <subfield code="a">Reinhard, Friedrich</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Near real-time ultrahigh-resolution imaging from unmanned aerial vehicles for sustainable land use management and biodiversity conservation in semi-arid savanna under regional and global change (SAVMAP)</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://opensource.org/licenses/afl-3.0</subfield>
    <subfield code="a">Academic Free License v3.0</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;To prevent aggravation of existing poverty in semi-arid savannas, a comprehensive concept for the sustainable adaptive management and use of these ecosystems under unprecedented conditions is needed. SAVMAP is an innovative, trans-, and inter-disciplinary initiative whose goal is to develop a valuable monitoring tool for both sustainable land-use management and rare species conservation (black rhinoceros) in semi-arid savanna in Namibia. SAVMAP uses near real-time ultrahigh-resolution photographic imaging (NURI) facilitated by unmanned aerial vehicles (UAVs) designed at EPFL.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.609023</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1204408</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">image</subfield>
    <subfield code="b">photo</subfield>
  </datafield>
</record>
1,321
512
views
downloads
All versions This version
Views 1,321959
Downloads 512461
Data volume 1.2 TB1.2 TB
Unique views 1,122858
Unique downloads 278245

Share

Cite as