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Abstract—We investigate the physical layer (PHY) security of
a system with a base-station (BS), a legitimate user, and an
eavesdropper, whose exact location is unknown but within a
ring-shaped area around the BS. To this end, we present novel
closed-form expressions for the secrecy outage probability, which
take into consideration both the impact of fading, as well as
the eavesdropper’s location uncertainty. The derived expressions
are validated through simulations, which reveal that the level of
uncertainty should be seriously taken into account in the design
and deployment of a wireless system with PHY security.

Index Terms—Performance Analysis, Secrecy Capacity, Se-
crecy Outage Probability.

I. INTRODUCTION

P
hysical layer (PHY) security has received significant at-

tention in the last years, since it can provide reliable

and secure communication by employing the fundamental

characteristics of the transmission medium, such as multipath

fading [1]. Until recently, the locations of the legitimate user

and the eavesdropper were assumed to be known to the base-

station (BS) (see [2]–[4] and references therein).

However, this assumption was questioned in [5]–[12], since

in the case of purely passive eavesdropper, its location is

not realistic to be known to the BS [5]. Specifically, in [5],

the probability for non-zero secrecy capacity was derived,

assuming that the eavesdroppers were scattered according to

the spatial Poisson process, while the BS has available instan-

taneous channel state information (CSI) of the legitimate user.

In [6], the secrecy outage probability (SOP) was evaluated

for a scenario where multiple colluding eavesdroppers are

distributed according to a Poisson point process (PPP), but

the effect of multipath fading was not taken into consideration,

and the derived expressions are not generally in closed-form.

In [7], multiple BSs distrubuted according to a PPP are

considered, but the authors assume full or partial knowledge

of the location of the potential eavesdroppers. Also, the effect

of fading was not taken into consideration, and the achievable

secret transmission rate is presented in the form of bounds
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and approximations. In [8], the impact of uncertainty on Eve’s

location is investigated, but the CSI of the main channel is

known to Alice, and the expression for the SOP is not closed-

form, but it is given in a form of an infinite series. In [9]

and [10], the uncertainty in Eve’s location is handled by

performing estimation with techniques, such as received signal

strength, angle of arrival and time difference of arrival. In

our work, we consider the case, where the hardware required

for these techniques is not available to Alice. Furthermore, in

[11], the location uncertainty was modeled in terms of node

and link failures by using secrecy graphs. Finally, in [12],

the authors considered a multiple BS scenario, in which the

locations of the legitimate users and the eavesdroppers were

assumed known, while the location of each BS was assumed

unknown and modeled as a Poison point process.

In this work, we present closed-form expressions for the

SOP, as a function of the targeted transmission rate, assuming

that the eavesdropper’s location is modeled as a uniform distri-

bution over a ring-shaped area, centered at the BS’s location.

We also consider that the BS has available statistical CSI

knowledge, for both the legitimate user and the eavesdropper.

The derived expressions hold for any given path loss exponent,

and they can be used in various practical scenarios to select

deployment specifications, such as the targeted data rate and

the minimum level of uncertainty that is required, in order

to employ PHY security in a wireless system. To the best

of the authors’ knowledge, the impact of the uncertainty

on the location of the eavesdropper in PHY security under

these assumptions has not been addressed yet in the open

technical literature.

II. SYSTEM MODEL

We consider the downlink scenario in a wireless network

that consists of a BS, which aims to transmit a confidential

message to a legitimate user, in the presence of an eavesdrop-

per. For convenience, we refer to the BS as Alice (A), the

legitimate user as Bob (B), and the eavesdropper as Eve (E).

The baseband equivalent signals received by Bob and Eve can

be respectively written as

yB = hBx+ nB and yE = hEx+ nE , (1)

where x denotes the transmitted signal, nB and nE are

zero mean complex Gaussian random variables (RVs) that

represent zero-mean symmetric additive white Gaussian noises

(AWGN), with power spectral density N0 at Bob and Eve,

respectively. Without loss of generality, we assume that the
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variance of the noise at Bob’s and Eve’s RXs are the same.

