Dataset Open Access

New software protocols for enabling laboratory based temporal CT

Parmesh Gajjar; Jakob S. Jorgensen; Jose R. A. Godinho; Chris G. Johnson; Andrew Ramsey; Philip J. Withers


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/3e039f87-65dd-48a3-b0c7-48c3d6b7f377/GoldenRatioDataset.zip"
      }, 
      "checksum": "md5:c5424c296f5119e1c9871a3ee10aac8d", 
      "bucket": "3e039f87-65dd-48a3-b0c7-48c3d6b7f377", 
      "key": "GoldenRatioDataset.zip", 
      "type": "zip", 
      "size": 31193142360
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/3e039f87-65dd-48a3-b0c7-48c3d6b7f377/MungBeanDataSet.zip"
      }, 
      "checksum": "md5:b1eb363b347ebe4a1ee0956cee8ebc8b", 
      "bucket": "3e039f87-65dd-48a3-b0c7-48c3d6b7f377", 
      "key": "MungBeanDataSet.zip", 
      "type": "zip", 
      "size": 29257284316
    }
  ], 
  "owners": [
    43666
  ], 
  "doi": "10.5281/zenodo.1204088", 
  "stats": {
    "version_unique_downloads": 16.0, 
    "unique_views": 196.0, 
    "views": 219.0, 
    "downloads": 23.0, 
    "unique_downloads": 16.0, 
    "version_unique_views": 195.0, 
    "volume": 701955409928.0, 
    "version_downloads": 23.0, 
    "version_views": 218.0, 
    "version_volume": 701955409928.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1204088", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1204087", 
    "bucket": "https://zenodo.org/api/files/3e039f87-65dd-48a3-b0c7-48c3d6b7f377", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1204087.svg", 
    "html": "https://zenodo.org/record/1204088", 
    "latest_html": "https://zenodo.org/record/1204088", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1204088.svg", 
    "latest": "https://zenodo.org/api/records/1204088"
  }, 
  "conceptdoi": "10.5281/zenodo.1204087", 
  "created": "2018-06-12T16:06:02.142644+00:00", 
  "updated": "2019-11-01T07:12:38.950103+00:00", 
  "conceptrecid": "1204087", 
  "revision": 13, 
  "id": 1204088, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1204088", 
    "description": "<p>These are the accompanying datasets from the paper &quot;<strong>New software protocols for enabling </strong><strong>laboratory based</strong><strong> temporal CT</strong>&quot;. There are two datasets: the germination of a mung bean captured using 54 uninterrupted time-lapse tomograms, and the precipitation of barite in a porous media with continuous golden-ratio projections.</p>\n\n<p>The data was collected using software extensions written for Nikon Metrology CT systems using IPC. These software extensions implemented the protocols highlighted in the paper, and can be found in the following GitHub repositories:</p>\n\n<p>Uninterrupted Time-Lapse CT: <a href=\"https://github.com/parmeshgajjar/TemporalCT-TimeLapse.Uninterrupted.git\">https://github.com/parmeshgajjar/TemporalCT-TimeLapse.Uninterrupted.git</a></p>\n\n<p>Continuous Golden Ratio Acquisition CT: <a href=\"https://github.com/parmeshgajjar/TemporalCT-ContinuousGR.Acqusition\">https://github.com/parmeshgajjar/TemporalCT-ContinuousGR.Acqusition</a></p>\n\n<p>The reconstructions were performed using the ASTRA toolbox with MATLAB. The code for this can be found at the following GitHub repository: <a href=\"https://github.com/jakobsj/TemporalCT-ContinuousGR.Reconstruction\">https://github.com/jakobsj/TemporalCT-ContinuousGR.Reconstruction</a></p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "New software protocols for enabling laboratory based temporal CT", 
    "journal": {
      "title": "Review of Scientific Instruments"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1204087"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1204088"
          }
        }
      ]
    }, 
    "access_right": "open", 
    "communities": [
      {
        "id": "ccpi"
      }, 
      {
        "id": "mxif"
      }
    ], 
    "version": "v2.0", 
    "keywords": [
      "X-ray CT, X-ray Computed Tomography, 4D, Time-lapse imaging, Software protocols"
    ], 
    "publication_date": "2018-03-20", 
    "creators": [
      {
        "orcid": "0000-0001-7109-708X", 
        "affiliation": "The University of Manchester", 
        "name": "Parmesh Gajjar"
      }, 
      {
        "orcid": "0000-0001-9114-754X", 
        "affiliation": "The University of Manchester", 
        "name": "Jakob S. Jorgensen"
      }, 
      {
        "affiliation": "Helmholtz Institute Freiburg for Resource Technology", 
        "name": "Jose R. A. Godinho"
      }, 
      {
        "orcid": "0000-0003-2192-3616", 
        "affiliation": "The University of Manchester", 
        "name": "Chris G. Johnson"
      }, 
      {
        "affiliation": "Nikon Metrology Inc.", 
        "name": "Andrew Ramsey"
      }, 
      {
        "orcid": "0000-0002-1946-5647", 
        "affiliation": "The University of Manchester", 
        "name": "Philip J. Withers"
      }
    ], 
    "notes": "The authors would like to thank Tom Slater and James Carr for insightful discussions and support. PG\nacknowledges support from EPSRC platform grants EP/M010619/1, EP/M022498/1 and EP/J010456/1\nwhilst JJ acknowledges support from EPSRC grant EP/P02226X/1. The shear cell was developed as part\nof the EPSRC Doctoral Training Grant EP/K502947/1. Beamtime was kindly provided by the Henry Mose-\nley X-ray Imaging Facility, which was established through EPSRC grants EP/F007906/1, EP/I02249X/1\nand EP/F028431/1. Funding was also provided through the Henry Royce Institute, established through\nEPSRC grants EP/R00661X/1, EP/P025498/1 and EP/P025021/1.", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1204087", 
        "relation": "isVersionOf"
      }
    ]
  }
}
218
23
views
downloads
All versions This version
Views 218219
Downloads 2323
Data volume 702.0 GB702.0 GB
Unique views 195196
Unique downloads 1616

Share

Cite as