Moreover, the channel between Alice and Bob is denoted by

hB , while that between Alice and Eve by hE . Due to the

distance, dX , between Alice and node X , the channel gain

can be expressed as in [13], and is given by

hX =
gX

√

1 + dαX
, (2)

where X ∈ {B,E}, while |gX | and α denote the Rayleigh

fading channel gain and the path loss coefficient, respectively.

We assume that the distance between Alice and Bob is constant

and known to Alice, while the exact distance between Alice

and Eve is unknown to Alice. Furthermore, Eve’s location is

uniformly distributed in a ring centered at Alice’s position,

with inner radius R1 and outer radius R2. R2 represents

the BS’s coverage region, since Eve has to be located at a

position where she can reliably receive the signal transmitted

by Alice. For a fixed R2, R1 shows the minimum distance

between Alice and Eve required to achieve a target SOP, for

the design and deployment of a system with specific SOP

requirements. This is a realistic assumption, when Eve is not

a legitimate member of the network. In practice, R1 and R2

represent a secure region around the BS and the BS’s coverage

region, respectively.

By using (2), the instantaneous signal-to-noise ratio (SNR)

at Bob and Eve can be expressed as

γX =
|hX |2Es

N0
=

|gX |2Es
(1 + dαX )N0

, (3)

where, Es, represents the energy of the transmitted signal.

III. SECRECY OUTAGE PROBABILITY

The secrecy capacity is given by [14]

Cs =

{

CB − CE , CB ≥ CE

0, otherwise,
(4)

where, CB = log2(γB + 1), is the capacity of the legitimate

channel between Alice and Bob, and, CE = log2(γE + 1),
is the capacity of the eavesdropper channel between Alice

and Eve.

Proposition 1. The probability density function (PDF) of

|hE |
2 as given by (2) can be expressed as in (5), given at the

top of the next page, while the cumulative distribution function

(CDF) of |hE |
2 can be obtained as

F|hE |2(x) = 1−2
R2

1Eα−2

α

(Rα
1 x)−R2

2Eα−2

α

(Rα
2 x)

(R2
2 −R2

1)α
exp(−x),

(6)

where En (·) is the exponential integral function [15, Eq.

(5.1.4)].

Proof: Please refer to Appendix A.

The SOP is the probability that the secrecy capacity is lower

than a target secrecy rate rs, i.e., Po(rs) = Pr(Cs ≤ rs),
or equivalently

Po(rs) = Pr

(

log2

(

γB + 1

γE + 1

)

≤ rs

)

. (7)

Theorem 2. The SOP can be expressed in closed-form as

Po(rs) = 1− exp

[

−
(1 + dαB)(2

rs − 1)N0

Es

]

+ L(rs), (8)

where L(rs) is a coefficient that depends on the uncertainty

about the location of the eavesdropper, and is given by (9)

at the top of the next page. Moreover, 2F1 (·, ·, ·, ·) is the

Gaussian hypergeometric function [16, Eq. (9.111)].

Proof: Please refer to Appendix B.

A. An insightful scenario

Next, we study the insightful scenario, when α = 2. This

path loss parameter corresponds to the free-space transmission,

which even though is not a realistic case for terrestrial wireless

communications, it provides useful insights for the impact of

the uncertainty in Eve’s location on the secrecy capacity. By

substituting α = 2 into (9), and applying [16, Eq. (9.121/6)],

L(rs) can be simplified as

Lfs(rs) =
2rs(1 + d2B)

R2
2 −R2

1

exp

[

−
(1 + d2B)(2

rs − 1)N0

Es

]

× ln

(

1 + 2rs(1 + d2B) +R2
2

1 + 2rs(1 + d2B) +R2
1

)

. (10)

Next, we examine the case where R1 approaches R2.

Consider the function lfs(R1) = Lfs(rs) for a fixed rs. We

observe that lfs(R1) is a decreasing function. In other words,

as R1 decreases, i.e., Alice becomes more uncertain about

the location of the eavesdropper, the SOP also increases. By

applying L’ Hospital’s rule on (10), we obtain

lim
R1→R2

lfs(R1) =
2rs(1 + d2B) exp

[

−
(1+d2

B
)(2rs−1)N0

Es

]

1 + 2rs(1 + d2B) +R2
2

.

(11)

By substituting (11) into (8), the SOP when R1 → R2 can be

written as

P fs
o (rs) = 1−

exp
[

−
(1+d2

B
)(2rs−1)N0

Es

]

1 + 2rs
1+d2

B

1+R2

2

. (12)

Note that (12) coincides with the SOP for a fixed eavesdropper

distance from Alice, considering free-space transmission [17].

This indicates that as the uncertainty on the location of the

eavesdropper decreases, the performance of the system tends

to the system, where the location of the eavesdropper is

considered to be known to Alice. This observation is illustrated

in Section IV through simulations.

IV. NUMERICAL RESULTS AND DISCUSSION

We consider that Bob is located 3 m from Alice. Addition-

ally, Alice knows that Eve is located in a ring with inner radius

R1 and outer radius R2. Unless otherwise stated, R2 = 200 m.

In the following figures, LU stands for location uncertainty.

Fig. 1 depicts the SOP as a function of Es

N0

for different

values of rs, when R1 = 50 m and α = 3. Moreover, the SOP

is plotted for the case when Eve’s location is known (dE = R1

and dE = R2), in order to be used as benchmark. As expected,
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f|hE|2 (x) =
2
(

E a−2

α

(Ra
1x) +Rα

1E− 2

α

(Rα
1 x)

)

R2
1 − 2

(

Eα−2

α

(Rα
2 x) +Rα

2E− 2

α

(Rα
2 x)

)

R2
2

(R2
2 −R2

1)α
exp(−x) (5)

L(rs) =
2rs(1 + dαB)

(1 + 2rs + dαB2
rs)(R2

2 −R2
1)

exp

[

−
N0(1 + dαB)(2

rs − 1)

Es

]

×

(

2F1

(

1,
2

α
,
2 + α

α
,−

Rα
2

1 + 2rs + dαB2
rs

)

R2
2 − 2F1

(

1,
2

α
,
2 + α

α
,−

Rα
1

1 + 2rs + dαB2
rs

)

R2
1

)

(9)
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Fig. 1. The SOP as a function of Es/N0 for different values of rs.

for a fixed targeted secrecy rate, rs 6= 0, as Es

N0

increases, the

SOP decreases. However, for rs = 0, it is independent of the
Es

N0

. Furthermore, for a given Es

N0

, as rs increases the SOP

increases. We also observe that, when the distance between

Alice and Eve is known and equal to dE = R1, the SOP is

higher compared to the case where Eve’s location is uncertain.

However, when dE = R2, the SOP is lower, compared to

the case with location uncertainty for Eve. In other words,

the cases where Eve is located at a fixed distance equal to

R1 or R2 from Alice can be treated as an upper or a lower

bound, respectively, for the SOP. These observations reveal the

importance of taking into consideration the uncertainty on the

location of the eavesdropper, when designing and deploying a

wireless system with PHY security.

Fig. 2 depicts the SOP as a function of R1, for different

values of rs, when Es

N0

= 30 dB and α = 2. Again, the SOPs

when the eavesdropper locations are known (dE = R1 and

dE = R2) are illustrated as benchmarks. As expected, for a

given rs, as R1 increases, the uncertainty of the Eve’s received

SNR decreases; hence, the SOP decreases. Also, we observe

that for a fixed R1, higher values of rs lead to higher SOPs.

As mentioned before, the cases where the distance is fixed and

equal to dE = R1 and dE = R2 provide an upper and a lower

bound, respectively, for the SOP. As R2 − R1 decreases, the

uncertainty of Eve’s location decreases, and the upper and the

lower bound of the SOP converge.

Fig. 3 depicts the SOP as a function of rs, for different

values of α and Es

N0

. We observe that, for fixed α and Es

N0

,

as rs increases, the SOP increases. This is expected since, as

indicated by (7), the instantaneous capacity difference between

CB and CE is statistically less likely to achieve for higher

values of rs. Also, for a fixed Es

N0

and rs, as α increases,

the impact of path loss becomes more severe; therefore,the
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Fig. 2. The SOP as a function of R1 for different values of Rs.
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Fig. 3. The SOP as a function of Rs for different values of α.

SOP increases. Moreover, for a fixed α and rs, higher values

of Es

N0

lead to lower values of the SOP. Additionally, it is

evident that, in the low Es

N0

regime, it is not possible to achieve

PHY security, since the SOP is very high. For example, for
Es

N0

= 10 dB and α = 4, the SOP is always very close

to 1, which means that PHY security is not feasible in this

case. These results reveal the importance of taking both the

effects of path loss and eavesdropper’s location uncertainty

into consideration, in the design and deployment of a wireless

system with PHY security.

APPENDIX A

PROOF OF PROPOSITION 1

Since Eve’s location is uniformly distributed as described in

Section II, the CDF of |hE |
2 can be evaluated as [13, Eq. (3)]

F|hE |2(x) =
2

R2
2 −R2

1

∫ R2

R1

zF|gE |2 (x (z
α + 1)) dz, (13)
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where F|gE |2(x) denotes the CDF of |gE|
2, which, since |gE |

2

is an exponentially distributed RV, is given by

F|gE |2(x) = 1− exp (−x) . (14)

By substituting (14) into (13), we get

F|hE |2(x) = 1−
2 exp(−x)

R2
2 −R2

1

∫ R2

R1

z exp (−xzα) dz. (15)

By setting y = z2 into the integral in (15) and then by applying

[16, Eq. 2.33/4], we get (6).

The PDF of |hE |
2 can be obtained as

f|hE |2(x) =
dF|hE |2(x)

dx
. (16)

By using (16) in (6), we get (5). This concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

The SOP can be expressed as

Po(rs) = Pr

(

X

Y
≤ 2rs

)

, (17)

where X = γB + 1 and Y = γE + 1.

Since |hB| is a Rayleigh distributed RV, it follows that |hX |2

is an exponentially distributed RV. Taking into consideration

(2), the CDF of the SNR at Bob is given by

FγB
(x) = 1− exp

(

−
(1 + dαB)N0

Es
x

)

. (18)

Consequently, the CDF of X can be derived as FX(x) =
FγB

(x− 1), or

FX(x) = 1− exp

(

−
(1 + dαB)(x− 1)N0

Es

)

. (19)

On the other hand, the SNR of the eavesdropper is a RV that

follows a distribution described in Proposition 1. Therefore, by

using (15) and (16), the PDF of Y can be expressed as

fY (y) =
2N0

(R2
2 −R2

1)Es

×

∫ R2

R1

z(1 + zα) exp

(

−
(1 + zα)(x − 1)N0

Es

)

dz. (20)

Furthermore, since X and Y are independent RVs, by taking

into consideration (17), the SOP can be obtained as

Po(rs) =

∫ ∞

1

FX(2rsx)fY (x)dx. (21)

By substituting (19) and (20) into (21), and after some

simplifications, we obtain

Po(rs)=1−
2N0

(R2
2 −R2

1)Es

∫ R2

R1

z(1 + zα) exp

(

N0

Es
(zα − dαB)

)

×

∫ ∞

1

exp

(

−
N0

Es
(2rs + 2rsdαB − 1− zα)x

)

dxdz. (22)

After evaluating the internal integral, (22) becomes

Po(rs) = 1−
2

R2
2 −R2

1

exp

(

−
(1 + dαB)(2

rs − 1)N0

Es

)

×

∫ R2

R1

z(1 + zα)

1 + 2rs + dαB2
rs + zα

dz. (23)

Finally, we carry out the integration in (23) by using [16,

Eq. (9.111)], and after some mathematical manipulations, we

get (8). This concludes the proof.
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